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Abstract

Sequential learning of tasks using gradient descent leads to an unremitting decline
in the accuracy of tasks for which training data is no longer available, termed
catastrophic forgetting. Generative models have been explored as a means to
approximate the distribution of old tasks and bypass storage of real data. Here
we propose a cumulative closed-loop generator and embedded classifier using an
AC-GAN architecture provided with external regularization by a small buffer. We
evaluate incremental learning using a notoriously hard paradigm, “single headed
learning,” in which each task is a disjoint subset of classes in the overall dataset,
and performance is evaluated on all previous classes. First, we show that the
variability contained in a small percentage of a dataset (memory buffer) accounts
for a significant portion of the reported accuracy, both in multi-task and continual
learning settings. Second, we show that using a generator to continuously output
new images while training provides an up-sampling of the buffer, which prevents
catastrophic forgetting and yields superior performance when compared to a fixed
buffer. We achieve an average accuracy for all classes of 92.26% in MNIST and
76.15% in FASHION-MNIST after 5 tasks using GAN sampling with a buffer of
only 0.17% of the entire dataset size. We compare to a network with regularization
(EWC) which shows a deteriorated average performance of 29.19% (MNIST) and
26.5% (FASHION). The baseline of no regularization (plain gradient descent)
performs at 99.84% (MNIST) and 99.79% (FASHION) for the last task, but below
3% for all previous tasks. Our method has very low long-term memory cost, the
buffer, as well as negligible intermediate memory storage.

1 Introduction

Recreating life-long learning remains a central challenge in Artificial Intelligence. After all, humans
master countless tasks in succession without incurring catastrophic forgetting. Yet, state of the art
Deep Neural Networks which rely on a naive version of the back-propagation algorithm are unable to
learn cumulatively if the data for previous tasks is no longer available [French, 1999]. To guarantee
optimal performance on sequential tasks, the conventional solution has been to store all learned (old)
data and continuously interleave old and new as the network is further trained [Furlanello et al.,
2017]. However, this method is extremely memory expensive, requiring storage of all samples ever
encountered. Several more memory efficient methods have been introduced, roughly subdivided into
3 groups: regularization, network-growing and replay approaches.

With regularization methods, one constrains the change of learnable parameters to prevent "over-
writing" what was previously encoded. For instance, in learning without forgetting Li and Hoiem
[2017] perform distillation between the network at distinct time-points ensuring that the new weights
do not shift significantly from the old. In a similar vein, Elastic Weight Consolidation [Kirkpatrick
et al., 2017] also operates within a single network model and uses a Fisher information matrix
computed with saved samples drawn from past tasks which then acts as a regularizer preserving
highly correlated weights. Similarly, Zenke et al. [2017] use path integrals of loss-derivatives to
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constrain crucial weights, yielding an intermediate parameterization with minimal combined loss.
Alternatively, in region-growing algorithms, the architecture itself is altered. For instance, Fernando
et al. [2017] freeze the most important weight paths to forcefully prevent forgetting and incrementally
add new network chunks to incorporate new tasks. Lastly, in replay methods, the goal is to mimic
the distribution of old data either by saving a small fraction of the original dataset into a buffer or
by training a generator to reproduce the lost data and labels. At each new task, these methods learn
by presenting a network with both new images and replay of estimated old images, transforming
continual learning into multi-task. Other works have built around using a buffer of real data to
approximate past distributions [Rebuffi et al., 2017, Lopez-paz and Ranzato, 2017].

Nonetheless, despite a growing number of appealing solutions, catastrophic forgetting remains an
unsolved issue. Regularization methods have been shown to perform poorly in incremental class
learning [Kemker and Kanan, 2018, Parisi et al., 2017] and here we reproduce this limitation in our
own results for the case of Elastic Weight Consolidation [Kirkpatrick et al., 2017]. Region growing
approaches, while usually providing a clean solution for constrained incremental problems, can
quickly become memory expensive since they requires both an architectural expansion as well as
the storage of at least a portion of old data for retraining [Draelos et al., 2017]. Likewise, replay
algorithms run into scalability issues as well. Currently, these models usually make temporary copies
of the entire network to distill knowledge [Shin et al., 2017, Achille et al., 2018], but this requires
complete retraining of the network. Moreover, distilling knowledge is not a fully desirable solution
as it bypasses the fact that generative models themselves cannot learn continuously in a closed-loop.
Also, from the biological perspective, a human brain cannot produce an “intermediate copy” of itself
to transfer knowledge. Lastly, methods which rely rather on small subsets of past data, buffers, have
shown to yield good results but they do not make explicit how much of the performance is due to the
algorithm developed and how much is intrinsically due to the variability included in the buffer.

