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Abstract—We present a robot localization system using simultaneous localization and mapping (SLAM) [12], [13],
biologically-inspired vision. Our system models two extesively  [14] is an active branch of robotics research.
studied human visual capabilities: (1) extracting the “gis” of One additional categorization to consider here comes from

a scene to produce a coarse localization hypothesis, and (2) the visi ti hich classifi ¢ i
refining it by locating salient landmark regions in the scene € vision perspeclive, which classilies systems accorang

Gist is computed here as a holistic statistical signature ofhe  the type of visual features used: local features and global
image, yielding abstract scene classification and layoutafiency ~ features. Local features are computed over a limited area of

is computed as a measure of interest at every image location, the image, as opposed to global features which may pool
efficiently directing the time-consuming landmark identification information over the entire image into, e.g., histograme-: B

process towards the most likely candidate locations in the f lvzina th ety of h hich b
image. The gist and salient landmark features are then furtler ore analyzing the variely or approaches, which by no means

processed using a Monte-Carlo localization algorithm to dbw IS €xhaustive, it should be pointed out that, like otherorisi
the robot to generate its position. We test the system in thee problems, any localization and landmark recognition syste

different outdoor environments - building complex (126x18ft.  faces the general issues of occlusion, dynamic background,
area, 3794 testing images), vegetation-filled park (270xG8. lighting, and viewpoint changes.

area, 7196 testing images), and open-field park (450x585#rea, A | tarti int for | | feat SIET
8287 testing images) - each with its own challenges. The syst popu ar starting point for local teatures are
is able to localize, on average, within 6.0, 10.73, and 32.24, keypoints [15]. There has been a number of systems that

respectively, even with multiple kidnapped-robot instanes. utilize SIFT features [6], [16], [17] in recent years for
object recognition because they can work in the presence
. INTRODUCTION of occlusion and some viewpoint changes. Other examples

of local features are Kernel PCA features [18] and Harris

Thg problgm.of Iopalization is central to endowing mobilesgrners [19]. Some systems [20], [21] extend their scope of

machines with intelligence. Range sensor such as sonar a]B@aIity by matching image regions to recognize a location.
ladar [1], [2], [3] are particularly effective indoors due t At this level of representation, the major hurdle lies in

many structural regularities such as flat walls and narroychjeving reliable segmentation and in robustly character
corridors. In the outdoors, however, these sensors beco%g individual regions. This is especially difficult with

less robust given all the protrusions and surface irregi€ar nconstrained environments such as a park where vegetation
[4]. For example, a slight change in pose can result igominates (figure 4).

large jumps in range reading because of tree trunks, movingg|gpal feature methods usually utilize color [8], [9],
branches, and leaves. GPS, coupled with other sensors or{yires [7], or a combination of both [22], [23]. Holistic
itself [5], ha_s also been e_xtensively used. Howeyer, GPS M@Yproaches, which do not have a segmentation stage, may
not be applicable in environments where there is no sa&ellisacrifice spatial information (the location of the featjres
visibility, such as underwater, in caves, indoors, or on $4ar Yet, some systems [7], [22] try to recover crude spatial
In those places vision, human’s main perceptual system fg{formation by using a predefined grid and computing global
localization, should be a viable alernative. statistics within each grid tile. These methods are limited

EXiSting vision-based localization systems can be Categfbr the most part’ to recognizing p|aces (as Opposed to exact
rized based on several groupings. The first one is aCCOfdi@@ographical locations) because with global featuress it i
to image-view types, where some systems use ground-vigy¥rder to deduce a change in position even when the robot
images [6], [7] and others use omni-directional images [8moves considerably.
[9], [10]. Another categorization is according to locatip Today, with many available studies in human vision,
goal, such as actual metric location [11] or a coarser plagfiere is a unique opportunity to develop systems that take
or room number [8]. Yet another grouping is according tQnspiration from neuroscience and bring a new perspective
whether or not the system is provided with a map. Presently, solving vision-based robot localization. For exampiere

in the initial viewing of a scene, the human visual procegsin

Ehiss‘i’;ogznw?ss i&f{?ﬁ?ﬁdaﬁ‘r’ngn'fﬁf'“ég;n'\'ﬁé; %/?:Feﬁﬁeangnl?v;z?f. system already guides its attention to visually interestin
SouiherngCaIifornia, Hedcg Neuroscience BBiIding - Roor[; 31 Watt regions within the field of view. This extensively studied
Way, Los Angeles, California, 90089-2520, US#i. agi an@isc. edu  early course of analysis [24], [25], [26], [27] is commonly
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which would be useful [28] in selecting landmarks that ar¢ % . \
the most reliable in a particular environment (a challeggin 4 7 P NV Dorsal Pathway
problem in itself). Moreover, by focusing on specific sub: P JMotor ¥l Low Level [

