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Figure 1: Four game frames with the eye position of one human (small cyan square, arrows) gazing back and forth between
Mario and his enemy in a video gameconsolesystem. Computational image-processingheuristics drawn from biological vision
could help such systems predict and adapt to the behavior of their human operators.

Abstract

Next-generation immersive virtual environments and video
gameswill require virtual agents with human-lik e visual at-
tention and gaze behaviors. A critical step is to devise ef-
�cien t visual processing heuristics to select locations that
would attract human gaze in complex dynamic environ-
ments. One promising approach to designing such heuris-
tics draws on ideas from computational neuroscience. We
compared several such heuristics with eye movement record-
ings from �v e observers playing video games,and found that
heuristics which detect outliers from the global distribution
of visual features were better predictors of human gazethan
were purely local heuristics. Heuristics sensitive to dynamic
events performed best overall. Further, heuristic prediction
power di�ered more between games than between di�er-
ent human observers. Our �ndings suggestsimple neurally-
inspired algorithmic methods to predict where humans look
while playing video games.
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1 Intro duction

Increasingly, many interactiv e graphics environments are
starting to share a paradigm in which one or more human
operators participate in a virtual world along with a poten-
tially large number of virtual agents. This paradigm ap-
plies to mass-market video games, as well as high-end sim-
ulators/trainers for ying or driving, and large-scale com-
bat simulators. As with computer systems in general, the
shared environment is often \seen" in di�eren t ways by hu-
man and virtual agents. The human participan ts sensethe
environment through visual and auditory displays; in con-
trast, the virtual agents typically have direct accessto some
higher-level representation (such as an object-oriented scene
graph) that generatesthe rendered visual and auditory sig-
nals. Thus, although human and virtual agents are operating
in the sameenvironment, they are not seeingit through the
sameeyes.

The next generation of interactiv e computer graphics sys-
tems will require arti�cial agents that can more faithfully
mimic their human counterparts, while also being more
aware of their human collaborators and adversaries. This
shift may be driv en by market forces in the case of video
games, by safety concerns in the case of ying or driving
simulators, or by increasing security concerns in the case
of combat simulators or civil police simulators. One ap-
proach to this goal is to incorporate knowledge of biological
vision into interactiv e graphics, using empirical results from
eye-tracking and computational modeling. This o�ers two
speci�c bene�ts: (1) the system could better predict the be-
havior of its human operator, allowing it to tailor the visual
display appropriately (for example, by placing important in-
formation near the lik ely focus of attention, or by avoiding
distracting displays during important moments), and (2) the



system could better mimic human behavior, allowing the vir-
tual peersof the human operator to behave more naturally .

This empirical approach carries two main challenges: one
is the di�cult y in constructing a natural visual stimulus in
a laboratory setting, and the other is the di�cult y in im-
plementing a computational algorithm that mimics the ob-
served gazebehaviors. Most studies to date have addressed
thesechallengesin complementary but disjoint ways. For ex-
ample, it hasbeenshown that humans preferentially gazeto-
wards regions with multiple superimposedorientations (cor-
ners or crosses) [Zetzsche et al. 1998; Privitera and Stark
2000], higher than averagespatial contrast (variance of pixel
intensities) [Reinagel and Zador 1999] and entropy [Priv-
itera and Stark 2000], and higher than average \saliency"
[Parkhurst et al. 2002; Peters et al. 2005] as computed by a
biologically-inspired model of bottom-up attention [Itti et al.
1998], yet these results are typically obtained with static
scenes(still images) and address only low-level, bottom-up
image properties. Adding a temporal dimension brings a
number of complications in trying to realistically predict
gazetargets with a computational model.

