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ABSTRACT

Selecting only a subset of the available sensory information before further
detailed processing is crucial for efficient perception. In the visual modality,
this selection is frequently implemented by suppressing information outside
a spatially circumscribed region of the visual field, the so-called “focus of
attention.” The model for the control of the focus of attention in primates
presented here is based on a “Saliency Map” which is a topographic repre-
sentation of the instantaneous saliency of the visual scene.

1 Introduction

Access to information about an organism’s environment is essential for its
survival. As a consequence, highly sensitive and efficient sensory organs
were developed during evolution. Nearly as essential as acquiring infor-
mation is sorting through it and deciding which part of it requires more
detailed analysis and which is irrelevant. For animals with a highly de-
veloped sensorium (which includes all higher phyla), it is impractical to
process all sensory input at all times. The problem is the mismatch be-
tween the need for sensors which provide information about the outside
world required at some time, and the information processing capacity of
the brain which is not capable to treat the information provided by all
sensors simultaneously. The solution adopted by biology is to provide an-
imals with a multitude of powerful sensors capable of providing detailed
information in different modalities, to select a small portion of the avail-
able information, and to discard all the other information. This process is
usually called “selective attention.”

The triage of the incoming sensory information into parts to be discarded
and parts to be retained can go along different lines, i.e. along different fea-
ture dimensions. Selective filters can be employed which selectively enhance
one or more distinct visual “channels” across the visual field, such as to
facilitate perception of all stimuli of a specific color, spatial frequency, or
direction of motion. One of the most important of these filters uses spa-
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tial location as the selection criterion, by suppressing all stimuli outside a
spatially circumscribed region of the visual field relative to stimuli inside
this region. Functionally, this makes sense because the location of stim-
uli is only weakly correlated with their other properties. In other words,
most objects can appear with nearly equal probabilities anywhere in the
visual field. This allows the system to reduce the complexity of the object
recognition problem significantly since it can then operate in a space con-
structed as the sum of the feature space and the locality space, rather than
the outer product of these states. Indeed, there is psychophysical evidence
that space does play a special role among features [Nis85, TL93, SS93]; but
see [Bun91] for a different view. The most direct evidence for a spatially
defined focus of attention was recently found by imaging methods [BD99].
We refer the reader to ref. [NK98] for a more general discussion of selective
attention from a computational point of view.

A space-based mechanism is also supported by the observed anatomical
and physiological structure of the primate visual system. This system uses
anatomically distinct pathways for encoding spatial information of objects
in the environment and the specific features of these objects. The locations
of visual stimuli are represented in the “dorsal” (or “where”) pathway,
while detailed feature processing and object recognition are localized in the
“ventral” (or “what”) pathway. In earlier work, we have presented neuronal
models for attentional control in the ventral pathway [NKR93, NK94]. Here,
we focus on the selection process in the dorsal pathway.

The purpose of this chapter is to present a neuronally based model of
visual selection, paying attention to the underlying neurophysiology and
anatomy. Two more technically oriented reports about aspects of this work
have been published previously [NK96, INK98]. The following section 2 de-
scribes the model we have developed and implemented. Section 3 presents
the results obtained on different classes of stimuli, ranging from simple
synthetic stimuli akin to those used in prototypical psychophysical ex-
periments to images of natural scenes. Finally, section 4 discusses the
results, establishes the relation to previous work, and concludes with an
outlook to future developments. A C++ installation of the model and
numerous examples of predictions of the model can be retrieved from
hitp : [ J[www.klab.caltech.edu/ ~ itti/attention.

2 A Computational Model of The Dorsal Pathway

2.1 Model Assumptions

Our model is limited to the bottom-up control of attention, i.e. to the
control of selective attention by the properties of the visual stimulus. The
present model is based on the following hypotheses:
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e Selection is based on iconic (appearance-based) scene representations
rather than on categorical decisions.

e Visual input is represented in subcortical and early cortical structures
in feature maps. A crucial step in the construction of these represen-
tations consists of center-surround computations in every feature, to
avoid excessive redundancy in the processing.

e Information from these feature maps is combined in an additional
feature map which represents the local saliency.

o Per definitionem, the instantaneous maximum of this saliency map is
the most conspicuous location at a given time. The focus of attention
has to be pointed to this location.

e The saliency map is endowed with internal dynamics which allow
the perceptive system to scan the visual input such that its different
parts are visited by the focus of attention in the order of decreasing
saliency.

2.2 (General architecture

Figure 1 shows an overview of the model Where pathway and selective at-
tention mechanism. Input is provided in the form of digitized images from
a variety of sensors, such as NTSC cameras or image scanners. Low-level
vision features (red, green, blue and yellow color channels, orientation, and
brightness) are extracted from the original color image, at several spatial
scales, using linear filtering. The different spatial scales are created using
Gaussian pyramids [AAB*84], which consist of progressively low-pass fil-
tering and subsampling the input image. Pyramids have a depth of 9 scales,
providing horizontal and vertical image reduction factors ranging from 1:1
(level 0; the original input image) to 1:256 (level 8) in consecutive powers of
two. Each feature is computed in a center-surround structure akin to visual
receptive fields. Center-surround operations are implemented as differences
between a fine and a coarse scale for a given feature: the center of the re-
ceptive field corresponds to the value of a pixel at level n € {2,3,4} in the
pyramid, and the surround to the corresponding pixel at level n + §, with
0 € {3,4}. We hence compute six feature maps for each type of feature.
The feature maps are then normalized so as to allow the direct comparison
between a priori not comparable modalities, as well as to enhance the fea-
ture maps in which a small number of highly significant stimuli are found.
Within each modality, the features are linearly combined across scales,
yielding three conspicuity maps for color, intensity and orientation. These
are normalized, linearly combined and fed to a network of integrate-and-
fire neurons representing the saliency map. The saliency map input, as well
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as the three conspicuity maps, is a single image lying at level 4 (reduction
factor 1:16 horizontally and vertically).

