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Abstract

Abstract: This paper presents a simplified, introductory view of how visual at-

tention may contribute to and integrate within the broader framework of visual scene

understanding. Several key components are identified which cooperate with attention

during the analysis of complex dynamic visual inputs, namely rapid computation of

scene gist and layout, localized object recognition and tracking at attended locations,

working memory that holds a representation of currently relevant targets, and long-

term memory of known world entities and their inter-relationships. Evidence from

neurobiology and psychophysics is provided to support the proposed architecture.
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1 Introduction

Primates, including humans, use focal visual attention and rapid eye move-
ments to analyze complex visual inputs in real-time, in a manner that highly
depends on current behavioral priorities and goals. A striking example of how a
verbally-communicated task specification may dramatically affect attentional
deployment and eye movements was provided by the pioneering experiments
of Yarbus (1967). Using an eye-tracking device, Yarbus recorded the scan-
paths of eye movements executed by human observers while analyzing a single
photograph under various task instructions (Fig. 1). Given the unique vi-
sual stimulus used in these experiments, the highly variable spatiotemporal
characteristics of the measured eye movements for different task specifications
exemplify the extent to which behavioral goals may affect eye movements and
scene analysis.

Subsequent eye-tracking experiments during spoken sentence comprehension
have further demonstrated how, often, the interplay between task demands
and active vision is reciprocal. For instance, Tanenhaus et al. (1995) tracked
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eye movements while subjects received ambiguous verbal instructions about
manipulating objects lying on a table in front of them. They demonstrated
not only that tasks influenced eye movements, but also that visual context
influenced spoken word recognition and mediated syntactic processing, when
the ambiguous verbal instructions could be resolved through visual analysis
of the objects present in the scene.

Building computational architectures that can replicate the interplay between
task demands specified at a symbolic level (e.g., through verbally-delivered
instructions) and scene contents captured by an array of photoreceptors is
a challenging task. We review several key components and achitectures that
have attacked this problem, and explore in particular the involvment of focal
visual attention during goal-oriented scene understanding.

2 Basic Components of Scene Understanding

A recent overview of a computational architecture for visual processing in
the primate brain was provided by Rensink (2000), and is used as a start-
ing point for the present analysis. In Rensink’s triadic architecture, low-level
visual features are computed in parallel over the entire visual field, up to
a level of complexity termed proto-objects (an intermediary between simple
features such as edges and corners, and sophisticated object representations).
One branch of subsequent processing is concerned with the computation of
the so-called setting, which includes a fairly crude semantic analysis of the
nature of the scene (its “gist”, see [Gist of a Scene]), e.g., whether it is a
busy city street, a kitchen or a beach; and its coarse spatial layout). In the
other branch, attention selects a small spatial portion of the visual inputs
and transiently binds the volatile proto-objects into coherent representations
of attended objects. Attended objects are then processed in further details,
yielding the recognition of their identity and attributes. Fig. 2 builds upon
and extends this purely visual architecture.

As the present review focuses on computational modeling of the interaction
between cognitively-represented task demands and this simplified view of vi-
sual processing, we refer the reader to several articles in this volume which
explore the putative components of the triadic architecture in further de-
tails (e.g., [Contextual influences on saliency], [Contextual guid-
ance of visual attention], [Models of bottom-up attention and
saliency]).

Visual attention has been often compared to a virtual spotlight through which
our brain sees the world [Neurophysiological Correlates of the At-
tentional Spotlight], and shifts of attention have been classified into
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several types based on whether or not they involve eye movements (overt
vs. covert), and are guided primarily by scene features or volition (bottom-up
vs. top-down) (for review, see (Itti & Koch, 2001), [Models of bottom-up
attention and saliency]). The first explicit biologically plausible com-
putational architecture for controlling bottom-up attention was proposed by
Koch and Ullman (1985) (also see (Didday & Arbib, 1975)). In their model,
several feature maps (such as color, orientation, intensity) are computed in
parallel across the visual field (Treisman & Gelade, 1980), and combined into
a single salience map. Then, a selection process sequentially deploys attention
to locations in decreasing order of their salience. We here assume a similar
architecture for the attentional branch of visual processing and explore how it
can be enhanced by modeling the influence of task on attention. The choice of
features which may guide attention bottom-up has been extensively studied
in the visual search literature [Guidance of Visual Search by Preat-
tentive Information].