On the other hand, other studies have used natural-
istic interactiv e or immersive environments to give high-
level accounts of gaze behavior in terms of objects, agents,
\gist," and short-term memory [Yarbus 1967;Hendersonand
Hollingw orth 1999; Rensink 2000; Land and Hayhoe 2001;
Sodhi et al. 2002; Hayhoe et al. 2003; Bailenson and Yee
2005], for example, to describe how task-relevant informa-
tion guides eye movements during sandwich-making [Land
and Hayhoe 2001; Hayhoe et al. 2003] or how distractions
such as setting the radio or answering a phone a�ect eye
movements while driving [Sodhi et al. 2002]. These studies
have provided important constraints regarding goal-oriented
high-level vision, but it remains to be seenhow such high-
level stimulus properties can be computed from raw visual
input (i.e., a time-varying 2-D pixel array). That is, the
�nding that people tend to orient towards \the radio," \an
adversary," \the bread," \the jelly," or other real-world en-
tities, which have been labeled beforehand by the experi-
menter and which are of particular interest during a given
task, needsto be translated into computer algorithms that
can �rst locate and identify these entities from raw video
data. In fact, in interactiv e environments with natural tasks,
it is intuitiv ely expected that volitional top-down inuences
may more strongly guide gaze than reex-lik e bottom-up
inuences, such that it is unclear whether computationally
tractable bottom-up image analysis heuristics would play a
signi�can t role at all.

We report here a step toward addressing both of these
challenges at once: we recorded observers' eye movements
while they were exposed to dynamic visual input, in an in-
teractiv e video gameplaying task (Fig. 1), and compared the
recorded gaze behavior with the predictions of nine heuris-
tic computational metrics basedon low-level image features
(such as color, intensity, motion) and saliency. We tested
these metrics for their abilit y to predict human gaze tar-
gets and found that, despite the presumptiv e strength of
top-down inuences, all of the metrics scored signi�can tly
above chance. Those metrics that were sensitive to dynamic
events were especially strong gazepredictors. Furthermore,
we found that the metrics' predictiv e abilit y di�ers dramati-
cally depending on the game-play paradigm, more sothan on
the particular human observer. Such metrics could be used
as a �rst step toward endowing virtual agents with simple
yet realistic visual systems.

2 Metho ds

2.1 Eye-movement recordings

Five subjects (three male, two female) participated with in-
formed consent, under a proto col approved by the Insti-
tutional Review Board of the Univ ersity of Southern Cal-
ifornia. Subjects played four or �v e �v e-minute segments
of standard Nintendo GameCube games, including Mario
Kart, WaveRace,Super Mario Sunshine,Hulk, and Pac Man
World. Stimuli were presented on a 22" computer monitor
(LaCie Corp; 640� 480 pixels, 75 Hz refresh, mean screenlu-
minance 30 cd/m 2 , room 4 cd/m 2); subjects were seated at
a viewing distance of 80 cm (28� � 21� usable �eld-of-view)
and rested on a chin-rest. To allow later analysis with our
computational heuristics, the video game frames were dis-
played and simultaneously recordedon a Linux computer un-
der SCHED_FIFOscheduling to ensure microsecond-accurate
timing [Finney 2001]. Each subject's right eye position was
recorded at 240Hz with a hardware-basedeye-tracking sys-
tem (ISCAN, Inc.). Each game segment was preceded by
a calibration sequence,in which subjects �xated a seriesof
points on an invisible 3 � 3 grid, to set up a correspon-
dence between the eye camera and stimulus display coor-
dinate systems [Stampe 1993]. After calibration, subjects
�xated a central cross and presseda key to start the game
play. In post-processing,8,449 saccadesof amplitude 2� or
more were extracted from 1,740,972 recorded eye position
samplesover 24 �v e-minute game-play sessions.The corre-
sponding 216,000 recorded video frames (about 185 GB of
raw pixel data) were processedon a cluster with 48 CPUs
through the computational heuristics described next.

2.2 Computational heuristics

We tested nine heuristic metrics for predicting gazetargets.
These fall into two broad groups, one in which only local
features within small image patches are considered,and an-
other in which global context is used to determine whether
a local area is unusual and thus worthy of interest. This
second group of heuristics can be further subdivided into
those that assessstatic features (which treat each frame in-
dividually , with no temporal context), and others that assess
dynamic features. Finally , several metrics can be combined
together to form a new metric that is di�eren t from the sum
of its parts; in particular we test two combined metrics that
correspond to \saliency." Fig. 2a shows heuristic responses
for several sample video frames.