Short descriptions of the different feature maps are presented in the next
section (2.3). We then (section 2.4) address the question of the integra-
tion of the input in the saliency map, a topographically organized map
which codes for the instantaneous conspicuity of the different parts of the
visual field, and present the dynamical mechanism controlling the focus of
attention.
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FIGURE 1. Overview of the model Where pathway. Features are computed as
center-surround differences between several fine and coarse scales. The feature
maps are normalized, combined and integrated in the saliency map which provides
input to an array of integrate-and-fire neurons with global inhibition. This array
has the functionality of a winner-take-all network and provides the output to the
ventral pathway as well as feedback to the saliency map through an inhibition of
return mechanism.

2.3 Input Features

Input is represented in a hierarchical scheme based on basis functions which
are similar to those realized in the primate visual system. For the represen-
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tation of shape in our model in the form of oriented edges, it has been shown
that similar functions can be learned from natural scenes [OF96, BS99]. For
the chromatic information, it was shown by principal components analysis
that the most efficient transformation of incoming data, either from a spec-
trally flat Gaussian noise process [BG83] or from natural scenes [Moo085] is
a three-stage mechanism. The three principal components are, in the order
of decreasing signal energy, (1) intensity, (2) red minus green, and (3) blue
minus yellow. These features will be discussed in the following two sections.

Intensity

Intensity information is obtained from the chromatic information of the
original color input image. With R, G, and B being the red, green and blue
channels, respectively, the intensity I is obtained as I = (R + G + B)/3.
A more accurate computation could be implemented if only images from
a unique known source were to be used (e.g. always the same camera).
A Gaussian pyramid is created from the intensity image. The entries in
the intensity feature maps are given by the modulus of the contrast, i.e.,
|[Ieenter — Isurround|- This corresponds roughly to the sum of two single-
opponent, cells of opposite phase, i.e. bright-center — dark-surround and
vice-versa.

Chromatic Input

Psychophysical results [LN93] show that color information is available for
preattentive selection. We therefore implemented inputs to the saliency
map which depend on the chromatic contrast of the input image. The red,
green and blue components of the original color image are first normalized
by the intensity image computed in the previous step, in order to clearly
decorrelate intensity and hue information. Three gaussian pyramids are
then created for these three isoluminant color components. At any given
scale, yellow is computed as (R + G)/2. A quantity corresponding to the
double-opponency cells in primary visual cortex is finally computed by
center-surround differences across scales. For instance, for the red-green
filter, we first compute at each pixel the value of (red-green) at the scale of
the center. From this, we then subtract (green-red) of the surround. Finally,
we take the absolute value of the result.

Shape: orientated edges

Local orientation is obtained at all scales through the creation of oriented
Gabor pyramids from the intensity image. In such pyramids, orientation-
selective Gabor filters of increasing spread are successively applied to down-
scaled versions of the original intensity image. The oriented Gabor pyramids
were implemented in a computationally efficient way by using overcomplete
steerable pyramids [GBG194]. Four different orientations are used (0, 45,
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90 and 135 degrees). Center-surround operations are performed, within
each oriented pyramid, yielding orientation feature maps. These maps en-
code, as a group, how different the average local orientation is between the
center and surround scales. It is possible in our implementation to use an
arbitrary number of orientations, but we noticed that using more oriented
filters than the four abovementioned did not alter the performances of the
model drastically.

2.4 The Saliency Map
Implementation of the Saliency Map

In section 1, we have discussed that “decoupling” of feature dimensions is
computationally advantageous, and that one implementation of such decou-
pling is sequential scanning of different parts of the visual field. This leads
to the metaphor of the “focus of attention” and requires a spatially defined
selection scheme which controls where the focus of attention is deployed at
any given time. In 1985, Koch and Ullman [KU85] suggested that an effi-
cient way for the coordination of this control mechanism is in the form of
a spatially organized feature map, which codes for the “saliency” of every
location in the visual field.

The task of the saliency map is the computation of the salience at every
location in the visual field and the subsequent selection of the most salient
areas or objects. At any time, only one such area is selected. The output
of the saliency map consists of a spike train from neurons corresponding
to this selected area in the topographic map which projects to the ventral
(“What”) pathway.

Fusion Of Information

Once all relevant features have been computed in the various feature maps,
they have to be combined to yield the salience, i.e. a scalar quantity. The
main difficulty in this task is that features from different modalities have
different dynamic ranges, and consequently are not directly comparable.
Normalizing all feature maps to the same dynamic range is not a satisfac-
tory solution because it artifactually amplifies those maps in which only
a low, noisy response was originally present. Moreover, evidence has been
found in monkey primary visual cortex [CH94] for the presence of non-linear
amplification stages, whose gains vary with the responses of neighboring
cells. This supports the idea that different feature maps should not be
normalized to a fixed range, but rather according to their content. Also,
psychophysical studies performed on humans have shown that strong com-
petition between spatially close stimuli yields mutual lateral inhibition of
areas in which a large number of conspicuous responses are present [Bra94].

