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ABSTRACT
Tracking an unknown number of various objects involving oc-
clusion and multiple entry and exit points automatically is a
challenging problem. Here we integrate spatial knowledge of
human-object interactions into a high performing tracker to
show that human context can further improve both detection
and tracking. We use the DARPA Mind’s Eye Action Recog-
nition Dataset, which is comprised of street level scenes with
humans interacting with handheld objects, to show this im-
provement. We find that human context can greatly reduce
the number of false positive detections at the expense of in-
creasing false negatives over a large test set (>230k frames).
To minimize this, we add occlusion reasoning, where object
detections are hallucinated when a human detection overlaps
an object detection. These components together result in an
average F1 improvement of 107% per object category and a
69% reduction in track latency.

Index Terms— Human Context; Object Recognition; Oc-
clusion Reasoning

1. INTRODUCTION

Semantic context has been shown to be an important part of
object recognition in humans [1]. An example of using inter-
object context was shown in [2] (Figure 1). Although the
target object is hard to identify in isolation, once it is put in
context of one or more contextual objects, it becomes much
easier. Prior models have shown how knowledge of the lo-
cal background category (e.g. road, building, trees, etc.) can
improve recognition of foreground objects (car, person) [3].
Humans, however, are able to use more than just the contex-
tual object’s identity to infer the target object’s identity. For
discrete objects (cars, people, balls, etc), the relative position
and scale of the contextual object can also be used to help
infer identity. These kinds of inter-object influences, we ar-
gue, become crucial when one object is more reliably detected
than the other. For example, some objects, like plastic con-
tainers, have simple and regular edge structure, resulting in
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Fig. 1: [Taken from [2]] (a) The target object in isolation is
hard to identify (b) With another more easily determined con-
textual object put in a stereotypical relative location with the
target object, the identity of the target object becomes easier.

many edge groupings in an image that might falsely activate
the detector. Since humans are composed of more complex
contours, a human detector can be more reliable than detec-
tors for objects with more generic contours. We show the im-
portance of human-based contextual cues in improving object
tracking and detection in street-level scenes.

In DARPA’s Mind’s Eye Project the task was to iden-
tify and spatiotemporally localize actions occurring in video
scenes (1-16 minutes each, mean 8 minutes) involving hu-
mans interacting with each other and with objects. This typi-
cally involves detecting and tracking the humans and objects
in the videos. The scenes are challenging, because the hu-
mans and objects are frequently occluded by fixed pieces in
the scene, and by other humans. The objects are also fre-
quently carried and occluded by the human carrying the ob-
ject. Further, it is important to track the object continuously
over thousands of frames and across many instances of occlu-
sion, to accurately determine the nature of the action. Finally,
when determining what action is taking place, it is frequently
important to know precisely when and where an object en-
ters and leaves a scene, which is not typically measured when
evaluating object detection and tracking performance.

We hand annotated humans and objects involved in ac-
tions across 14 videos (training=8 clips: 243,445 frames; test-



ing=6 clips: 231,567 frames), where a track was considered to
extend until the object permanently exited the scene, or exited
the scene for longer than at least 2 continuous seconds. If the
object was occluded, the object was continuously tracked, un-
less the annotator could not estimate where it was, at which
point the track was ended. The bounding box was set to be
the smallest bounding rectangle that completely encloses the
annotated object.

2. PRIOR WORK AND NOVEL CONTRIBUTIONS

Contextual information has been used to improve object de-
tection in several ways. Scene context such as 3D scene infor-
mation, scene category, and global image gist has been used
to improve object detection on single images over the PAS-
CAL dataset [4]. Models have improved the detection of ob-
jects (things) using nearby textural classification (stuff: grass,
ocean, etc.) [3] as well as object co-occurence [5]. These
previous models have not fully taken into account the spa-
tiotemporal context that humans provide in a scene.

Recently, however, Zitnick and others built a spatial rea-
soning model between objects and humans in artificially gen-
erated scenes for activity recognition on a per activity basis
[6]. We have developed their idea further by learning this over
natural scenes, integrating this spatial reasoning with noisy
detectors, and extending it with occlusion reasoning. This
is difficult because, unlike artificially generated scenes, algo-
rithmic detection of objects is inherently noisy and incom-
plete. Small, handheld objects can also be completely oc-
cluded or unrecognizable on a given frame, necessitating the
use of temporal contiguity and contextual inference. Here, we
take inspiration from [7], who used other human detections to
reason about inter-human occlusion, and will do the same for
human-object occlusions.

Our contributions are twofold: 1) learning where objects
appear relative to humans and using this contextual knowl-
edge to reduce false alarms; 2) reliably detecting object occlu-
sions by humans and hallucinating objects at their predicted
location during extended occlusion periods, to reduce track
latency. On a large and very difficult video dataset, we show
significant improvement by adding these two components to
a state-of-the-art object detection and tracking framework.

