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Abstract
We present a computationally efficient model for detecting salient regions in an image frame.
The model when implemented on a portable, wearable system can be used in conjunction with
a retinal prosthesis, to identify important objects that a retinal prosthesis patient may not be
able to see due to implant limitations. The model is based on an earlier saliency detection
model but has a reduced number of parallel streams. Results of a comparison between the
areas detected as salient by the algorithm and areas gazed at by human subjects in a set of
images show a correspondence which is greater than what would be expected by chance.
Initial results for a comparison of the execution speed of the two algorithm models for each
frame on the TMS320 DM642 Texas Instruments Digital Signal Processor suggest that the
proposed model is approximately ten times faster than the original saliency model.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

An electronic retinal prosthesis is under development, to
treat blinding diseases like retinitis pigmentosa (RP) and age-
related macular degeneration (AMD) [1]. In RP and AMD,
the photoreceptor cells are affected while other retinal cells
remain relatively intact. Photoreceptor cells convert light
information entering the retina into electrical signals and hence
the progressive loss of these cells leads to a gradual loss of
vision in patients. The retinal prosthesis aims to provide
partial vision by electrically activating the remaining cells of
the retina. Current retinal prosthesis prototypes use external
components to acquire and code image data for transmission to
an implanted retinal stimulator. The external system consists
of a small camera to capture video in real time and a portable
video processor to convert image data to a series of command
signals which are wirelessly transmitted to the implanted
retinal stimulator.

Human monocular vision has a field of view close to
160◦ [2]. Due to surgical limitations on implant size, current
retinal prostheses only stimulate the central 15–20◦ field of

view. Prototype systems range from 16 to 1550 electrodes
[3–6], which is well below the resolution of the retina in
this region, even if every electrode can create an independent
pixel. If the entire camera image (between 40◦ and 60◦

field of view) is compressed to fit the central field, there
will be a loss of resolution and miniaturization of objects,
with a likely decrease in the quality of vision. Whereas,
if only the central 15–20◦ field of view from the camera
image is extracted and stimulated electrically, the visual
information will be more organized and perceivable to the
recipients. However, peripheral information will be lost,
severely hampering mobility. Hence, there is a need for a
specific image processing algorithm which could be used to
overcome the loss of peripheral information due to the limited
field of view.

Retinal prosthesis research can involve image processing
in a number of different ways. Several studies have conducted
simulated vision experiments with normal sighted volunteers
performing reading or mobility tasks. The goal of these
experiments was to test visual task performance as a function
of pixel number, density and quality. These have been recently
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reviewed [7] and collectively, these studies suggest that 600–
1000 electrodes are needed for functional vision. Another
facet of image processing research related to retinal prostheses
involves the conversion of the image data into a stimulus
pattern that best conveys the desired visual perception. Asher
et al [8] propose real-time image processing algorithms and
transformations to simulate the different functions of the
various cell layers and cell layer connections in the retina.
They also propose a conversion method for transforming the
visual information into electrical current patterns. Hallum
et al [9] also propose a method for converting an image frame
captured by the camera into low resolution modulated charge
injections. Finally, image processing has been proposed to
enhance certain features of an image that may be important to
the user. Boyle et al [10] examined accentuating certain image
features. One finding from this study suggested the utility of
important maps, like the ones created by the bottom-up visual
attention saliency model by Itti et al [11–15]. With this in
mind, we propose an image processing algorithm based on
the saliency detection model by Itti et al to find the important
and salient regions in the entire image frame and cue subjects
toward the direction of the salient region.

The retina along with higher visual processes guides
visual attention in the visual cortex. Visual attention binds
information from multiple parallel processes carrying motion,
depth, color and form information in the visual cortex
[16]. During visual search different information from these
processes is combined first, and the output guides the attention
deployment process [17, 18]. Computational models based
on saliency detection have been used in computer vision
and robotics to predict important areas in the visual field.
A first model based on the feature integration theory was
proposed by Koch and Ullman [19]. The model is a bottom-
up saliency detection model that computes a saliency map
by combining several basic features which undergo parallel
processing. Based on this model, a bottom-up model based on
primate vision was proposed by one of the authors of this paper
[11–15]. This model (hereon referred to as the ‘full model’)
forms the basis of many implementations of visual attention
in robotics and artificial intelligence [20] and also forms the
basis of the work proposed here. We propose an algorithm
(hereon referred to as the ‘new model’) that is based on the
full model, but with simplifications to increase efficiency, to
allow execution on a portable processor. In this paper, we
describe the new model in detail and verify that it can predict
human gaze using a library of images and human observers.