We currently use a very simple normalization scheme, consisting of pro-
moting those feature maps in which a small number of strong peaks of
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activity are present, while suppressing feature maps eliciting comparable
peak responses at numerous locations over the whole visual scene. The first
step is to normalize all the feature maps to the same dynamic range, in or-
der to eliminate across-modality amplitude differences due to dissimilar
feature extraction mechanisms. In biological systems, this step may reflect
rapidly adapting fine tuning of weighting factors assigned to the various
feature maps. Then, for each map, the global maximum M of the activity
is found, and an average T of all the other local maxima in the map is
computed. Finally, the map is globally multiplied by (M —m)?2. The direct
consequence of this normalization scheme is to strongly amplify those fea-
ture maps in which the most conspicuous location (global maximum) elicits
a much stronger response than, on average, the other conspicuous locations
(secondary maxima). Such contents-based amplification of the feature maps
might be implemented in biological systems (in a local neighborhood rather
than for the whole visual field) by lateral inhibition mechanisms, suppress-
ing large areas of rather uniform peak activities while enhancing strong,
isolated peaks.

After normalization, feature maps are combined into three separate chan-
nels for intensity, color, and orientation. These combinations are performed
across scales and within each channel to yield three conspicuity maps, at
the spatial scale of the saliency map. The reduction of each feature map
to the scale of the saliency map is obtained by using auxiliary Gaussian
pyramids. The intensity conspicuity map is simply obtained by adding up
the six normalized (using the normalization method described previously)
and downscaled intensity feature maps. The color conspicuity map is ob-
tained by adding up the six red-green and six blue-yellow normalized and
downscaled feature maps. Four intermediate orientation maps are first ob-
tained by adding up the six normalized and downscaled center-surround
maps for a given orientation (0, 45, 90 or 135 degrees). Each of these four
maps is then normalized by the same method as used previously. The four
orientation maps are finally added up, to form the orientation conspicuity
map. The three conspicuity maps for intensity, color and orientation each
undergo one final normalization, and are then added together, to form the
final input to the saliency map. A total of 50 maps is hence computed by
our system (42 feature maps, 4 intermediate orientation maps, 3 conspicu-
ity maps, and the final input to the saliency map neural network). The
motivation for the creation of three separate channels and their individual
dedicated normalization is the hypothesis that similar features compete
strongly for salience, while different modalities contribute independently
to the saliency map.

The biophysical assumption underlying the linear combination of nor-
malized feature maps is that of linear summation of incoming synaptic
potentials in the dendritic tree. This feed-forward procedure for the fusion
of information has the advantage of being very fast compared to relaxation
methods suggested in a similar context [MPW93].
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Internal Dynamics And Trajectory Generation

By definition, the activity in a given location of the saliency map represents
the relative conspicuity of the corresponding location in the visual field. At
any given time, the maximum of this map is therefore the most salient
stimulus to which the focus of attention should be directed next, to allow
more detailed inspection by the “what” pathway with its powerful object
recognition capabilities not available to the “where” pathway. To find the
most salient location, we have to determine the maximum of the saliency
map.

This maximum is selected by application of a winner-take-all mecha-
nism. Different mechanisms have been suggested for the implementation of
neural winner-take-all networks [KU85, YG89]. In our model, we used a
2-dimensional layer of integrate-and-fire neurons with strong global inhibi-
tion in which the inhibitory population is reliably activated by any neuron
in the layer!. Therefore, when the first of these cells fires, it will inhibit
all cells (including itself), and the neuron with the strongest input will
generate a sequence of action potentials. All other neurons are quiescent.

For a static image, the system described so far would attend continuously
the most conspicuous stimulus. This is neither observed in biological vision
nor desirable from a functional point of view; instead, after inspection of any
point, there is usually no reason to dwell on it any longer and the next-most
salient point should be attended. An additional temporal effect comes into
play after the focus of attention has moved away from a momentaneously
attended location. There is strong psychophysical evidence that the visual
system tries to avoid shifting back the focus of attention to a location which
it has just visited. One of the most direct observations of this behavior is
in terms of reaction times which are longer when the subject is requested
to return attention to a location which had just? been attended [PC84,
WH97, DKS98]. Kwak and Egeth [KE92] showed that this “inhibition of
return” has a strong spatially defined component i.e. the return is inhibited
to the location of the last attended item. Although location is not the only
feature on which inhibition of return is based [LPA95], this behavior is
in agreement with previously mentioned data [Nis85, TL93, SS93] which
showed that spatial location has a somewhat special role among object
features.

We achieve this behavior by introducing feedback from the winner-take-
all (WTA) array to the saliency map. When a spike occurs in the WTA
network, the integrators in the saliency map receive additional input with
the spatial structure of an inverted Mexican hat, i.e. a difference of Gaus-

1A more realistic implementation would consist of populations of neurons. For sim-
plicity, we model such populations by a single neuron with very strong synapses.