2.2.1 Local heuristics

We evaluate two purely local heuristics that compute local
variance [Reinagel and Zador 1999] and local entropy [Priv-
itera and Stark 2000] in 16 � 16 image patches, which have
beenpreviously shown to correlate with eye movements over
still images. Variance for an image patch k is computed as
V (k) = (

P
( x;y ) (I (x; y) � I k )2)=(N � 1) where (x; y) loop

over the N = 16� 16 set Pk of pixel coordinates that de�ne
patch k, I (x; y) is the image intensity at (x; y), and I k is the
mean intensity over patch k. Entropy is similarly computed
as E (k) = �

P
i 2 G ( k ) F i (k) log F i (k) where F i (k) is the fre-

quency of occurrenceof gray level i within the 16� 16 patch
k of interest, and G(k) is the set of all gray levels present in
the patch.
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Figure 2: Scoring di�eren t metrics for their abilit y to predict human gaze targets during video-game playing. (a) The left
column shows sample video frames from di�eren t sessions. In each frame, the subject is about to make a saccadefrom the
point at the baseof the arrow to the point at the tip of the arrow, surrounded by the circle. At the time of saccadeonset, we
sample the master maps generated by each metric (columns 2{5: entropy, color, ic ker, and full saliency) at the location of
the saccadetarget and at a number of uniformly random locations. (b) Across all saccadesfrom 24 sessionswith 5 observers,
these histograms show how frequently locations with particular heuristic values are the targets of human saccades(narrow,
dark bars), and of random saccades(ligh t, wide bars). The Kullbac k-Leibler (KL ) distance quanti�es the dissimilarit y between
these distributions; higher KL values indicate that the metric is better able to distinguish human �xation locations from other
locations. KL distances are indicated here by light horizontal bars atop each subpanel. The top row of subpanels shows
heuristic scoresacrossall game types, while the secondand third rows show scoresfor racing gamesand exploration games,
respectively. Only four of our nine metrics are shown here, but Fig. 3 summarizes the KL distances for all nine metrics.



2.2.2 Outlier-based heuristics

We also evaluate heuristics which respond to image out-
liers in visual feature dimensions known to play a role in
human attention [Wolfe and Horowitz 2004]. Our software
implementation of these heuristics has been previously de-
scribed [Itti et al. 1998] and is freely available from the web
(http://ilab.usc.edu/to olkit/).

Twelve neuronal features are implemented, sensitive to
color contrast (red/green and blue/y ellow, separately), tem-
poral ic ker (onset and o�set of light intensity, combined),
intensity contrast (ligh t-on-dark and dark-on-ligh t, com-
bined), four orientations (0� , 45� , 90� , 135� ), and four
oriented motion energies (up, down, left, right). These
features detect spatial outliers in image space, using a
center-surround architecture inspired from biological recep-
tiv e �elds. Center and surround scalesare obtained using
dyadic pyramids with 9 scales(from scale0, the original im-
age, to scale8, the image reduced by a factor 256). Center-
surround di�erences are then computed as point-wise di�er-
encesacrosspyramid scales,for combinations of three center
scales (c = f 2; 3; 4g) and two center-surround scale di�er-
ences(� = f 3; 4g); thus, six feature maps are computed for
each of the 12 features. Each feature map is additionally
endowed with internal dynamics that provide a strong spa-
tial within-feature and within-scale competition for activ-
it y, followed by within-feature, across-scalecompetition [Itti
et al. 1998]. In this way, initially noisy feature maps can be
reduced to sparse representations of only outlier locations
which strongly stand out from their surroundings.

Here we combine the two color features into a single color
channel, and similarly combine the four orientation features,
and the four motion features. We henceevaluate �v e heuris-
tics sensitive to outliers in the general dimensions of color,
intensity, orientation, ic ker, and motion, plus one that com-
bines intensity, color, and orientation into a measureof static
saliency, and onethat addsmotion and ic ker to yield a mea-
sure of full static/dynamic saliency.