2. Methods

2.1. New model algorithm

The new model (figure 1) uses three information streams: color
saturation, intensity and edge information. These information
streams are extracted by converting the input image from the
RGB color space to the HSI (hue–saturation–intensity) color
space. This conversion can be done in various ways. The
conversion for our algorithm was done using the function
rgb2hsv in Matlab from Mathworks Inc. Nine scales of dyadic
Gaussian pyramids [21] are created for the saturation (S),

Figure 1. Diagram of the proposed algorithm.

intensity (I) and edge (E) information by successively low pass
filtering and down sampling by a factor of 2. Edge pyramids
are created from the intensity stream based on Laplacian
pyramid generation [22, 23]. For each level of the pyramid, the
edge pyramid image is created as a point-by-point subtraction
between the intensity image at that level and the interpolated
intensity image from the next level.

Center–surround mechanisms observed in the visual
receptive fields of the primate retina are then implemented
computationally to create feature maps for each information
stream. Center–surround interactions are modeled as the
difference between the coarse and fine scales of the pyramids
[11–14]. Feature maps are created from only four scales with
the center scales ‘c’ at levels (3, 4) and surround scales ‘s’
at levels (6, 7) where the original image is at level 0 of the
pyramid. For c ∈ {3, 4} and s = c + δ where δ ∈ {3, 4}
and s < 8, a set of three feature maps is created for each
stream. Point-by-point subtraction between the values of the
pyramids at the finer and coarser scales is carried out after
interpolating the coarser scale to the finer scale using bilinear
interpolation. Absolute values of the subtraction are calculated
for the saturation and intensity streams and all feature-maps
are decimated by dropping the appropriate number of pixels
to be 1/16th the size of the original image:

S(c, s) = |S(c) − S(s)| (1)

I (c, s) = |I (c) − I (s)| (2)

E(c, s) = E(c) − E(s). (3)
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A linear summation across these feature maps for the
different information streams forms the conspicuity maps—
Sc for color saturation, Ic for intensity and Ec for edge
information:

Sc =
4∑

c=3

c+4;s<8∑
s=c+3

S(c, s) (4)

Ic =
4∑

c=3

c+4;s<8∑
s=c+3

I (c, s) (5)

Ec =
4∑

c=3

c+4;s<8∑
s=c+3

E(c, s). (6)

The conspicuity maps undergo normalization [11–15]
referred to by the operator N in the equations. Normalization
is an iterative process that promotes maps with a small number
of peaks with strong activity and suppresses maps with many
peaks of similar activity. Each conspicuity map is first
normalized to a fixed range between 0 and 1. Thereafter, a two-
dimensional difference of Gaussian filter (DoG) is convolved
with the map iteratively. The output is summed with the
original map and negative values are set to zero. The DoG
filter results in the excitation of each pixel with inhibition
from neighboring pixels. The DoG filter function is calculated
as stated below:

DoG(x, y) = 0.5 e−(x2 +y2)/(2σex)

2�σ 2
ex

− 1.5 e−(x2 +y2)/(2σinh)

2�σ 2
inh

,

(7)

where σ ex = 2% and σ inh = 25% of the input image width.
Intensity and saturation conspicuity maps use three

normalization iterations, and edge conspicuity maps use
one normalization iteration. The number of iterations for
normalization is chosen based on the computational load and
pilot studies that examined different iterations of normalization
and their effects on the maps. The three normalized
conspicuity maps are linearly summed and their average forms
the final salience map which again undergoes a three-iteration
normalization. The region around the pixel with the highest
grayscale value in the final salience map signifies the most
salient region:

S = N
(
N (Sc) + N (Ic) + N (Ec)

3

)
. (8)

There are a few key differences between the two models
which make the new model less computationally intensive
compared to the full saliency model. The new model uses
only 3 information streams for processing (versus 7 in the full
model), 4 scales of Gaussian pyramids (versus 6), 18 feature
maps (versus 42). Instead of using the two color opponent
streams as found in the primate retina, the new model uses
color saturation. Color saturation information will indicate
purer hues with higher grayscale values and impure hues with
lower grayscale values. One stream of edge information is
used instead of four different orientation streams. For creating
feature maps, the new model focuses on the coarser scales
for center and surround which represent low spatial frequency
information in the image.

2.2. DSP implementation

The retinal prosthesis image processing system is designed to
be a portable module worn on the body. For this reason,
the module should be lightweight and compact with low
power requirements so that it can operate for several hours
on a small battery. Low power requirements may restrict the
amount of computation that can be carried out by the image
processing unit. With this in mind, for research purposes,
the algorithm has been implemented on a Texas Instruments
Imaging Developers Kit (IDK) TMS320 DM642 [24]. The
DM642 chip is a 720 MHz fixed-point processor and the
IDK is specifically designed to aid the development of image
processing algorithms. The IDK is not a portable board (it
includes many functions) but in general, DSPs are designed
for low-power, portable applications, so the technological path
is clear.

As a first step toward analyzing the computational speed
of the new model, we implement the new model and full
model (partial) on the DSP-IDK. The algorithms are modeled
in Simulink from Mathworks Inc., and then ported to the
DSP. For efficiency, filtering has been implemented using
separable one-dimensional filters for both the models. Only
the intensity stream of the full model is implemented (one of
the seven streams of the full model). Fixed-point hardware can
implement numbers in both fixed-point precision and floating-
point precision. Both the algorithm implementations are in
single-precision floating-point format and are not optimized.

2.3. Model validation using gaze data

Gaze experiments were carried out with five human subjects
after the approval of the Institutional Review Board at the
University of Southern California. A signed informed consent
was obtained from each participant of the study. Subjects were
required to have English speaking and reading knowledge,
be 18+ years of age, not have a history of vertigo, motion
sickness or claustrophobia; cognitive or language/hearing
impairments, and have a visual acuity of 20/40 or better with
normal or corrected vision (with lenses). Visual acuity testing
was carried out in the lab using a Snellen visual acuity eye
chart.

Gaze data were acquired using an eye tracking system
from Arrington Research, Inc., Scottsdale, AZ. This system
consists of a Z800 3D Visor Head Mounted Display (HMD)
with a diagonal field of view of 40◦. Images on the HMD are
displayed at a resolution of 800 × 600 pixels. The Viewpoint
eye tracking software from Arrington Research recorded data
at a frequency of 60 Hz using pupil tracking. Subjects were
seated at a table with their head rested on a chin rest. A 12 point
rectangular grid calibration process was used. Subjects were
asked to look at the center of 12 different squares that would
successively appear on the HMD screen. After this, as a
measure of calibration, a test image consisting of a circle in
the center of the screen was shown and subjects were asked to
look at the center of the circle. Recording was not done until
good calibration was obtained. Good calibration is defined as
a rectangular grid mapped from the gaze points of the subjects
when looking at the 12 squares. A set of 150 natural images
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was displayed on the HMD with each image being shown for
3 s. The images consisted of outdoor and indoor environments.
Subjects were instructed to freely gaze at the image. To avoid
biasing the subjects, no other instructions were given. Between
images, the test circle image was displayed for subjects to rest
their eyes. However, after every three images, subjects were
instructed to look at the center of the circle and the calibration
at this point was noted. This helped to keep track of any
calibration drift during the experiments. In post-processing,
the recorded gaze point data were then corrected by any offset
to get the new gaze point data, corrected for calibration drift.

The collected gaze data were filtered for fixations
and saccades using custom fixation and saccade filtering
software freely available on http://ilab.usc.edu as part of the
Neuromorphic Vision Toolkit. Data were analyzed using gaze
fixation points from the data set. Fixation data points may not
account for drifts in eye movements. However, by taking
a circular aperture around each fixation point during data
analysis, effects of drifts as well as slight calibration offsets
can be avoided.