2A lengthening of the reaction time was observed if the time between the cue and
the stimulus exceeded about 300 ms and was less than about 1.5 s
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FIGURE 2. Radial section of the inhibitory feedback triggered around the last
attended location. The central lobe provides strong inhibition which causes the
focus of attention (“F.0.A.”) to jump towards another location. The left and
right excitatory lobes (whose sign is, of course, opposite to that of the central
inhibitory lobe) slightly enhance the salience of the immediate surround of the
currently attended location, favoring short jumps of the focus of attention over
long jumps.

sians (Figure 2). The inhibitory center (with a standard deviation of half
the radius of the focus of attention) is at the location of the winner. Cells
in the saliency map located there receive maximal inhibition and this lo-
cation, which used to be the global maximum of saliency, now becomes a
(local or global) minimum of the saliency map. As a consequence, attention
switches to the next-most conspicuous location (Figure 3). The function of
the positive lobes (half width of four times the radius of the focus of atten-
tion) of the inverted Mexican hat is to favor locality in the displacements
of the focus of attention: if two locations are of nearly equal conspicuity
and one of them is close to the previously attended location and the other
is far away, attention will jump to the closer location rather than to the
distant one.

The inhibitory feedback of the saliency map is consistent with the afore-
mentioned inhibition-of-return phenomenon observed psychophysically. Not
all observed properties of the inhibition-of-return phenomenon can be ex-
plained, however, in the present version of our model. For instance, we
assume that the location at which inhibition-of-return occurs is computed
relative to the global stimulus environment. It has been observed, in fact,
that this location can be relative to other stimuli [TDW91]. If more than
one frame of reference is available (e.g. the global environment and a nearby
object), the coordinates are combined in a nontrivial, not fully understood
way [GE94]. From a functional point of view, it seems desirable that in-
hibition of return should act in a world-based frame of reference, rather
than in a retina-based coordinate system as our model does. This requires
that a model of attentional selection which includes the inhibition-of-return
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FIGURE 3. Dynamical evolution of the potential of some simulated neurons in
the saliency map (SM) and in the winner-take-all (WTA) networks. The input
contains one salient location (a), and another input of half the saliency (b);
the potentials of the corresponding neurons in the SM and WTA are shown as
a function of time. During period (1), the potential of both SM neurons (a)
and (b) increases as a result of the input. The potential in the WTA neurons,
which receive inputs from the corresponding SM neurons but have much faster
time constants, increases faster. The WTA neurons evolve independently of each
other as long as they are not firing. At about 80ms, WTA neuron (a) reaches
threshold and fires. A cascade of events follows: First, the focus of attention is
shifted to (a); second, both WTA neurons are reset; third, inhibition-of-return
(IOR) is triggered, and inhibits SM neuron (a) with a strength proportional to
that neuron’s potential (i.e., more salient locations receive more IOR, so that
all attended locations will recover from IOR in approximately the same time).
In period (2), the potential of WTA neuron (a) rises at a much slower rate,
because SM neuron (a) is strongly inhibited by IOR. WTA neuron (b) hence
reaches threshold first. (3)—(7): In this example with only two active locations,
the system alternatively attends to (a) and (b). Note how the IOR decays over
time, allowing for each location to be attended several times. Also note how the
amount of IOR is proportional to the SM potential when IOR is triggered (e.g.,
SM neuron (a) receives more IOR at the end of period (1) than at the end of
period (3)). Finally, note how the SM neurons do not have an opportunity to
reach threshold (at 20 mV) and to fire (their threshold is ignored in the model).
Since our input images are noisy, we did not explicitly incorporate noise into the
neurons’ dynamics.
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location takes into account the different coordinate systems and their inter-
actions. However, recent psychophysical results [HW98] indicate that visual
search strategies make use of surprisingly little information across move-
ments of the focus of attention, thus obviating the need to keep track of
different coordinate systems. If substantiated, these results clearly support
our model.

3 Simulation Results

We have studied the behavior of the system with input from two large
classes of simulated visual stimuli. The first are visual scenes constructed
analogously to the stimuli typically presented in psychophysical studies of
visual search (discussed in section 3.1). The second class of input are color
images of natural and artificial environments. Results from the second class
are discussed in Section 3.2.

3.1 Synthetic Stimuli

One of the simplest possible tasks is the detection of a bright spots on a
dark backgrounds, or dark spots in bright backgrounds. This task is solved
reliably by our model, and the focus of attention immediately jumps to
such stimuli. If there is more than one such stimulus, the system scans
them one-by-one, in the order of decreasing contrast from the background.
The same is true for stimuli that have a color or orientation different from
that of the background.

More challenging tasks are defined by the typical stimuli employed in
visual search tasks, which is one of the most active fields of human psy-
chophysics. A typical experiment consists in a speeded alternative forced-
choice task in which the presence of a certain item in the presented display
has to be either confirmed or denied. Salient visual features “guide” atten-
tion to the stimuli possessing these features, and these stimuli are selected
efficiently. In particular, it is known that stimuli which differ from nearby
stimuli in one or more feature dimensions can be easily found in visual
search, typically in a time which is nearly independent of the number of
other items (“distractors”) in the visual scene. In contrast, search times
for targets which differ from distractors by a combination of features (a
so-called “conjunctive task”) are typically proportional to the number of
distractors.