3. BASE OBJECT TRACKING MODEL

Our system uses a state of the art pedestrian tracker [8] to
track human locations. The Deformable Parts Model (DPM)
[9] was used as the object detector for each small object (Bag,
Briefcase, Gun, and Plastic-Container). The object detector,
however, generates a large number of false positives across
each image, some with high confidence, possibly because
these objects lack distinctive textures (e.g., Figure 2). While
DPM achieves high detection rates with low false alarms
for more complex and textured objects like bicycles, cars,

Fig. 2: Raw DPM gun detec-
tions. Red: First true positive;
Green: all false alarms with
DPM confidence higher than
the true positive.
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Fig. 3: F1 score: Hand-
held objects had much
lower scores compared
to humans

etc., the objects studied here were difficult to identify with
this detector alone. These false positives lead to low DPM
F1 (harmonic mean of precision and recall) performance
(Figure 3).

To reduce false positives, especially in static background
clutter, we applied background subtraction, color models, and
frame to frame appearance tracking. The distance between
the current detection and the background was calculated using
a simple coarse binning histogram of the a* and b* compo-
nents of the CIELAB color space. The background distance
between the detection box histogram for the current frame
and the first frame was then calculated using the L2 norm.
To reject false detections with clearly incorrect color, a clus-
tered set of Gaussian color models are learned for each object
category. The minimum L2 distance between the detection
color histogram and each Gaussian model is determined for
the initial frame, and that model (e.g. “Bright Red Gas-Can”)
is set from that point on). The Track, Learn, Detect (TLD)
appearance tracker [10] was initialized on the most promising
resulting detections, and used to provide additional bounding
box proposals.

Every frame, each DPM detection proposal is evaluated
as a possible point to launch a tracker. A cost is calculated
for each proposal based on the DPM detection confidence,
the distance from the allowed Gaussian color models, the dis-
tance from the background, and the deviation from the ex-
pected relative size and position of the object given the hu-
man. Detections with costs below a threshold initiate a tracker
from that point. Proposals that are too near the current best
location of an existing tracker are ignored.

At a higher level, the Viterbi algorithm [11] is used to find
the path with lowest cost through the set of box proposals for
each frame. The cost function is a sum of exponentials:

cost(x) =
∑
i

αie
βicompi

Each component of the model generates an unscaled cost,
compi. Each component is then scaled by αi and βi which
are discussed in the next paragraph. The cost function in-
cludes: the DPM detection confidence or TLD tracking con-
fidence; the distance from the background; the distance from
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Fig. 4: The initial detection that spawned the tracker is shown
at Frame F, which was calculated using the initial detection
cost function. Moving away from the initial detection, a vari-
able number of box proposals are evaluated for each frame.
The lowest cost path from any prior box in the last frame is
found for each current box using the next proposal cost.

the expected color model; the change in position from the
prior location in the path; and the change in size from the
prior location in the path. After our Viterbi tracking system
is run forward in the video, it is also run in reverse, and the
tracks are continued backwards from their first frame. No new
trackers are launched during the backward pass.

αi and βi parameters were learned using a direct maxi-
mization of the F1 score. First, detection boxes boxdet were
checked with overlap of ground truth using Intersection over
Union: IOU = boxdet

⋂
boxgt ÷ boxdet

⋃
boxgt, and if

IOU > 0.25, it was considered a hit. Then the compi for
each detection was scored. Since some components rely on
the prior boxdet, the nearest detection hit (if present, other-
wise just the nearest) from the prior frame was used. The op-
timal threshold costopt to maximize the F1 score for a given
set of parameters was determined. The parameters were then
optimized using: argmaxα,β = F1(cost(boxdet) < costopt)

4. HUMAN SUPPORT FOR OBJECTS

To enhance our tracking model, we added human context to
improve the tracking results. The human detector performed
much better than the handheld object detectors did, for a mul-
titude of reasons, including that the objects were more often
occluded, had less distinct shapes, and were trained using a
standard object detection algorithm (DPM) instead of a cus-
tom built detector for human [8].

To harness these contextual cues, we learned the relative
position and size of each small object relative to the human.
Since we have the track of the human, we are also able to
use the knowledge of which human the object is closest to (if
any), and penalize paths that wander from human to human.
Figure 4 depicts the complete system and the breakdown of
the cost functions.

Fig. 5: Gray is neutral, white is high probability of object
presence, and black is high probability of a false positive. The
coordinates are normalized by the human width and length.
The yellow outline is a normalized human having width and
height equal to 1.

5. LEARNING HUMAN/OBJECT RELATIONSHIPS

The size and position of the object relative to the human were
learned over the true positives and the false positives of the
training data with left/right mirroring to generate more virtual
examples. These densities were then used to provide a cost
for a particular relative size and position of the object given
a human detection. Both the distance from the object to the
human and the scale of the object were normalized by the size
of the human. Objects were frequently found in stereotyped
locations of the human (Figure 5; plastic container carried at
the end extent of the hand, rifle carried in the torso). Inter-
estingly, the false positives were also occurring at stereotyped
positions. For instance, the torso of the person was frequently
detected as a plastic container, and the legs were frequently
detected as a rifle. The inter-object occlusion was therefore
useful in determining where an object was likely to be as well
as what alternative explanations could exist for a particular
detection to “explain away“ that detection.