At the early stages of visual processing, task modulates neural activity by en-
hancing the responses of neurons tuned to the location and features of a stim-
ulus [Attentional Modulation of Apparent Stimulus Contrast],
[Biasing competition in human visual cortex], [Non-sensory sig-
nals in early visual cortex], [Attention Improves Discrimina-
tion Psychophysics] and many others in this book. In addition, psy-
chophysics experiments have shown that knowledge of the target contributes
to an amplification of its salience, e.g., white vertical lines become more salient
if we are looking for them (Blaser et al., 1999). A recent study even shows that
better knowledge of the target leads to faster search, e.g., seeing an exact pic-
ture of the target is better than seeing a picture of the same semantic type or
category as the target (Kenner & Wolfe, 2003). These studies demonstrate the
effects of biasing for features of the target. Other experiments (e.g., (Treis-
man & Gelade, 1980)) have shown that searching for feature conjunctions
(e.g., color×orientation conjunction search: find a red-vertical item among
red-horizontal and green-vertical items) are slower than “pop-out” (e.g., find
a green item among red items). These observations impose constraints on the
possible biasing mechanisms and eliminate the possibility of generating new
composite features on the fly (as a combination of simple features).

A popular model to account for top-down feature biasing and visual search
behavior is Guided Search (Wolfe, 1994). This model has the same basic ar-
chitecture as proposed by Koch and Ullman (1985), but, in addition, achieves
feature-based biasing by weighing feature maps in a top-down manner. For
example, with the task of detecting a red bar, the red-sensitive feature map
gains more weight, hence making the red bar more salient. One question that
remains is how the optimally set the relative feature weights such as to maxi-
mize the detectability of a set of behaviorally relevant targets among clutter
(Navalpakkam & Itti, 2004).
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Given a saliency map, several models have been proposed to select the next at-
tended location, including various forms of winner-take-all (maximum-selector)
algorithms (see [The Selective Tuning Model of Attention], [Mod-
els of bottom-up attention and saliency], [Probabilistic Models
of Attention based on Iconic Representations and Predictive
Coding], [The FeatureGate Model of Visual Selection]).

Having selected the focus of attention, it is important to recognize the entity at
that scene location. Many recognition models have been proposed that can be
classified based on factors including the choice of basic primitives (e.g., Gabor
jets, geometric primitives like geons, image patches or blobs, and view-tuned
units), the process of matching (e.g., self organizing dynamic link matching,
probabilistic matching), and other factors (for review, see [Object recog-
nition in cortex: Neural mechanisms, and possible roles for at-
tention]).

Recognition is followed by the problem of memorization of visual informa-
tion. A popular theory, the object file theory of trans-saccadic memory (Irwin,
1992), posits that when attention is directed to an object, the visual features
and location information are bound into an object file (Kahneman & Treis-
man, 1984) that is maintained in visual short term memory across saccades.
Psychophysics experiments have further shown that up to three or four object
files may be retained in memory (Irwin, 1992). Studies investigating the neu-
ral substrates of working memory in primates and humans suggest that the
frontal and extrastriate cortices may both be functionally and anatomically
separated into a ”what” memory for storing the visual features of the stimuli,
and a ”where” memory for storing spatial information (Wilson et al., 1993).

To memorize the location of objects, we here extend the earlier hypothesis of
a salience map (Koch & Ullman, 1985) to propose a two-dimensional topo-
graphic task-relevance map (TRM) that encodes the task-relevance of scene
entities. Our motivation for maintaining various maps stems from biological
evidence. Single-unit recordings in the visual system of the macaque indicate
the existence of a number of distinct maps of the visual environment that
appear to encode the salience and/or the behavioral significance of targets.
Such maps have been found in the superior colliculus, the inferior and lat-
eral subdivisions of the pulvinar, the frontal-eye fields and areas within the
intraparietal sulcus [Dissociation of Selection from Saccade Pro-
gramming], [Prefrontal Selection and Control of Covert and
Overt Orienting]. Since these neurons are found in different parts of the
brain that specialize in different functions, we hypothesize that they may en-
code different types of salience: the posterior parietal cortex may encode a
visual salience map, while the pre-frontal cortex may encode a top-down task-
relevance map, and the final eye movements may be generated by integrating
information across the visual salience map and task-relevance map to form an
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attention guidance map possibly stored in the superior colliculus.

Our analysis so far has focused on the attentional pathway. As shown in figure
2, non-attentional pathways also play an important role; in particular, rapid
identification of the gist (semantic category) of a scene is very useful in de-
termining scene context, and is known to guide eye movements [Gist of a
Scene]. It is computed rapidly within the first 150ms of scene onset, and the
neural correlate of this computation is still unknown [Visual Saliency and
Spike Timing in the Ventral Visual Pathway]. Recently, Torralba
[Contextual influences on saliency] proposed holistic representation
of the scene based on spatial envelope properties (such as openness, natu-
ralness etc.) that bypasses the analysis of component objects and represents
the scene as a single identity. This approach formalizes the gist as a vector
of contextual features. By processing several annotated scenes, these authors
learned the relationship between the scene context and categories of objects
that can occur, including object properties such as locations, size or scale,
and used it to focus attention on likely target locations. This provides a good
starting point for modeling the role of gist in guiding attention. Since the
gist is computed rapidly, it can serve as an initial guide to attention. But
subsequently, our proposed TRM that is continuously updated may serve as
a better guide. For instance, in dynamic scenes such as traffic scenes where
the environment is continuously changing and the targets such as cars and
pedestrians are moving around, the gist may remain unchanged and hence, it
may not be so useful, except as an initial guide.