2.3 Scoring the heuristics

Each heuristic generatesa topographic dynamic master re-
sponse map, assigning a response value to every spatial lo-
cation in each video frame, and a good master responsemap
should highligh t locations �xated by observers, more often
than expected by chance. Thus, each heuristic is scored
as follows: at the onset of each human saccade, we sam-
ple the heuristic's master map activit y around the saccade's
future endpoint, and around a uniformly random endpoint.
We quantify di�erences between histograms of master map
samples collected from human and random saccadesusing
the Kullbac k-Leibler (KL ) distance: heuristics which bet-
ter predict human scanpaths exhibit higher KL distances,
since observers typically gazetowards a non-uniform minor-
it y of regions with highest heuristic responseswhile avoid-
ing the majorit y of regions with low heuristic responses(see
Fig. 2b). The KL distance o�ers several advantagesover sim-
pler scoring schemes [Reinagel and Zador 1999; Parkhurst
et al. 2002], including (1) being agnostic about the mech-
anism for selecting a saccadegiven the instantaneous dis-
tribution of heuristic responses over visual space, and (2)
being invariant to reparameterizations, such that applying
any contin uous monotonic nonlinearit y to master map val-
ues would not a�ect scoring.

3 Results

Fig. 3a shows results obtained overall. All metrics tested
performed signi�can tly above the chance-level KL score of
zero (t-tests, p < 10� 100 or better). All KL scoressigni�-
cantly di�ered from one another, suggesting a strict rank-
ing of all metrics (paired t-tests for equality of KL scores,
p < 10� 100 or better, except for motion vs. ic ker, p < 10� 7).
Surprisingly, under our conditions of active game-play and
with our video gamestimuli, we found that motion alone (M)
was the best predictor of human gaze,with ic ker (F) a close
second. Combining these with additional static features line
color, intensity, and orientation to give the full saliency met-
ric (C,I,O,F,M) actually impaired prediction performance.
Orientation alone (O), intensity alone (I), and static saliency
(C,I,O), indeed, were the poorest predictors, although still
signi�can tly above chance. Local heuristics computing vari-
ance (V) and entropy (E) scored respectably, but were sur-
passedby full saliency (C,I,O,F,M), color alone (C), ic ker
(F), and motion (M). Notably , color alone (C) scored bet-
ter than the other static features, in contrast to results ob-
tained previously with static images [Parkhurst et al. 2002],
in which color was found to be the weakest gazeattractor.

We found two interesting dissociations within the scores
obtained by the di�eren t heuristics. A split by game type
(Fig. 3b) suggestedan interesting dissociation between rac-
ing games (Mario Kart and Wave Race), and exploration
games(Super Mario Sunshine,Hulk, Pac Man World), which
involve a more open-endedstoryline. Racing gamesinvolve
primarily obstacle-avoidance while the player navigates a
predetermined course. In contrast, exploration games im-
pose looser restrictions on the player's navigation, but in-
stead implicitly require the player to search the environment
for objects or other agents with which to engage. All of the
metrics we tested, except variance (V), scoredbetter at pre-
dicting observers' gazeduring exploration gamesthan during
racing games. In addition to this overall e�ect, we also found
that the top-scoring heuristics were di�eren t for racing and
exploring games. For the exploration games,the best heuris-
tics were the dynamic outlier-based features motion (M) and
ic ker (F), followed closely by the static feature color (C). In
contrast, for the racing games, the best heuristics were in-
stead the local features entropy (E) and variance (V), again
along with color (C).

In a secondsplit, we found that there was lessvariabilit y
in heuristic performance acrosssubjects than acrossgames
(Fig. 3c), especially so for the overall best metrics motion
(M) and ic ker (F). This is an important �nding for two
reasons. First, it suggeststhat heuristics could be further
tailored to particular immersive environments, for example
by �nding the optimal weighted combination of all metrics
for a given game type. Second, it may be reasonable to
avoid such tailoring for individual human subjects, achiev-
ing an important savings within the limited resourcesof an
interactiv e graphics system.