Analysis of gaze data was carried out using methods used
by Itti [25] and Peters et al [26] to analyze the contribution
of bottom-up saliency to human eye movements. For each
image, gaze data points from all subjects were pooled together
for analysis. For the same set of 150 input images, salience
maps created by the full model were used for a comparison of
results with salience maps created by the new model.

2.3.1. Analysis with the ratio of medians method [25]. Sh

is defined as the highest value of saliency within a circular
aperture of diameter 5.6◦ centered at the fixation point. High
values of Sh indicate that the human observer fixated at a highly
salient region.

Sr is defined as the highest value of saliency within a 5.6◦

circular aperture, centered at a random point chosen from a
uniform distribution.

Smax is defined as the maximum value of saliency in the
salience map of the image.

Each image will have approximately between 20 and 40
gaze points after combining gaze data from all subjects. The
same number of points are randomly chosen from a uniform
distribution to calculate Sr. To get a more accurate estimate
for Sr, 100 sets of random points are used for each image, each
generating an Sr value. The median Srm of this set of Sr values
for each image is used for further analysis. Ratios Sh/Smax

and Srm/Smax and the medians for each of these are calculated.
The ratio of these medians is then calculated. Higher ratios
mean that saliency values around fixation points are greater
than saliency values around random end points, showing that
the model can predict human gaze locations in the image better
than expected by chance.

Image shuffling. Shuffling is a control analysis where instead
of using gaze points for the image in consideration, gaze points
of another randomly chosen image are used. The ratio of
medians analysis stated above is done using the saliency maps
from one image and gaze data from the randomly chosen

image. These results are then compared to the results when
using the saliency maps and gaze data for the same image.

Differences between Sh and Srm were evaluated using a
statistical sign test with a significance level of 0.0001 for
both the full and new models for the cases with and without
shuffling. Also, the same statistical test was carried out
between the Sh values with and without shuffling to see if
the Sh values with shuffling are significantly less than the Sh

values without shuffling.

2.3.2. Analysis using normalized scanpath salience (NSS)
[26]. This method normalizes the salience map to have
a zero mean and unit standard deviation. For each point
corresponding to the fixation locations, the normalized
salience value is extracted and the mean of all these extracted
values is calculated. This mean is the normalized scanpath
salience (NSS) value. If the NSS value is greater than
zero, there is a greater correspondence between the salience
maps and gaze fixation points than expected by chance.
The NSS value of zero would mean there is no such
correspondence and a value of less than zero would mean
there is anti-correspondence between the salience maps and
human fixations. To verify this in practice, chance values are
calculated by creating a map with a uniform distribution at
the same resolution as the saliency map instead of the actual
salience map and calculating NSS in the same manner as stated
above. We calculated the NSS values for all gaze data points
by taking a region of diameter 5.6◦ around each fixation point
in order to avoid any fixation drifts and minor calibration offset
effects. Here again, random map generation was carried out
100 times for each image.

For both the full and new models, NSS values obtained
using salience maps were compared to the NSS values obtained
using random maps (paired t-test with a significance level of
0.0001).

3. Results

3.1. Saliency maps

Figure 2 shows the salience maps generated by the new and
full models for the same input image. Figure 2(a) shows an
example of an input image, the saturation, intensity and edge
conspicuity maps and the final salience map created by the
new model. Figure 2(b) shows the salience map computed by
the full model for the same input image. On comparing the
final saliency maps from the new and the full models, we can
observe that the salient image areas (e.g. the curb, the plant,
etc) are similar in the outputs of both models. The new model
works with a lower resolution image (320 × 240 pixels) than
the full model (640 × 480 pixels) resulting in coarser maps
when compared to the full model.

Saturation and edge conspicuity maps (figure 2(a))
enhance objects with more saturated hues and darker colors
and objects with prominent edges respectively whereas the
intensity conspicuity map enhances objects with intensity
contrast in the image frame. The process of creating the feature
maps and normalizing them can lead to certain pixels not being
enhanced in the final conspicuity map.