In 1980, Treisman and Gelade [TG80] published an elegant explanation
of this fact. The underlying computational principle is that the detection
of a few elementary features is most economically done by massively paral-
lel processes early in the visual hierarchy. Because the number of possible
combination of features increases very rapidly with the number of features
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to be combined, there are parallel, preattentive maps only for the elemen-
tary features. “Conjunctions” of the features can only be processed by a
central attentional authority, which gives rise to the sequential attentional
process. Although this “Feature Integration Theory” explained many prop-
erties of visual search, it was shown later that it is invalid in its simplest
form [EVG84, WCF89, MYE90, Pal94].

We reproduced one of the original experiments used by Treisman and
Gelade, in order to relate the performances of our model on a “simulated
psychophysical experiment” to human psychophysics. Artificial stimulation
images were generated by the computer. They were of three classes: (1) one
red target (rectangular bar) among green distractors (also rectangular bars)
with the same orientation; (2) one red target among red distractors with
orthogonal orientation; and (3) one red target among green distractors with
the same orientation and red distractors with orthogonal orientation. In
order not to artifactually favor any particular direction, the orientation of
the target was chosen randomly for every image generated. Also, in order
not to obtain ceiling performance in the first two tasks (100% pop-out),
we added strong orientation noise to the stimuli (between -17 and +17
degrees with uniform probability) and strong speckle noise to the images
(each pixel had a 15% probability, drawn from a uniform distribution, to
become a maximally bright red, green, blue, cyan, purple, yellow or white).
The positioning of the stimuli along a uniform grid was also randomized
(by up to =+ 40% of the spacing between stimuli, in the horizontal and
vertical directions), to eliminate any possible influence of our discrete image
representations (pixels) on the system. Twenty images were computed for
a total number of stimuli per image varying between 4 and 36, yielding the
evaluation of a total of 540 images.

Results are presented in Figure 4. Clear pop-out was obtained for the
first two tasks (color only and orientation only), independently of the num-
ber of distractors in the images. Slightly worse performances are found
when the number of distractors is very small, which seems sensible since
in these cases the distractors are nearly as conspicuous as the target itself.
Evaluation of these types of stimulation images without introducing any of
the distracting noises exposed above yielded 100% pop-out (target found
as the first attended location) in all images. The conjunctive search task
yielded a linear increase, with the number of distractors, in the number of
false detections prior to the correct detection of the target. This result is
in good accordance with human psychophysics. Notice that the large error
bars in our results indicate that our model usually finds the target either
quickly (in most cases) or after scanning a very large number of locations.
The target was always found, and the system was never trapped into a
recurrent cycle passing through only a limited number of locations.
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FIGURE 4. Performance of our current visual attention model on the pop-out
and conjunctive tasks pioneered by A. Treisman. The typical search slopes of
human observers in feature and conjunction search, respectively, are successfully
reproduced by the model.
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3.2  Natural Images

One of the most severe tests an artificial vision system can undergo is the
evaluation of its performance when applied to natural images. We have
therefore studied the behavior of our model attentional system using such
images as input and we describe some of the results in this section. A sub-
stantial difficulty is, however, that it is not straightforward to establish
objective criteria for the performance of the system. Unfortunately, nearly
all quantitative psychophysical data on attentional control have been ob-
tained based on synthetic stimuli similar to those discussed in section 3.1.
Consequently, we are largely limited to plausibility arguments, i.e. we have
to judge the performance on natural images by making arguments about
the probable functional significance and usefulness of the strategy the sys-
tem uses. The scan paths of overt attention (eye movements) are much
better known than those of covert attention [Yar67, NS71, LF97]. It is un-
clear, however, to what extent these scan paths are similar to the motion
of covert attention since the requirements and limitations (e.g. spatial and
temporal resolutions) of the two systems are most likely quite different.

We tested our model on a wide variety of real images, ranging from natu-
ral outdoor scenes to artistic paintings. All images were in color, contained
significant amounts of noise, strong local variations in illumination, shad-
ows and reflections, large numbers of “objects” often partially obstructed,
and strong textures. We present in Figures 5 and 6 some trajectories ob-
tained without introducing any particular modification or tuning in the
model. The examples shown (as well as some others we studied and which
are not illustrated here) indicate that the system scans the image in an
order which makes functional sense in most behavioral situations.

One particularly interesting application is to use the model as a tar-
get detector in complex natural scenes. Although our algorithm will focus
on salient objects irrespectively of their nature, man-made objects usually
are fairly salient in natural environments and are quickly detected by the
system. Examples of such applications which we have investigated include
the detection of traffic signs on low-resolution color video frames (Fig-
ure 5), or the detection of very small military vehicles (Figure 7) in very
large digitized photographs (6144 x 4096 pixels) [TBKV98]. Further details
about these applications may be found on our World-Wide-Web site, at
http://www.klab.caltech.edu/~itti/attention/.