6. OCCLUSION REASONING AND MULTIPLE
OBJECTS

In the Mind’s Eye scenes, humans frequently occlude other
humans and objects. During these times, there is little or no
portion of the object visible, and the tracker and the object
detector will be left with only false positive proposals. How-
ever, it is important to track the object across these occlusion
events, to accurately generate the complete track of the ob-
ject through the scene. Since many of these occlusion events
involve other humans walking in front of the object, we can
use the human tracks to estimate the likelihood that the object
is occluded. If another human track overlaps the object, and
the object detection is no longer present or much weaker, the
probability of an occlusion is much higher. In these cases,
a hallucinated detection is inserted, with the cost of the last



Bag Briefcase Gas−Can Gun
0

0.2

0.4

0.6

0.8

1

F1
 S

co
re

(a) F1 Score

Bag Briefcase Gas−Can Gun0

20

40

60

80

# 
Fa

ls
e 

Al
ar

m
 T

ra
ck

s
(b) False Alarms

Bag Briefcase Gas−Can Gun0

1000

2000

3000

4000

La
te

nc
y 

[#
Fr

am
es

]

(c) Track Latency

Fig. 6: Base System (red), with human context (green), with
human context and occlusion reasoning (blue)

known good detection plus a hallucination penalty. This is
allowed to continue until one of the following: the object is
redetected at low cost, the occluding human is no longer oc-
cluding the position, or the maximum number of hallucinated
frames has been exceeded. Once the hallucination is com-
pleted, if the object is not detected at low cost, the hallucina-
tion is rolled back and the tracker is ended. Otherwise, the
tracker will continue as normal.

Since multiple humans and objects appeared in the scene,
it was important to prevent trackers from oscillating between
them as one becomes occluded and another is still visible.
To prevent this, several steps are taken. First, a fixed human
switch cost, ρhs, is applied every time an object switches to a
different human track. Second, a Voronoi diagram is applied
to the set of currently active trackers for a particular object
type, based on their best current path, and a penalty, ρv is
applied to all detections that are outside of a tracker’s Voronoi
region. Finally, hallucinated detections at the last known good
location allows the best path for an occluded tracker to remain
fixed and not migrate over to another tracker’s location.

7. POST PROCESSING

We run a final pass through the results to find the best cut
points based on the cost. During this process, spatiotem-
porally close tracks are merged, the bounding box path is
smoothed with a simple fixed low pass filter, and weak tracks
below a fixed threshold are removed. The best initial and aver-
age cost thresholds are found for each system when reporting
the results.

8. SYSTEM RESULTS

We tried to improve both the detection and tracking perfor-
mance of our system using human context and occlusion rea-
soning. To compare the different components of the system,
we ran three versions of the model: a base system, one with
human context, and one with both human context and occlu-
sion reasoning. All three systems included a DPM object de-
tector, a TLD tracker, a color model, and a background model.
The per frame F1 performance is shown in Figure 6(a), which
improves on average by 94% with human context, but only
9% more with occlusion reasoning.
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Fig. 7: Frame by frame performance of each system over
whole test set. Up to 3 objects were present at any given time
(Trk1 - Trk3). False positives from all detectors are shown.

To understand where the improvement is coming from,
the change in false alarms for each system is shown in Figure
6(b). As more constraints are added, less false positives occur,
at the expense of increased misses.

When trying to truly understand the interactions between
a human and a set of objects, it becomes important to under-
stand who brought the object into the scene and what hap-
pened to it (e.g., leaving a gun vs. leaving with a gun). These
periods are frequently the most occluded points during the
ground truth track, and don’t count that much against a frame
by frame detection score or tracking score, because they in-
volve a relatively small number of frames at either end of the
track. We measure these exit and entry point precision explic-
itly, and call it track latency. In Figure 6(c), we can see that
although adding human context increased the average latency
of the object detections by 97% (in many cases because the
human wasn’t detected yet), adding occlusion reasoning re-
duced the average latency 69% below the original system.

The results of the entire test set are shown in Figure 7,
where the frames for each video are concatenated into a single
set. Here we can see that adding human context lowers the
false positives (the red heatmap), and the occlusion reasoning
restores some of the detections lost when the human context
was added.

9. CONCLUSION

Although context makes intuitive sense for use in improving
object recognition, it has been difficult to show significant
performance improvement using it. Here we show that in
real-world cases where the object detector has low precision
but humans are detected reliably, human context can play a
sizable role. We further show that occlusion reasoning can
significantly reduce track latency, which is important for de-
termining the origin and fate of the object.
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