The use of gist in guiding attention to likely target locations motivates knowledge-
based approaches to modeling eye movements, in contrast to image-based ap-
proaches. One such famous approach is the scanpath theory which proposes
that attention is mostly guided in a top-down manner based on an internal
model of the scene [Scanpath Theory, Attention and Image Pro-
cessing Algorithms for Predicting Human Eye Fixations]. Com-
puter vision models have employed a similar approach to recognize objects.
For example, Rybak et al. [Attention-Guided Recognition Based on
“What” and “Where” Representations: A Behavioral Model] rec-
ognize objects by explicitly replaying a sequence of eye movements and match-
ing the expected features at each fixation with the image features. (also see
[A Model of Attention and Recognition by Information Max-
imization], [Probabilistic Models of Attention based on Iconic
Representations and Predictive Coding], [Attention Architec-
tures for Machine Vision and Mobile Robots].

To summarize, we have motivated the basic architectural components which
we believe are crucial for scene understanding. Ours is certainly not the first
attempt to address this problem. For example, one of the finest examples of
real-time scene analysis systems is The Visual Translator (VITRA) (Herzog
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& Wazinski, 1994), a computer vision system that generates real-time verbal
commentaries while watching a televised soccer game. Their low-level visual
system recognizes and tracks all visible objects from an overhead (bird’s eye)
camera view, and creates a geometric representation of the perceived scene
(the 22 players, the field and the goal locations). This intermediate represen-
tation is then analyzed by series of Bayesian belief networks which evaluate
spatial relations, recognize interesting motion events, and incrementally recog-
nize plans and intentions. The model includes an abstract, non-visual notion
of salience which characterizes each recognized event on the basis of recency,
frequency, complexity, importance for the game, and other factors. The sys-
tem finally generates a verbal commentary, which typically starts as soon
as the beginning of an event has been recognized but may be interjected if
highly salient events occur before the current sentence has been completed.
While this system delivers very impressive results in the specific application
domain considered, due to its computational complexity it is restricted to
one highly structured environment and one specific task, and cannot be ex-
tended to a general scene understanding model. Indeed, unlike humans who
selectively perceive the relevant objects in the scene, VITRA attends to and
continuously monitors all objects and attempts to simultaneously recognize all

known actions. The approach proposed here differs from VITRA not only in
that there is nothing in our model that commits it to a specific environment or
task. In addition, we only memorize those objects and events that we expect
to be relevant to the task at hand, thus saving enormously on computation
complexity.

3 Discussion: Summary of a Putative Functional Architecture

In this section, we present a summary of an architecture which can be un-
derstood in four phases (figure 3). Partial implementation and testing of this
architecture has been developed elsewhere (Navalpakkam & Itti, 2004), so that
we here mainly focus on reviewing the componants and their interplay during
active goal-oriented scene understanding.

3.1 Phase 1: Eyes Closed

In the first phase known as the “eyes closed” phase, the symbolic working
memory (WM) is initialized by the user with a task definition in the form of
keywords and their relevance (any number greater than baseline 1.0). Given
the relevant keywords in symbolic WM, volitional effects such as “look at the
center of the scene” could be achieved by allowing the symbolic WM to bias
the TRM so that the center of the scene becomes relevant and everything
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else is irrelevant (but our current implementation has not explored this yet).
For more complex tasks such as “who is doing what to whom,” the symbolic
WM requires prior knowledge and hence, seeks the aid of the symbolic long-
term memory (LTM). For example, to find what the man in the scene is
eating, prior knowledge about eating being a mouth and hand-related action,
and being related to food items helps us guide attention towards mouth or
hand and determine the food item. Using such prior knowledge, the symbolic
WM parses the task and determines the task-relevant targets and how they
are related to each other. Our implementation (Navalpakkam & Itti, 2004)
explores this mechanism using a simple hand-coded symbolic knowledge base
to describe long-term knowledge about objects, actors and actions. Next, it
determines the current most task-relevant target as the desired target. To
detect the desired target in the scene, the visual WM retrieves the learned
visual representation of the target from the visual LTM and biases the low-
level visual system with the target’s features.