4 Discussion

In this study we have quantitativ ely evaluated nine simple
computational metrics for their abilit y to predict where peo-
ple look while playing video games. We found that all met-
rics scoresigni�can tly above chance, hencerepresenting eas-
ily computable shortcuts to the targets selected by human
gaze. Although the predictiv e abilit y of thesesimple metrics
is clearly limited, it is encouragingthat they work at all. Our
study provides direct experimental evidencethat bottom-up
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Figure 3: Nine heuristics were scoredby the KL distance (section 2.3) to quantify how well the heuristic discriminates human
gazetargets from random locations. (a) Across all gamesessions,the dynamic features motion (M) and ic ker (F) scorebetter
than static features color (C), intensity (I) and orientation (O), and local metrics entropy (E) and variance (V). (b) When the
sessionswere split by game paradigm, all metrics except variance were better predictors of human gaze in exploration games
than an racing games. (c) Sessionswere grouped either by subject or by game, then the average KL score was computed
within each group, and �nally the standard deviation was computed acrossgroups. For all metrics except orientation, there
was higher variabilit y due to game than due to the subject.

imageanalysis can predict a non-negligible fraction of human
gaze targets, even in situations where top-down inuences
are expected to dominate, driving eye movements based on
task demandsrather than on visual inputs. Our �nding that
the heuristics tested here signi�can tly correlate with actual
gazeposition suggeststhat theseheuristics could directly be
usedto endow virtual agents with gazebehaviors that would
approximate human behavior. These results provide empir-
ical validation that previously proposed visual systems for
virtual agents indeed yield outputs that correlate with hu-
man behavior [Terzopoulos and Rabie 1997; Itti et al. 2003;
Peters and O'Sulliv an 2003]. Preliminary unpublished re-
sults suggestthat the heuristics are better at predicting gaze
when observers passively view video gamesthan when they
interactiv ely play the games; thus, one direction for future
study is to better understand this di�erence | is it due to
bottom-up inuences that are simply missed by our heuris-
tics, or is it due to other (top-down, task-related) inuences
that are simply outside the scope of bottom-up heuristics?

A virtual agent could use such metrics to automatically
compute where to look next in any virtual, real, or mixed
environment. Although an analysis of a computer-graphics

scenegraph might allow prediction of potentially interesting
gaze targets without requiring processingof fully rendered
images, such an approach is limited to environments that
are entirely virtual. Accounting for humans interacting with
such environments becomespossible with heuristics that do
not require knowledge of the scenegraph and can instead
operate at the pixel level.

Our main contributions have been two-fold. First, we
studied dynamic, interactive video sceneswhereasprevious
work on computational mechanisms for gaze direction has
largely focused on still images or pre-recorded movies. Al-
though the visual stimuli here were arti�cially generated,we
believe they are similar enough to natural scenesto suggest
that it is lik ely that the heuristics described here would also
serve well in predicting gaze in truly natural scenes. Sec-
ond, and perhaps most importantly , each of the heuristics
that we tested has a tractable computational implementa-
tion that takes a time-varying 2-D pixel array as input and
produces a time-varying prediction of where a human ob-
server's gaze might be directed. Any apparent high-level
behavior exhibited by the heuristic is simply attributable
to low-level processingof the input; that is, the heuristics



do not require the visual input to be accompanied by ex-
plicit high-level labels for \ob jects" or \targets." Whereas
behavioral studies have made great strides in understanding
observers' gazebehaviors in just such object-based or agent-
based terms [Land and Hayhoe 2001; Hayhoe et al. 2002;
Hayhoe et al. 2003; Bailenson and Yee 2005], such �ndings
becomeavailable to arti�cial visual systemsonly when there
is an algorithm to extract the high-level information directly
from the visual input. Accurate object recognition and se-
mantic interpretation contin ues to be a \hard problem" in
arti�cial vision, particularly for unconstrained visual input;
while our approach has the drawback of lacking high-level
sceneunderstanding, it has the virtue of a straightforw ard
computational implementation that can be applied to any
visual input.
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