, Control| , Navigation

regions and not the whole image, the matching proces: 2 ¢ |
becomes more flexible and less computationally expensive. 7
Recent discoveries in human vision show that humans are & %

able to recognize scenes at multiple levels. Concurrerit wit PrefrontaliCortex . {1 : ' Visual
Localization | _ - Coftex

the mechanisms of saliency, humans also exhibit the abality q
rapidly summarize the “gist” of a scene [29], [30], [31], |32 Nav?gation Ei?::crﬁon

in less than 100ms. Human subjects are able to consistentl
answer detailed inquiries such as the presence of an ammali
a scene [33], [34], general semantic classification (indwer
outdoors, room types: kitchen, office, etc.) and rough \isua
feature distributions such as colorful vs. grayscale insage
or several large masses vs. many small objects in a scen
[35], [36] It is reported that gist computations may occu
in brain regions which also respond to “places”, that is, i
prefers scenes that are notable by their spatial layout [37]  Fig- 1. Model of Human Vision with Gist and Saliency.
as opposed to objects or faces. In addition, gist perception

is affected by spectral contents and color diagnostici],[3

[38], which leads to the implementation of models such aSYNOPsis of the scene as a whole. Both pathways end up at
[39], [40]. the pre-frontal cortex where concious decisions and motor

In spite of how contrasting saliency and gist are, both gf°mmands are formed.

these modules rely upon raw features that come from the There is an additional consequence of the Dorsal and
same area, the early visual cortex. Furthermore, the id&a thventral pathway division t_hat is applicable in vision roiost _
gist and saliency are computed in parallel is demonstrated 1 '€ Ventral pathway, which includes areas such as the hip-
a study in which human subjects are able to simultaneoushPc@MPpus and para-hippocampus (known to be involved in
discriminate rapidly presented natural scenes in the perip'ecognition and spatial memory recollection [43]), penfsr
eral view while being involved in a visual discriminatiorska. &t @ slower speed than the Dorsal pathway, which is real
in the foveal view [41]. From an engineering perspective it i ime: The dorsal pathway module performs navigationalsask
an effective strategy to analyze a scene from oppositeuesoﬁ”Ch as ops_tacle avoidance, which require fast reactlon_ but
tion levels, a high-level, image-global layout (correspiog not recognition. The do_rsal modgle makes use of the sa_lllent
to gist) and detailed pixel-wise analysis (saliency). laiso features for tracking objegt_s, motion cues for lane foliqgvl
important to note that while saliency models primarily il It may also need stereo vision to perform obstacle avoidance

local features [27], gist features are almost exclusivéspgl " effect, the brain can be viewed as a behavior-based
or holistic [38], [7], [22]. Our model presented below seekgrchitecture [44]. In this paper, we concentrate mostly on
to employ these two complementary concepts of biologicéhe ventral pathway, which is responsible for localization
vision, |mplem§nted faithfully ar!d e.ff|C|enchy, to produee Il DESIGN AND IMPLEMENTATION
critical capability such as localization. Figure 1 shows a
diagram of the full system with each sub-system projected Figure 2 displays the overall flow of the localization sys-
onto its respective anatomical location. tem which can be divided to three stages: feature extraction
After early preprocessing that takes place at both theaetirobject and place recognition, and localization. The fesatur
and LGN (following figure 1), the visual stimuli arrive at extraction stage takes an image from a camera (or retina
Visual Cortex (cortical visual areas V1, V2, V4, and MT)in figure 1) and outputs the gist [22] and salient feature
for low-level feature extractions which are then channeledomputations [26], [45], which are already implemented
to the saliency and gist module. Along the Dorsal Pathwagreviously. Our main contribution is utilizing both of the
or “where” visual processing stream [42] (posterior paiet sub-systems concurrently in the two subsequent stages. The
cortex), the saliency module builds a saliency map througblace and object recognition stage then tries to match these
the use of spatial competition of low-level feature resgens features with memorized information about the environment
throughout the visual field. This competition silences loThese matches are then used as an input to the localization
cations which, at first, may produce strong local featurstage to make a decision of where the robot might be.
responses but resemble their neighboring locations. Con-As part of the object and place recognition stage, a map
versely, the competition strengthens points which arendist of the environment is associated with the visual informatio
from their surroundings. On the contrary, in the VentralThe map, which is currently provided to the system, is
Pathway or the “what” visual processing stream (inferioan augmented-topological map. It is a graph-based map
temporal cortex), the low-level feature-detector resgsns with each node having a cartesian coordinate and each
are combined to yield a gist vector as a concise globa&dge having its cost set to the distance between the edge’s
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Fig. 2. Diagram for the Vision Localization System