2 Model

Our contribution: In this work, we address some of the issues listed above by proposing a method
which approximates a cumulative closed-loop generative model with a continuous embedded classifier.
The model makes use of a small memory buffer which confers a stabilizing external regularization.
For this reason, we make a systematic evaluation of performance as a function of training set size
to assess how much of the accuracy stems from the developed algorithm or the buffer itself. We
show that despite a buffer providing a significant portion of the performance, stochastic upsampling
(AC-GAN) is able to increase accuracy, especially when dealing with very small buffer sizes.

2.1. Architecture: The core block of our model, see figure 1, is an Auxiliary Conditional Generative
Adversarial (AC-GAN) [Odena et al., 2017]. The AC-GAN is composed of 2 networks, a generator
and a discriminator combined with a classifier. The latter uses K+1 output nodes, K standing form
number of classes and the extra node referring to the Real/Fake discriminator output from a vanilla
GAN. In the AC-GAN, generated samples have a corresponding class label c ∼pc in addition to the
noise Z, being of the form Xfake = G(Z, c). A one-hot class representation is thus appended to the
noise vector and then fed to the generator. Therefore, the discriminator computes the conditional
probability over the classes, P (C|X), as well as the Real/Fake labels of traditional GANs, P (R|X).
The loss functions of generator and discriminator can be written as (1):

Figure 1: Model used for cu-
mulative and continual learn-
ing. Past data is sampled
from the generator and fil-
tered by the embedded clas-
sifier. Old data is a combi-
nation of the fresh genera-
tor output and a small buffer
used to "smoothen" the old
data distribution guarantee-
ing quality output.
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LR = E[logP (R = real|Xreal)] + E[logP (R = fake|Xfake)]

LC = E[logP (C = c|Xreal)] + E[logP (C = c|Xfake)]
(1)

2.2. Training: As a new task is learned, the old data is approximated by continuously sampling from
the generator. Since a new task also modifies the parameterization of the generator, this procedure
cannot be applied without some guarantee that the generated images are reasonable approximations
of the old distribution that has been lost. Our method tackles this issue by, first, using the embedded
classifier to categorize the sampled images and only allow correctly classified images through. Very
recent work by Azadi et al. [2018] reinforces the advantage of filtering generated samples during
GAN training. Second, we fill a small memory buffer with samples of original past data to perform
external regularization. The memory can be seen as a stable reference frame throughout training that
enforces a "smoothness" in the representation for each class. Thus, at each batch during a task, the
old data is both generated anew from the generator and intermixed with a small fraction from the
saved buffer. Additional details are provided in the supplementary materials.

3 Experiments and Results

3.1. Effect of training set size: Several continual learning methods rely on buffers to sample past
data distributions. Nevertheless, a systematic evaluation of performance as a function of training set
size has been missing. We created buffers enforcing equivalent samples per class and, within each
class, letting samples be picked according to a K-centers algorithm to ensure diversity. Maximizing
the number of clusters per class inside a buffer indirectly biases it to include samples which are
further apart from each other, increasing the variability. Other methods of buffer selection tested are
listed in the supplementary materials.

MNIST FASHION

Buffer Size Accuracy Buffer Size Accuracy

50 0.673 50 0.560
100 0.801 100 0.738
500 0.942 500 0.800
1000 0.962 1000 0.833
5000 0.986 5000 0.891
60000 0.989 60000 0.899

Table 1: Multi-Task accuracy varying buffer size

Table 1 shows results of training the AC-GAN with a simple multi-task paradigm (train all classes
simultaneously). We measured the maximum accuracy achieved by the embedded classifier using a
buffer as training data. Evaluation was performed with a conventional sized test set. The number of
epochs used was variable since smaller buffers required longer training. Therefore, all were trained
until the training accuracy stabilized in 99%-100%. Results indicate a nonlinear and saturating
relationship between training buffer size and test performance. For instance, using only 100 exemplars
in MNIST (10 per class), which is roughly 0.17% of the entire dataset already yields 80.1% accuracy.
Likewise, for FASHION-MNIST a buffer size of of 0.17% (100 images, 10 per class) yields 73.8%
accuracy, which is roughly 82% of the maximum performance. FASHION is comparatively a much
harder dataset [Vollgraf et al., 2017].