4  Discussion

4.1  Psychophysical and physiological basis of the model

We present in this report a prototype for a system mimicking the control
of visual selective attention. The model identifies the most salient points in
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FIGURE 5. Example of the global working of our model. Feature maps extracted
from the input image at several scales are combined into the saliency map. A
winner-take-all neural network then successively selects, in order of decreasing
saliency, the attended locations. Once a location has been attended, it is tran-
siently suppressed by the inhibition of return mechanism. Note how the inhibited
locations recover over time (e.g. the first attended location has regained some
activity at 274 ms).
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FIGURE 6. More examples of the application of the model to real-world images.
Shown are only the trajectories of the focus of attention.

a visual scenes one-by-one and scans the scene autonomously in the order
of decreasing saliency. This allows the control of a subsequently activated
processor which is specialized for detailed object recognition.

The model is formulated in terms of interacting neuronal populations.
The elements of the model are integrate-and-fire neurons, a crude but not
unreasonable approximation for many neurons in the nervous system. Qur
model is compatible with the known anatomy and physiology of the primate
visual system, and the way its different parts communicate by signals which
are neurally plausible. In particular, there is evidence for a representation of
visual information in terms of feature maps, for the generation of the feature
maps in terms of center-surround operations etc; for a recent example of
physiological support, see [NGVE99].

In addition to its biologically plausible structure and to the realistic
input the model operates on, it also provides output which can be used
immediately for information selection. The output of the model consists of
elevated activity at the location representing the instantaneously attended
location in visual space in a topographic representation. This is exactly
the type of input required for attentional selection in the ventral pathway.
In previous work [NK94], we developed a model which can use the output
from the present model to implement the attentional selection process for
object recognition. The same is true for a variation of that model [NKR93]
except that it would require that the output of the “where” pathway has a
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FIGURE 7. Example of detection of a military vehicle in a high-resolution
(6144 x 4096 pixels) color photograph. This image is part of a database of 44
images for which human search times have been measured [TBKV98]. After scal-
ing of the model’s time such that it made three attentional shifts per second on
average, and addition of 1.5 sec. to account for human motor reaction time, the
model found the target faster than humans in 75% of the images.
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periodic (repeating in time) structure, which could be generated either by
intrinsically oscillating neurons or by network effects. The present model
demonstrates a neurally plausible substrate that can generate the appro-
priate control signals which select visual targets from their background.

Sequential scanning of the visual scene requires movement of the focus
of attention, analogously to eye movements3. Several independent sets of
data indicate that the time required for one shift of attention is on the
order of 30 — 50 ms (for a direct measurement, see ref. [SJ91]) which is
consistent with the behavior of the model. Longer dwell-times of the focus
of attention are observed in conditions in which a stimulus is flashed, the
subject attends to it, then the next stimulus is flashed and attended etc
[DWS94]. It is possible that flashing a stimulus disrupts the attentional
process, possibly by its action on the saliency map.

There is stronger evidence in favor of a functional saliency map than there
is for a spatially localized saliency map. In other words, the functionality
of a saliency map may be spread over different anatomical areas. Robinson
and Petersen [RP92] reviewed data showing that the pulvinar nuclei of the
thalamus play a significant role in the selection of visual targets. However,
it seems unlikely that the pulvinar is the only location implicated in this
selection process. Other candidate areas are the posterior parietal cortex
[BGR81, MAMS81, Mou95] and the superior colliculus [GW72]. A possible
scenario is that of a saliency map distributed over two or more of these
structures.

Psychophysical evidence indicates that the map may not be organized
retinotopically but instead with a coordinate system relative to the vi-
sual environment of the observer [PC84] or relative to the observed objects
[TDW91]. Recent data provides evidence for a neural substrate of object-
centered coordinate systems, at least for overt attention [0G95] and the
functional arguments in favor of coordinate systems varying with the visual
scene and task requirements. On the other hand, we have already mentioned
results [HW98] which indicate that surprisingly little information may be
conserved across movements of the focus of attention. If these results turn
out to be of general validity, our simple retinotopic coordinate system were
all that is required. More experimental evidence is required before the ques-
tion of the coordinate system can be answered authoritatively.

The dynamics of the saliency map are determined in our model by the in-
terplay between the winner-take-all mechanism and the feedback provided
at the location of the instantaneous winner. As a result, the system will find
a winner, direct attention to its location, and then move on to the next-
salient location by suppressing the activity at the previous winner. One of

3 Analogously to the physical limitions which allow only one point of fixation for the
eyes, there is strong evidence that the focus of attention is unique, i.e. there is only one
focus of attention at any given time. An interesting exception are split-brain patients
who may dispose of two foci, presumably one for each hemisphere [Gaz89, LHMG94]
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the side effects of these dynamics is that the system will have a tendency to
avoid the location of a previous winner, i.e. the previous focus of attention,
for some time. The existence of this effect (“inhibition of return”) is well-
established in the psychophysical literature [PC84, MH85, GE94, TDW91].
Furthermore, suppression of the attended location has been observed ex-
perimentally in area Ta of rhesus monkeys performing a match-to-sample
task [SCCM94, SC95]. Inhibition of return is a natural consequence of our
model.