corresponding end-nodes. This way the system benefits frdior each point. We put a limit in the number of salient regions
the compact representation of a graph while preserving thger frame because, from experiments, the subsequent segion
important metric information of the environment. In the maphave a much lower likelihood of being repeatable in other
a robot state (position and viewing direction) is represdnt training or testing runs.
by a point which can lie on a node or an edge. . . . .
For further analysis, we introduce the concept of a sed?—" Salient Region/Object and Segment/Place Recognition
ment. A segment is an ordered list of edges with each edgeThere are two separate training steps for the system. The
connected to the next one in the list to form a continuoufirst one is to build a visual landmark database, the second
path. This grouping is motivated by the fact that views/latyo is to train a segment classifier using gist. These two sets of
in one path-segment are coarsely similar. The selected-thrénformation are then connected through the environment map
edge segment (highlighted in green) in the map of figureith the landmarks compartmentalized by their respective
2 is an example. From this point forward, “place” (as insegment of origin. Later on, this will enable the system to
figure 1) and “segment” will be used interchangably to refeprioritize the on-line landmark search process using dise
to the same notion of a region in a map. Because the mé&jgining procedure involves a guided traversal of the robot
includes a rectangular boundary and an origin, a locatiofirough all the paths in the map. This should be performed
can be noted as both cartesian coordinéieg) or a pair of several times to have ample lighting coverage as well as
segment number and a fraction of length traveled (betwed@ allow identification of landmarks that are consistentrove

0.0 to 1.0) along the segme@num, ltrav). a number of runs. In what follows, the term landmark
) _ ) refers to an actual point of interest in the environment, not
A. Feature extraction, Saliency, and Gist image of an object. An image is an evidence of a landmark

As mentioned above, the low-level visual-feature extracand a landmark is memorized as a set of images which
tion [26], [45], the saliency computation stage, [26], [45]provide different views as the robot passes through it in the
and the gist model [22] have previously been reported. lanvironment. And thus, the phrase “matching a salient regio
summary, the low-level features consist of center-surdourto a landmark” means to match a region image with one of
color, intensity, and orientation that are computed in ssjga the memorized images on the list of a landmark.
channels. Each of these channels are run in parallel, whichl) Segment/Place Recognitiomhe segment estimator is
in our robot (including the gist and saliency extractiomisu implemented using a neural network classifier, trained on
at 80ms/frame (12.5 fps). At this point the gist features argist features using the back-propagation algorithm. One of
ready to use for recognition while we need to further procegbe main reasons why the classifier succeeds is because we
the output of the saliency model. We select up to five oflecided to group edges to segments as it would have been
the most salient points per frame and use a shape estimatiifficult to train an edge-classifier using coarse featuiles |
algorithm [46] to segment out the respective salient regiorgist. Each segment in the environment has an associated



output node and the output potential is the likelihood thagxperiments/N = 100 seemed to suffice for the simplified
the scene belongs to that segment, stored in a veétw localization domain where a hallway is represented by an
be used by the localization algorithm as an observation@heedge and not a two dimensional space. However, it should
/ . be pointed out that in this system, the dorsal pathway will
z={sval; }, j=1 .. Necgment @ be the one responsible to keep the robot in the middle of the
with sval; ; being the segment likelihood for time and path, avoiding a need to localize laterally.
segment;j which is one of theNgegmen: SEgMeENts in the We estimate the location belieBel(S;) by evolving
environment. posterior p(Sy|zt,ut) - 2; being an evidence and; the
2) Salient Region/Object Recognitioithe object recog- motion measurement - by recursively updatiigl (S;) [47]:
nition module generates SIFT features [15] for each salient

region and uses them along with their corresponding saliegg,el(s ) = p(Se|2t,ut) 3)

feature vectors for all matching processes (training an ¢ He

testing). Salient feature vectors are sets of feature-rahpes = ap(z¢]St) / p(Se|St—1,us)Bel(Si—1) dSi—1
St—1