4
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Final Saliency Map

Input Image

Saturation Conspicuity 
Map 

Intensity Conspicuity 
Map 

Edge Conspicuity 
Map 

(a)

(b)

Figure 2. Salience maps created by the new model and the full model for the same input image: (a) conspicuity maps for saturation,
intensity and edge along with the final salience map created by the new model for an example input image; (b) final salience map created by
the full model for an example input image.

3.2. DSP implementation results

The various modules of each model and the time required to
process one frame are stated in table 1. As stated earlier, for
the full model, only the intensity stream which is one of seven
different streams has been implemented on the DSP.

Execution time results from table 1 show that a single
image frame takes 0.84 s to be processed by the new model
whereas 14% of the old model (only the intensity stream)
takes 1.53 s to process the same image. This shows that the
implementation of the new model is computationally more
efficient. The estimated time for the full model to execute
one frame can be calculated by multiplying the time for
the intensity stream execution by a factor of 7. This is
because the intensity stream is one of seven similar streams
in terms of the computational complexity in the original

saliency algorithm. This implies that the implementation
of the new model is approximately ten times faster than the
implementation of the full model.

Optimization can lead to better results as can
improvements in processor speed and power consumption.
However, in wearable computing systems, increased algorithm
efficiency will always translate into lower power consumption.
Even the unoptimized implementation of the new model can
execute in less than 1 s, which is a reasonable response time
to a user request for information.

3.3. Model validation using gaze data

3.3.1. Analysis with the ratio of medians method [25]. Figure 3
shows two examples of input images with salience maps from
the new model and the full saliency model. Points in images
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(c) (a) 
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(f) (g) (h) 

(i) (j) 

Figure 3. Input image (a and f), salience maps from new model (b and g) and full saliency model (c and h) with the dots depicting gaze
fixation points, and salience maps from the new model (d and i) and full saliency model (e and j) with dots depicting data points after
shuffling.

Table 1. Time in seconds for computation of different modules in the new model and intensity stream of the full model on the TMS320
DM642 DSP.

New model Intensity stream from the
implementation full model implementation

Functions (time in seconds) (time in seconds)

YCbCr → RGB 0.1250 –
RGB → HSI 0.0320 –
Gaussian pyramids (intensity and 0.0647 0.0695
saturation for new model)
Laplacian pyramids 0.0303 –
Center–surround maps 0.0027 0.0158
Normalization function – 0.6062
(at different scales) – 0.0757

0.0096 0.0113
Entire algorithm (s) 0.8416 1.5373
Frames/second 1.1882 0.6505
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(a) (b) 

Figure 4. Gaze distribution of all subjects over all images (a) and
the average salience map from the salience maps of all images (b) in
the entire data set.

Table 2. Data analysis of human gaze data with salience maps
created by the new model and the full saliency model using the ratio
of medians method.

Median Median Ratio of Sign test
(Sh/Smax) (Srm/Smax) medians (Sh and Srm)

New model 0.3647 0.1020 3.5769 p < 0.0001
Full model 0.4352 0.2457 1.7714 p < 0.0001
Image shuffling
New model 0.2275 0.1059 2.1481 p < 0.0001
Full model 0.3256 0.2511 1.2970 p < 0.0001

(b), (c), (g) and (h) depict gaze fixation points from human
subject data and the points in images (d), (e), (i) and (j) depict
data points obtained by shuffling (gaze points from another
image).

Table 2 shows analysis of the full and the new models for
the actual gaze data and randomly distributed gaze points.
Both the full and the new models have ratios which are
significantly above chance (sign test with a significance level
of 0.0001 carried out between the Sh and Srm, chance = 1)
indicating that both models predict better than chance where
human observers will look. The ratio of medians calculated
by the new model is higher than the full model which shows
that the new model outperforms the full model in this case.
The maps from the full model are slightly denser than the
maps from the new model as seen in the comparison between
figures 3(i) and (j). This results in the overall median values
of the full model being greater than the new model.