3.2 Phase 2: Computing

In the second phase known as the “computing” phase, the eyes are open and
the visual system receives the input scene. The low-level visual system that is
biased by the target’s features computes the biased salience map. Apart from
such feature-based attention, spatial attention may be used to focus on likely
target locations, e.g., gist and layout may be used to bias the TRM to focus on
relevant locations (but this is not implemented yet). Since we are interested
in attending to locations that are salient and relevant, the biased salience and
task-relevance maps are combined by taking a pointwise product to form the
attention-guidance map (AGM). To select the focus of attention, we deploy
a Winner-take-all competition that chooses the most active location in the
AGM. It is important to note that there is no intelligence in this selection and
all the intelligence of the model lies in the WM.

3.3 Phase 3: Attending

In the third phase known as the “attending” phase, the low-level features or
prototype objects are bound into a spatio-temporal structure or a mid-level
representation called the “coherence field” (a mid-level representation of an
object formed by grouping prototype objects into a spatio-temporal structure
that exhibits coherence in space and time. Spatial coherence implies that the
prototype objects at the different locations belong to the same object, and
temporal coherence implies that different representations across time refer
to the same object (Rensink, 2000); in our implementation, this step simply
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extracts a vector of visual features at the attended location). The object recog-
nition module determines the identity of the entity at the currently attended
location, and the symbolic WM estimates the task-relevance of the recognized
entity (Navalpakkam & Itti, 2004).

3.4 Phase 4: Updating

In the final phase known as the “updating” phase, the WM updates its state
(e.g., records that it has found the man’s hand). It updates the TRM by
recording the relevance of the currently attended location. The estimated rel-
evance may influence attention in several ways. For instance, it may affect
the duration of fixation (not implemented). If the relevance of the entity is
less than the baseline 1.0, it is marked as irrelevant in the TRM, and hence
will be ignored by preventing future fixations on it (e.g., a chair is irrelevant
when we are trying to find what the man is eating. Hence, if we see a chair,
we ignore it). If it is somewhat relevant (e.g., man’s eyes), it may be used to
guide attention to a more relevant target by means of directed attention shifts
(e.g., look down to find the man’s mouth or hand; not implemented). Also
if it is relevant (e.g., man’s hand), a detailed representation of the scene en-
tity may be created for further scrutiny (e.g., a spatio-temporal structure for
tracking the hand; not implemented). The WM also inhibits the current focus
of attention from continuously demanding attention (inhibition of return in
SM). Then, the symbolic WM determines the next most task-relevant target,
retrieves the target’s learned visual representation from visual LTM, and uses
it to bias the low-level visual system.

This completes one iteration. The computing, attending and updating phases
repeat until the task is complete. Upon completion, the TRM shows all task-
relevant locations and the symbolic WM contains all task-relevant targets.

4 Conclusion

We have presented a brief overview of how some of the crucial components of
primate vision may interact during active goal-oriented scene understanding.
From the rather partial and sketchy figure proposed here, it is clear that much
systems-level, integrative research will be required to further piece together
more focused and localized studies of the neural subsystems involved.
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Fig. 1. Stimulus (top-left) and corresponding eye movement traced recorded from
human observers under seven task specifications: 1) free examination of the picture,
2) estimate the material circumstances of the family in the picture, 3) give the ages
of the people, 4) surmise what the family had been doing before the arrival of the
”unexpected visitor,” 5) remember the clothes worn by the people, 6) remember
the position of the people and objects in the room, and 7) estimate how long the
”unexpected visitor” had been away from the family. (from Yarbus, 1967).
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Fig. 2. The beginning of an architecture for complex dynamic visual scene under-
standing, starting from the visual end. This diagram augments the triadic architec-
ture proposed by Rensink (2000), which identified three key components of visual
processing: pre-attentive processing up to a proto-object representation (top), iden-
tification of the setting (scene gist and layout; left), and attentional vision including
detailed object recognition within the spatially circumscribed focus of attention
(right). In this figure, we have extended Rensink’s architecture to include a saliency
map to guide attention bottom-up towards salient image locations, and action recog-
nition in dynamic scenes. The following figure explores in more details the interplay
between the visual processing components depicted here and symbolic decriptions
of tasks and visual objects of current behavioral interest.
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Fig. 3. Phase 1 (top left): Eyes closed, Phase 2 (top right): Computing, Phase 3
(bottom left): Attending, Phase 4 (bottom right): Updating. Please refer to section
3.2 for details about each phase. All four panels represent the same model; how-
ever, to enable easy comparison of the different phases, we have highlighted the
components that are active in each phase and faded those that are inactive. Dashed
lines indicate parts that have not been implemented yet. Following Rensink’s (2000)
terminology, volatile processing stages refer to those which are under constant flux
and regenerate as the input changes.
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