4.2 Limitations of the model

Our model does not explain every aspect of attentional control. We have
already mentioned that, for the time being, we focus on stimulus-driven
(bottom-up) control and make no attempt to implement top-down atten-
tional influences in any detail. The prototypical top-down attention task is
perhaps the one formalized by Posner [Pos80] although its roots go back
to, at least, Hermann von Helmholtz [Hel67]. In this task, subjects are in-
structed to attend to one part of their visual field which is identified to
them by information requiring cognitive processing or memory or both,
e.g. by an arrow pointing towards the area to be attended, or by a ver-
bal command (“attend to the upper left quadrant”). A robust increase in
performance, either measured as decreased reaction time or increased ac-
curacy, is observed for stimuli appearing in the attended area. It is likely
that at least some aspects of this effect could be captured in our model by
providing additional input to the saliency map

Top-down attention is not limited to space-based selection. We can at-
tend to objects and events using non-spatial criteria. One well-controlled ex-
perimental paradigm which involves selection based on the memory of non-
spatial properties is the delayed-match-to-sample paradigm (e.g, [CMLD93)),
in which the animal subject has to select one of several stimuli based on
a cue stimulus presented some time (typically, a few seconds) earlier and
held in working memory. In work complementary to the present approach,
Usher and Niebur recently developed a model for attentional selection in
this condition [UN96]. Another approach to object-based attentional selec-
tion was recently modelled by Ballard and collaborators [RZHB97]. Using a
representation in terms of multiple scales of oriented filters and chromatic
information, very similar to that presented here and in our previous re-
port [NK96], they modeled selection strategies for saccadic eye movements
(“overt attention”) by matching iconic target and scene representations.
Clearly, this approach could be used without any change in the framework
of the present model.

There are other phenomena that our model does not explain explicitly
but which possibly could be incorporated relatively easily. One example
are “express” attentional shifts, first observed by Mackeben and Nakayama
[MN93]. These authors found that their subjects can generate rapid shifts
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of attention by using exactly the same paradigm supposed to underlie ex-
press saccades [FR84], i.e. by turning the fixation point off and thus facili-
tating disengagement of attention. A related hypothesis for the interaction
between attention and express saccades was put forward by Fischer and
Weber [FW93]. It has been proposed that express saccades can be ex-
plained in a framework similar to that proposed in the present report as
“normal” saccades with anormally short dwell times. The short dwell time
was proposed to be caused by very rapid updating of the saliency map and
consequently rapid issue of the motor command to execute the next eye
movement [RZHB97]. A similar mechanism might be at work for covert at-
tentional shifts rather than eye movements; if so, express attentional shifts
could be explained in a similar way by the present model.

We do not take into account a wealth of psychophysical results on the
finer properties of stimuli and their interactions. An example is the obser-
vation of [Wol94] showing that the metrics in different feature maps may
be different from those chosen in our model. For instance, he found that
mirror-symmetric orientations are more similar to each other than the nu-
merical values for the angular separation would indicate. Another example
are part-whole interactions between elements of search stimuli [WFHB94]
or the somewhat special role that color seems to play, insofar as it was
the only feature tested by Nothdurft [Not93a] that did not require a local
feature contrast for parallel detection. Again, it appears that our model
should be general enough to allow such effects to be added.

Our model does not explain grouping (see ref. [HM93] for a connectionist
model which focuses on grouping in visual search). There is some evidence
indicating that grouping (at least of texture elements) is performed not
preattentively but at a second (attentive) perceptual stage; for instance,
Nothdurft found that only salient stimuli group [Not92]. This would indi-
cate that grouping happens at a stage of processing which is beyond that
modeled in the present work.

4.3 Relation to other models

Our model is a member of a much larger class of models based on the di-
chotomy between parallel, effortless, pre-attentive processing and sequen-
tial, effortful, attentive processing [Bro58, Nei67, Hof78, Hof79]. Variations
of the saliency map concept have been used in multiple instances and with
different terminologies (e.g. the “Master Map” of Treisman [Tre88] or the
“Activation Map” of Wolfe and collaborators [WCF89, Wol94]). Desimone
and Duncan [DD95] recently suggested that no saliency map may be re-
quired at all and selective attention is instead a consequence of interactions
between feature maps only. While this is certainly a possibility, one argu-
ment in favor of a saliency map is that it provides a convenient structure
for the fusion of information required to compute a single location from the
data from a multitude of feature maps.
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There is strong psychophysical evidence indicating that integration of
information across visual dimensions takes place in attentional selection
[Not93b]. Even when saliency was produced in a feature domain irrelevant
for the task, targets were detected as quickly as when saliency was gen-
erated completely within the relevant feature dimension. Such integration
across dimensions (and nonspecific with respect to the target properties)
is exactly what the saliency map introduced in section 2.4 is based upon.

A position intermediate between the protagonists and antagonists of a
saliency map is taken by Braun and Sagi [BS90, BS91] who suggested
that bottom-up and top-down mechanism have different capabilities and
selection criteria and that only the bottom-up control relies on a saliency
map. Since we focus in this work on bottom-up influences, our model is
compatible with their results.

Another model in the mentioned class was developed over the last years
by Wolfe and collaborators [WCF89, Wol94]. In previous work, most no-
tably in the earlier versions of Treisman’s influential Feature Integration
Theory, the activity in preattentive feature maps is observed by a cognitive
process which is only capable of deciding whether a given stimulus is the
target or not. In contrast, Wolfe et al. assumed that activities in several
feature maps can be combined and “guide” the focus of attention towards
the most promising locations (thus, “Guided Search.”) This aspect is, of
course, very similar to our approach and, as a consequence, many pre-
dictions made by our model are also made by Guided Search (e.g., triple
conjunctions should be easier to find than simple conjunctions; this was
confirmed experimentally [WCF89]). There are, however, significant differ-
ences to our model. The most important is the level of modeling. While
our model is explicitly formulated in terms of neuronal populations and
their interactions, Guided Search is a functional model without immediate
constraints imposed by a physiological substrate.