(from each low-level channel) taken at the salient points.
In the landmark database building phase, the first incoming We first compute p(Si|Si_1,u;) (called the predic-

salient regions are used to create initial landmarks'Whenttion/proposal phase) to take motion into consideration by

next video frame arrives, the system tries to match the new ™. . .
Y applying the motion model to the particles. Afterwards,

salient regions to the existing landmarks. The ones that af . . X
) zt|S:) is computed in the update phase to incorporate the
matched can then be added to the corresponding landma ; . . :
. I ) . viSual information by applying the observation model to the
while the remaining salient regions are used to create new . ’ . .
eight of each particle for a weighted resampling step.
landmarks. Once all the frames are processed, the landmar . .
s explained above (sections II-B.1 and II-B.2), the

are pruned by setting minimum thresholds such as number

. ) . Fystem observes two types of evideneg:and z, which
of images and range of video frame numbers, both of WhICare segment estimation and object recognition, respégtive
indicate how persistent the landmark is in the environmient. 9 ) 9  fesp

addition, the landmarks can also be pruned across trasersglegment estimation is available at each time step whilecobje

by only considering the ones that occur in more than cmreecognltlon is not always available as it might not be ready

uns or returns no match. In the procedure below, the object
As alluded before, the landmarks are arranged by thréecogmtmn _obsgrvauon Is treated as ev!dence that arrive
. . - at the following time step after a zero motion. Consequently

segments of origin which are used to prioritize search ord

: ; . ; %his condenses the procedure to having compound observa-
(in test runs) using gist. The salient feature vector canbés . - ) i :
tl?ns because the prediction phase is effectively nontexis

used to prime the order based on Euclidian distance. In re ) )
time systems such as robots, it is a given that the databa’g‘lsnOI thus, at each time stepthe system computes belief

search ends after the first object found, as the system doeéhmatman(%) in the following order: ,
not require the best match. So, it is desirable to have a 1) apply motion model tcst?l to creatht 9
high matching threshold, one that tend to give some false 2) 2PPly segment observation modeldp to creates,
negatives but almost no false positives. 3) if (M; > 0) ,

Once the incoming salient regions are compared with a) apply object observation model £ to yield 5
the landmark database, we obtain a number of successful b) elseS; =5, / ,
matches which are denoted for observation:aswhere We specify two intermediate staté$ and S, , the former
y being the belief after the motion model is applied to the

z = { omatchyy, }, k=1... M, @) particles, moving it by the measured movement, while the

with omatch, ;, being the found object/salient region matchatter is the state after the segment observation is then
k (one of M, matches) at timet. Note that the object Subsequently applied. Lastly the object observation model
recognition module may not produce an observation for evefyf there are found objects at timg is applied toS, to
time ¢ (M, = 0) as it may either find no matches or still beProduces;.

currently processing. 1) Motion Model: The system employs a straightforward
o motion model for an odometry reading,. We apply the
C. Monte-Carlo Localization motion to each particle from the sef; ; by sampling

We estimate the robot’s position by implementing Montea random particler;,i from the densityp(a:;,i|ut,xt,l_,i).
Carlo Localization (MCL) [1], [11], [13]. It formulates Included in the probability density is noise drawn from a
the location belief as a set of weighted particlés: = gaussian distribution to account for wheel slippage with a
{2, w;}i=1..N attimet. Each particler, ; is com- standard deviation of .1ft which is proportional to 1/6th of
posed of a segment number and percentage of length travekedypical single step. The standard deviation controls the
along the segment edges; = {snum.;, ltrav,;} and has level of uncertainty in the robot movement measurement,
a weight ofw; ; which is proportional to the likelihood of the bigger the number, the greater the level of noise added.
observing incoming data modeled by the segment and salidftom our experiment, we find that this number does not

region observation model (sections II-C.2 and II-C.3).rRro affect the end result as much because the number of particles



around the vicinity of a converged location is large enoug 1'5» :
that motion error in any direction is well covered by the A= |
neighborhood of particles.

2) Segment-Estimation Observation Modale weigh
each particler, ; with w,; = p(z|z;,;) for resampling
(with added 10 percent random particles to avoid the welis
known population degeneration problem in Monte Carlg
methods) to create belie§;, by taking into account the
segment-estimation vect(:,vl;r (equation 1).