The shuffled image analysis results are also shown in
table 2. A statistical sign test with a significance level of
0.0001 between the Sh values with and without shuffling
indicates that the Sh values without shuffling are significantly
higher than the Sh values with shuffling. The shuffled analysis
shows that the median values and ratios are lower than when
the saliency maps and gaze data correspond, but the ratios are
statistically greater than one, that is, better than chance. This
discrepancy can be explained by the center-bias effect present
in the average salience map of all images as well as in the gaze
data of subjects. When looking at unfamiliar images, subjects
often start looking at the center and then proceed to examine
the peripheral areas. Subjects are asked to look at the center of
a test image after every three images for calibration purposes as
mentioned before which could also add to their initial fixation
being centrally biased. Finally, due to potential photographer
bias (having interesting objects in the center of the image), the

Table 3. Data analysis of human gaze data with salience maps
created by the new model and the full saliency model using the ratio
of medians method for the image data set after removing images
with a center bias in the gaze data and/or the salience maps.

Median Median Ratio of Sign test
(Sh/Smax) (Srm/Smax) medians (Sh and Srm)

New model 0.3490 0.1020 3.4231 p < 0.0001
Full model 0.4278 0.2519 1.6985 p < 0.0001

average of all the salience maps in the input image data set
also has a center bias. Figure 4 shows the center-bias in the
gaze data as well as the average salience map.

To investigate the finding that saliency and gaze were
correlated even with image shuffling, a center-bias analysis of
the gaze points from subjects as well as the average salience
map was done. Based on Tatler’s analysis [27], for each image,
the number of gaze points falling into the central 15◦ was
counted and compared to the number of gaze points falling into
the rest of the image areas which are referred to as peripheral
areas. If the number of gaze points in the central region was
greater than the number in the peripheral regions, there was a
center bias in gaze data. Calculations show that 26% of the
images used in our study have a center bias in the subject gaze
data. Similarly, the number of pixels whose grayscale level is
the maximum value of the average salience map is calculated
in the central and peripheral areas of the average salience map.
If the number of such maximum grayscale valued pixels is
greater in the center than in the periphery, there is said to be a
center bias. Figure 4(b) shows the average saliency data from
all images, indicating central bias. The bias in the subject gaze
while viewing these unseen natural images and the bias in the
salience maps due to the photographer bias may be a reason
behind the ratio of medians being greater than 1 even with
image shuffling. In general, if the combination of the shuffled
gaze data set and the salience map is such that both have an
overlap, the ratio for such combinations will be greater than 1.

Analysis was repeated after removing images with a
central bias. Table 3 shows these results. The median values
for Sh/Smax and Srm/Smax are very close to those obtained
with the entire set of images including the ones with a center
bias. As before, a sign test with a significance level of 0.0001
carried out between the Sh and Srm shows that Sh values are
significantly higher than Srm values.

3.3.2. Analysis using normalized scanpath salience (NSS)
[26]. Figure 5 shows two examples of an input image with
salience maps from the new model and the full saliency model.
The figure also shows a random map created from a uniform
distribution at the same resolution as the salience maps for the
new and full models. The dots in the salience and random maps
represent the gaze fixation points of human observers.

The NSS results are shown in table 4 for the new model
as well as the full model. NSS values for both models with
salience maps are greater than zero whereas the NSS value
for the random model is close to zero. The results for the
analysis on the data set of images after removing images
with a gaze or salience map center bias are shown in table 5.
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(d) 

(a) 

(f) (g) (h) 

(e) 

(i) (j) 

(b) (c) 

Figure 5. Input image (a and f), salience maps from the new model (b and g) and the full saliency model (c and h); uniform distribution
random map with the dots depicting the gaze fixation points of the human subjects for the new model (d and i) and for the full model
(e and j).

Table 4. Data analysis of human gaze data with salience maps created by the new model and the full model using the normalized scanpath
salience method.

For salience map For random map Paired
NSS ± SEM NSS ± SEM t-test

New model 0.4310 ± 0.0113 −4.813 × 10(−4) ± 0.0005 p < 0.0001
Full model 0.4758 ± 0.0098 −5.077 × 10(−4) ± 0.0005 p < 0.0001

Table 5. Data analysis of human gaze data with salience maps created by the new model and the full model using the normalized scanpath
salience method for the image data set after removing images with a center bias in the gaze data and/or the salience maps.