3.2. Incremental class learning: We evaluate incremental learning using a notoriously hard
paradigm, “single headed learning”. Here, each task is a disjoint subset of classes in the over-
all dataset and the performance is evaluated for all previous classes. We test our model on MNIST
and FASHION, making each task a 2 class disjoint subset of the 10 total. To account for the growing
number of classes, we create extra output nodes which are incrementally used. Opting for excess
neurons can be preferable over creating new output neurons since neurogenesis markedly declines
in human adults [Sorrells et al., 2018] whereas new synaptic contacts are known to occur routinely
during learning between already existing neurons [Caroni et al., 2012]. In Figure 2, our method,
GAN + memory, avoids catastrophic forgetting even with very small buffer sizes: 0.09% (50 im-
ages) and 0.17% (100 images) of the entire datasets. In comparison, when no memory or GAN
sampling is performed, the "no replay" condition, catastrophic forgetting occurs. Additionally, we
report results for EWC regularization applied on a classifier with same architecture as the embedded
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Figure 2: Continual learning average accuracies for disjoint MNIST (A) and FASHION (B).
The dashed lines indicate the start of a new task represented by a disjoint subset of classes. GAN +
memory corresponds to the GAN sampling experiment with varying buffer sizes. We also show the
performance with elastic weight consolidation, EWC. The results were compared to the scenario in
which only the current data is available and no buffer or GAN sampling is used, no Replay.

discriminator-classifier of the AC-GAN. We show that EWC rapidly declines akin to what was
described by Kemker and Kanan [2018] and Parisi et al. [2017]. See suplementary materials for
additional discussion of EWC. Stochastic generation provides an upsampling of the buffer size and
achieves better performance than a frozen subset or multi-task, as illustrated by Figure 3. For MNIST,
observable improvement only occurs for smaller buffer sizes. We conjecture that this may be due to
relatively low intra-class variability in MNIST such that a small buffer already samples each class
quite well, see section 3.1. Additionally, the positive gap between our method and the two baselines
increases as more tasks are added. For FASHION, a markedly harder dataset, this trend does not
appear until later, as can be verified by the graphs of odd-numbered tasks. In the last task, GAN
sampling is superior to frozen buffers of all sizes and wins from multi-task for smaller subset sizes,
akin to MNIST. Results for per task accuracies are in the supplementary section 5.1.

Figure 3: Maximum Accuracy as a function of buffer size for MNIST (A) and FASHION (B)
GAN sampling refers to our method, Frozen Buffer corresponds to training the AC-GAN continuously
with a memory but with no stochastic generation. Finally, Multi-Task is obtained by training from
scratch until convergence using only the predetermined buffer, akin to section 3.1. Stochastic sampling
provides an advantage over a frozen buffer or multi-task training. This becomes evident as the number
of tasks in succession increases and as buffer size decreases.

In conclusion, we have shown how using very small buffers in conjunction with GANs can give
rise to superior performance compared to simple gradient descent, using a fixed buffer (in both the
continual and multi-task settings), or using EWC. Our approach is relatively easy to implement and
necessitates only low computation (no full retraining) and memory (small buffer), making it ideal to
enable life-long learning on resource-constrained mobile (at the edge) devices.
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5 Supplementary Materials

5.1. Per task accuracies: Figure 2 displayed average performance across tasks. Alternatively, in
figure 4, we exhibit per task accuracies along time, starting from the moment when they are first
learned. Here, GAN sampling is shown to produce stable performance throughout consecutive tasks.
For instance, in MNIST, all past tasks maintain high acuracies consistently throughout learning of
new classes. In FASHION, which is a notably harder dataset, not all tasks behave equally well,
nevertheless, the results are significantly improved when compared to the baseline of catastrophic
forgetting and even EWC. For example, task 1 preserves its accuracy remarkably well despite the
learning of 4 other tasks in succession and the use of a very small buffer (50 images).