Svalt,snumi B

* sval

’
Nsegment t,snumt i
>i=1 svaly,j

P(2t|$t,z‘) =

Here, the likelihood that a particte, ; observes;, is pro-
portional to the percentage of its segment value, ..., [
.(measures its dominance with respeCt to. othgr entries)StimEig. 3. Examples of images in each of the nine segments (vdtrec
its absolute value (to preserve its ratio with respect tQuonding label) of ACB.
maximum possible value of 1.0). In the implementation, the
denominator is taken out because it is equal for all pagicle

3) Salient-Region-Recognition Observation Modé&\e
weigh each particler, ; with w, ; = p(z, |z ;) for resam-
pling (with added 20 percent random noise, also to combg
the population degeneracy problem in Monte Carlo methods
to create beliefS.; by taking into account the object
matchesz, (equation 2).

M
"

plzt o) = [] plomatehy il ;) (5)
k=1

Here, each object-match observation is independely '
and thus is processed individually. The probability?
p(omatchy |z ;) is modeled by a gaussian with set to
5% of the environment map diagonal. The likelihood valug
is the probability of drawing a length longer than the dis&an
between the particle and the location where the databasg , Examples of images in each of the nine segments (vitrec
object matched is acquired: is set proportional to the sponding label) of AnF.
map diagonal to reflect how the larger the environment _

object observation probability density is much narrowenth
the previous one and we find that 20% keeps the partic
population diverse enough so that in a kidnapped robg g
event, the particles are able to disperse and reconverge o

the new location. Also, although the SIFT matching scorei@
are available for weights, we decided to assume all obje@
match accuracies are equal.

I1l. TESTINGS AND RESULTS

The localization system is tested at three outdoor sitegy
ACB, AnF, and FDF, each composed of 9 segments (labeleiili:
in figure 3, 4, and 5, respectively), using videos providec
by [48] with the maps illustrated in [22]. The ACB scenes!
are filmed throughout the narrow corridors of a 126x180ft g
building complex. Most of the surroundings are flat walls®e: :
with little texture and solid lines that delineate the waltsd  Fig. 5. Examples of images in each of the nine segments (vatrec
different parts of the buildings. The scenes of the 270xB60fsponding label) of FDF.




Fig. 6. A snapshot of the system test-run. Top-left (mainage contains the salient region windows. Green window maeatfetabase match, while red
is not found. An object match is displayed next to the maingemaBelow the main image is the segment estimation vectavedefrom gist (there are
9 possible segments in the environment). The middle imaggegs the robot state onto the map: cyan disks are the leattithe yellow disks are the
location of the matched database objects, the blue diskcgheer of the blue circle, here partially covered by a yelldisk) is the most likely location.
The radius of the blue circle is equivalent to five feet. Thghtimost histogram is the number of particles at each of tpessible segments. The robot
believes that it is towards the end of the first segment, whictorrect within a few feet.

AnF site are dominated by vegetation. The length of the segre have matches with the side of a building that looks almost
ments at this site are about twice the length of the segmentientical for a long stretch of the path leading to it. A bette
in ACB. A large portion of the scenes of the 450x585ft. FDRway to solve this problem would be to track the landmark and
site is sky, which is mostly textureless space with scatteraise the change in scale from a measured movement of the
light clouds. The lengths of the FDF segments are abowubbot to obtain the landmark size. Currently the localizati
50% longer than the ones in AnF and three times that a&ystem has not yet incorporated the dorsal tracking module t
ACB. Because the data is taken by a person carrying a hangkrform this method. Instead, the system limits the matghin
held camera walking at approximately constant speed, veeale threshold to between 2/3 and 3/2. This is not entirely
use interpolation to come up with the ground-truth locatiomffective, however, as a scale ratio of 0.8 (the object found
of the person for both training and testing data. is smaller than the matched database object) can translate t
The data for each site consists of 12 to 15 runs, spannirgggeographical difference of 15 feet.
various lighting conditions. The gist model has been shown
to work in these lighting conditions [22]. However, in the
current testing setup, we will take two runs for each site tha
are of comparable lighting conditions, training the systam  The results for the FDF site, however, are not quite as
the first one, and testing it on the second one. good. There are two reasons for this: scale (as with the
Figure 6 displays results at one time step. other sites) and object recognition failure because ofilngh
Table | reports the results for the three different enviconditions. Segment 6 severely exhibits this problem bseau
ronments. For ACB and AnF, the error is quite uniformits path is straight, leading to a large building (figure SheT
throughout the segments except for two spikes in segmelarge error in segment 7, on the other hand, is caused by
8 for both sites (11.22 and 22.99ft, respectively). The maithe inability of the SIFT module to recognize any object
problem encountered here, as well as everywhere else tdrasight for long stretches of time. We mentioned earlier
certain degree, is that of scale. The SIFT object recognitiahat the training and testing pairs are selected for lightin
module is able to perform scale-invariant matching (witteeems to be the case that, for this segment, lighting was
the scale ratio included as part of the result). Howeves thiguite different between the two instances as the training
presents a problem as there is not enough information ttata is much brighter than the testing data. It should be
deduce a location where the matching would be close twted, however, that in other sites, the object recognition
1-to-1. Because of the nature of the localization problemmodule performed well in the presence of occlusion, view-
where landmarks in the outdoor environment are not easilyoint changes, and some lighting changes. The authors would
measured, systems usually are not able to obtain actual sizeiggest that a way to alleviate this problem is to simplyntrai
of objects unless they are pre-specified. In segment 8 of Anthe system with more samples from other lighting conditions