For salience map For random map Paired
NSS ± SEM NSS ± SEM t-test

New model 0.4153 ± 0.0104 1.2311 × 10(−4) ± 0.0006 p < 0.0001
Full model 0.4746 ± 0.0093 1.9836 × 10(−4) ± 0.0005 p < 0.0001

For both cases, a paired t-test with a significance level of
0.0001 shows that the NSS values obtained using salience
maps are significantly different than the NSS values obtained
using random maps, meaning there is greater correspondence
between salient regions detected by the salience maps and
human fixations than expected by chance.

4. Discussion

We present a computationally efficient model of bottom-
up saliency detection based upon an earlier saliency model
[11–15]. Good correspondence is noted when comparing
regions that the algorithm predicts as salient to regions gazed
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at by human subjects when looking at a set of images. Also
comparing the salient regions to random gaze points shows
that the model predicts salient regions at a rate better than what
would be expected by chance. We have validated our algorithm
with sighted observers viewing images on a computer screen
while seated. The subjects are shown unfamiliar scenes to
limit unbiased gaze patterns. Using a set of 150 images
and gaze data from five subjects, results show comparable
performance between the new and the full models. An
unoptimized implementation on the TMS320 DM642 DSP
shows that the proposed model can process at a rate of 1 frame
per second which is approximately ten times faster than the
full model. Since this algorithm is eventually hoped to be
run on a wearable computing platform, efficiency is a critical
factor.

The model is proposed as the core of an image processing
algorithm designed to provide visual prosthesis patients with
information about the areas outside the visual field of the
implant. Such an algorithm could be utilized in a number
of ways. During navigation and ambulation, the user might
want to know about obstacles or signs (for example, an
exit sign). Other times, the user might be searching for an
object of interest. While it is possible to design specific
algorithms tailored to each task, there are advantages to a
bottom-up approach. Unlike top-down algorithms that require
a priori information, bottom-up algorithms do not require any
training. Also, a bottom-up algorithm may allow the user to
identify objects and understand surroundings using remnant
vision and contextual cues. Nevertheless, it is possible that a
top-down algorithm may be needed for specific tasks such
as objective recognition, particularly where vision is very
poor. Frintrop et al proposed a saliency implementation
based on ten information streams and a five level image
pyramid scheme for robotics [20]. Walther et al proposed
a bottom-up implementation based on the full model with an
added feedback module to detect the extent of an attended
object [28]. Both the groups combined their bottom-up
implementations by using top-down information based on
feature detection and/or object recognition with the salient
regions [29, 30].

To be effective for a retinal prosthesis implant patient,
more work is required to understand what functions are
important for these patients. Training will also be required
to best utilize information provided by the algorithm. Also,
it is unclear if patients can learn to take advantage of
the additional information or if they will prefer to receive
unfiltered video data and make their own judgments about
object importance. Task-dependent processing may be the
best approach. For obstacle avoidance and route planning,
visually impaired people are likely to be more interested in
large objects obstructing their path versus small details of
the environment around them. In such a case, a saliency
algorithm may be adequate. For an object detection task,
smaller details may be important discriminating clues to aid
successful task completion and a top-down object recognition
algorithm may be required. Any additional algorithm will
require more computing power so additional benefit will come
at a cost. The extra computing load can be limited by applying

object recognition only in the small region identified as salient.
This would also eliminate the need for the entire image frame
to be processed in smaller parts by the object recognition
algorithm to find the various objects.

In summary, a computationally efficient image processing
algorithm has been analyzed and identifies parts of an image
that human observers also deem salient. This algorithm
has the potential to enhance low vision, particularly when
visual field is restricted. When used with a retinal prosthesis,
the algorithm can be implemented on the retinal prosthesis’
existing camera and wearable computing platform. Critical
questions remaining to be answered by human testing include
how quickly people learn to utilize the algorithm and the
benefit provided.
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