Figure 4: Accuracies per task for MNIST (A) and FASHION (B). Our method, GAN + memory
is shown using a memory of size of 0.17% (100 images) for MNIST and 0.09% (50 images) for
FASHION. We compare to the performance of no replay and EWC.

Figure 5: Images generated from AC-GAN during training using stochastic sampling.
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5.2. AC-GAN generated images: Figure 5 exemplifies AC-GAN generated images. Results
correspond to training with buffer size of 0.17% (100 images) for both MNIST and FASHION.
Upsampling is possible in our method because the images generated preserve a baseline quality
throughout training and across multiple tasks in succession.

5.3. Buffer selection method: Several buffer selection strategies were initially experimented. At
each new task, a selection method is employed to choose the samples from the new task which will go
into the buffer. Also, since a buffer has fixed size, the selection method is further used to determine
which of the old task samples will be removed to make room for the new in the continual learning
setting. The best selection scheme obtained was K-centers using K=10, an entirely unsupervised
algorithm. We also tested some supervised variants using the output softmax layer of the embedded
AC-GAN classifier, computed for each image. In one setting, we ranked the images according to
the Kurtosis of the softmax. In another, we ranked them following the difference between the most
probable and the second most probable class (Peak Difference). For both these cases, the images
were then sampled with a probability proportional to their rank using a roulette weighting inspired
from genetic selection. Yet, as can be seen in table 2, none of the supervised approaches yielded
satisfactory results. We also attempted measuring entropy and variance of the softmax but did not list
them here.

GAN Sampling (memory 100)

Method Accuracy

K-centers, K=5 0.743
K-centers, K=10 0.778
K-centers, K=15 0.701
Kurtosis 0.645
Peak Difference 0.577
None 0.738

Table 2: Buffer selection strategies shown for FASHION

5.4. EWC training and complementary results: Table 3 displays training parameters used in EWC.
The results shown correspond to training in a convolutional neural network classifier with identical
architecture as the combined Discriminator-Classifier in AC-GAN but with one output node less,
since a pure classifier does not evaluate Real/Fakse attribution. To compute the Fisher Matrix we
allow for a sample size of 1000 images to be saved, but we also tested with values ranging from 200
to 1000 obtaining equivalent results. We also tested EWC using a simple multi-layer perceptron and
obtained similar values.

Convolutional Network Multi-Layer Perceptron

Hyperparameters Values

Hidden layers (Classifer) 5 Convolutional layers 2 Linear
Hidden Layer Activation Leaky ReLu ReLu
Dropout 0.5 0.2-0.5
Optimizer Adam lr: 0.0002, betas=(0.5, 0.999) SGD lr 0.001
Mini-Batch Size 50 50
Fisher Matrix Sample Size 200-1000 200-1000

Table 3: EWC training parameters

In order to compare incremental learning of disjoint MNIST we replicated the Permuted MNIST
results of the authors of EWC. In figures 2 and 4 we showed how EWC quickly derails for incremental
class learning. However, for permuted MNIST, we obtain similar results as those stated in the original
paper in which catastrophic forgetting does not occur, see figure 6. This discrepancy between the
experiments is likely due to the difference in output mapping. Permuted MNIST has a fixed output
mapping: for all tasks there are exactly K nodes corresponding to the K classes. On the other hand,
in our scenario of incremental class learning, outputs of Softmax are always null for unseen tasks
making the mapping increase as tasks accumulate. This can result in an acute weight rearrangement
which may be more difficult to regularize.

7



Figure 6: Per class accuracies with permuted MNIST. We reproduce the qualitative results of the
original paper [Kirkpatrick et al., 2017].

5.5. Network and data parameters: The detailed architecture of the AC-GAN used can be read in
table 4. We experimented with various batchsizes and learning rates. Additionally, we list the details
of both FASHION and MNIST datasets in table 5.

Hyperparameters Values

Hidden Layers (Generator) 4 Convolutional layers
Hidden layers (Discriminator) 5 Convolutional layers
Hidden Layer Activation Leaky ReLu
Dropout p=0.5 (Discriminator)
Optimizer Adam lr: 0.001 - 0.0002, betas=(0.5, 0.999)
Mini-Batch Size 10-50

Table 4: AC-GAN architecture

Parameters MNIST FASHION

Classes 10 10
Objects Digits Clothes
Training Data 60.000 60.000
Test Data 10.000 10.000
Balanced Yes Yes

Table 5: Datasets
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