TABLE |
EXPERIMENTAL RESULTS

Segment ACB AnF FDF

frame num.| error (ft) || frame num.]| error (ft) || frame num.] error (ft)

1 377 6.77 866 7.34 782 12.38

2 496 7.65 569 4.87 813 12.97

3 541 5.24 896 8.31 869 9.37

4 401 4.92 496 7.66 795 30.36

5 304 7.21 769 8.87 857 18.24

6 555 4,94 1250 13.51 1434 45.20

7 486 2.70 588 5.84 839 101.62

8 327 11.22 844 22.99 1149 27.00

9 307 5.50 918 11.22 749 23.97
| Total || 3794 | 6.00 || 7196 | 10.73 || 8287 | 32.24 |

IV. DISCUSSION AND CONCLUSIONS 126x180ft. building complex, although our system can store

as many pictures as it wants. Most other purely vision-based
We introduced several new ideas in robotics vision losystems are tested indoors and a majority of them repotts jus
calization which have been proven in our testing to be quitghe recognition rate, that is, if the current view is corhgct
beneficial. The first one is the use of complementary featur@satched with stored images, not the location. However, if we
(gist and saliency) and how they could possibly interactompare just the system segment prediction with other scene
The vision model implements both in parallel, especiallpased methods (which are place recognizers and usually
in the computation-heavy feature extraction phase, as thgport results in the mid to upper ninetieth percentilefaiies
study of the human visual cortex would suggest. Throughuite well. The times where our system is lost are when the
the saliency model, the system automatically selectsrdaliessegment and salient region modules are both confused, which
objects so that it does not have to perform whole-scene viewsually occurs in extremely different lighting conditiciman
matching. In addition, the gist features which approximatéhe one used in training.
layout come with saliency at almost no computation time. The system now needs to resolve the issue of integrating
In essence what we have is the use of multiple expertghe localization module (in the ventral pathway, figure 1)
implemented in an efficient manner through sharing of somgith the rest of the architecture, namely the autonomous
of the computations. navigation or dorsal tracking module. The cooperation of
The system also performs both hierarchical recognitioboth pathways occurs in the recognition process, where the
and multi-level localization. Hierachical recognitionhigh  ventral module relies on the dorsal module to track a salient
has been shown [49], [50] to speed up the process, is donegygion as it is being matched to the landmark database.
prioritizing the landmark database search through segmentA problem related to localization is the goal-seeking task.
estimation, salient feature matching, and the currenestaHere the robot also needs to follow a path to the goal
(e.g. matching landmarks that are in the vicinity of the modbcation. One way to do this is through landmark hopping.
belief location) before performing object recognition. Ku  After the robot is able to localize, it sets the path to the
level localization, on the other hand, is done by using bothoal and creates the corresponding list of landmarks to
segment estimation and object recognition as observatiolok for. It would then go to the first landmark in the
in the Monte-Carlo localization. Many scene-based methogmth and, while going to that direction, the system tries to
[81, [9], [7], [22], [23] that are limited to recognizing pt&s attend and recognize the subsequent landmarks. When the
(as opposed to geographical points) indicate that theidt®s next landmark that will advance the robot’s even further is
can be used as a filter for a more accurate attempt mfcognized, it switches to that one. This is done until the
localization with the use of finer yet more volatile localgoal location is found. Biasing the saliency module to look
features. Our system is the implementation of such extansiospecifically into the vicinity of the next object in the path
As for performance benchmark, to the best of our knowlis possible because the database stores all object image-
edge, we have not seen other systems that are testedcoprdinate locations from the training process.
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