Other models were described over the last years in the connectionist
literature [FMI83, HM93, GMR94, San89, AO91, MBP91, SW89, JMP94].
In this paradigm, networks are constructed from interacting units (assumed
to roughly correspond to neurons or groups of neurons) which are connected
in various ways. The basic functions in many connectionist networks are,
however, quite different from those of biological neurons (for instance, units
may exchange informations about pointers, abstract addresses, etc.). This
makes it difficult to compare predictions of connectionist architectures with
physiological observations.

In contrast to these connectionist approaches, Olshausen and collabo-
rators [OAVE93] developed a model for the neural basis of attention at
a similar level of neural plausibility as the one presented in this report.
Their model is based on the assumption of “shifter circuits” which switch
the synaptic input to neurons in higher areas and thereby select which
part of the sensory information is made accessible to higher cortical areas.
Since in this model, the input to the neurons is gated while in our model,
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the activity of the cells themselves is modulated, Desimone [Des92] called
the model in ref [OAVE93] “input-gated” and models of the class in this
report “cell-gated”. Both models make clear predictions which should be
experimentally verifiable. For instance, one of the defining properties of the
[OAVE93] model is the conservation of spatial relations within the focus of
attention. In contrast, since all stimuli in the focus of attention are tagged
in the model in this report, the loss of spatial relationships within the focus
of attention is predicted by our model.

4.4 Predictions

The mammalian visual system is characterized by a sequence of cortical
areas which, despite all their differential specializations, shows a uniform
trend: going from close to the sensory periphery to more central areas,
neuronal responses are characterized by a simultaneous increase in feature
specifity and a decrease in spatial specificity. For instance, many cells in
area V1 (close to the sensory periphery) respond to any elongated structure
of a certain orientation (close to the preferred orientation of the cell under
study), provided it is in its small receptive field. On the other hand, cells
in inferotemporal cortex (distant from the periphery) will only respond to
very specific stimuli, e.g. a face, but they will do so in a very large receptive
field.

One reason why this architecture evolved may be found in the combina-
torial character of highly specific stimuli: it is simply not possible to provide
more than a few cells which are sensitive to such stimuli, and these cells
therefore have to be usable in large parts of the visual field. It was realized
early on that this architecture leads, however, to a vexing problem: since
the location information seems to be largely lost in higher areas, how do
these neurons “know” where to attribute the different properties of two or
more stimuli present simultaneously in the visual field?

Over the last few years, several groups have proposed that this so-called
“binding problem” may be solved by attaching “tags” to the different
parts of an object whose neuronal realization is the temporal structure
of the spiketrains coding for each object [CK90, EKA192, NKR93, NK94,
KELS95]. In the present model, the problem would be solved in a very
simple way, or rather, it would not exist in the first place: We suggest
that at any given time, only one out of the possibly many simultaneously
present stimuli is selected and all other stimuli are suppressed* This seems
to be one of the simplest methods to solve the “binding problem.” Thus,
attention controls access to visual awareness and we can only be aware of a

4The model presented in this report is only concerned with the selection of
the attended stimuli, not the suppression of unattended stimuli. In earlier work
[NKR93, NK94], we have shown how “tags” consisting of temporal modulation of spike
trains can be used to inhibit neurons responding to non-attended stimuli.
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single stimulus at a time, compatible with much psychophysical evidence.

Support for our model and, in fact, all models which are based on the
existence of an anatomically identifiable saliency map has been provided
recently by Friedman-Hill and coworkers [FHRT95]. These authors identi-
fied a patient with bilateral parietal-occipital lesions who showed exactly
the kind of problems to be expected in a patient who is lacking significant
parts of a saliency map. In particular, this patient routinely shows evidence
of “illusory conjunctions,” i.e. he miscombines colors and shapes even un-
der free viewing conditions (i.e., in the absence of high perceptual load
which is required to generate illusory conjunctions in normal subjects). In
the context of our theory, we would predict that the absence of a saliency
map (or important parts of it) leads to the absence of the signal which is
used to distinguish the (usually unique) attended object from all others,
therefore leading to the miscombination of the features of several objects.

A prediction of our model is that the input to central sensory areas
(e.g. the inferotemporal areas) should rapidly change under free viewing
conditions in a complex environment. This prediction should be verifiable in
electrophysiological experiments, but there are only few studies of cortical
neuronal responses under free viewing conditions [GCDVE95, GCVE9S].

Another prediction is that inhibition should be observed at the attended
location in structures likely to control the position of the focus of atten-
tion, due to the inhibition underlying the scanning mechanism discussed
in section 2.4. This is a particularly valuable prediction because it seems
counterintuitive. Furthermore, in earlier work, enhanced activity was ob-
served in neurons representing the attended location [BGR81]. However,
more recent recordings in posterior parietal cortex of awake behaving mon-
key, using more consistent deployment of attention to identified locations
in the visual field than it was the case in the earlier work, provided evidence
for a substantial suppression of activity of those neurons that represent the
attended location [SCCM94]. The fate of our model is at this time in the
hands of experimentalists.
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