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Abstract— We describe and validate a simple context-
based scene recognition algorithm for mobile robotics
applications. The system can differentiate outdoor scenes
from various sites on a college campus using a multiscale
set of early-visual features, which capture the “gist” of
the scene into a low-dimensional signature vector. Distinct
from previous approaches, the algorithm presents the
advantage of being biologically plausible and of having low
computational complexity, sharing its low-level features
with a model for visual attention that may operate con-
currently on a robot. We compare classification accuracy
using scenes filmed at three outdoor sites on campus
(13,965 to 34,711 frames per site). Dividing each site
into nine segments, we obtain segment classification rates
between 84.21% and 88.62%. Combining scenes from
all sites (75,073 frames in total) yields 86.45% correct
classification, demonstrating generalization and scalability
of the approach.

Index Terms— Gist of a scene, saliency, scene recog-
nition, computational neuroscience, image classification,
image statistics, robot vision, robot localization.

I. INTRODUCTION

BUILDING the next generation of mobile robots
hinges on solving tasks such as localization,

mapping, and navigation. These tasks critically de-
pend on developing capabilities to robustly answer
the central question: Where are we? A significant
number of mobile robotics approaches address this
fundamental problem by utilizing sonar, laser, or
other range sensors [1]–[3]. They are particularly
effective indoors due to many spatial and struc-
tural regularities, including flat walls and narrow
corridors. In the outdoors, however, these sensors
become less robust because the structure of the envi-
roment can vary tremendously. It then becomes hard
to predict the sensor input given all the protrusions
and surface irregularities [4]. For example, a slight
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change in pose can result in large jumps in range
reading because of tree trunks, moving branches,
and leaves.

These difficulties with traditional robot sensors
have prompted research towards other ways to
obtain navigational input, especially by using the
primary sensory modality of humans: vision. Within
Computer Vision (there are several different ap-
proaches, listed below), lighting (especially in the
outdoors), dynamic backgrounds, and view-invariant
matching become major hurdles to overcome.

A. Object-Based Scene Recognition

A large portion of the vision-based approach
towards scene recognition is object-based [5]–[7].
That is, a physical location is recognized by iden-
tifying a set of landmark objects (and possibly
their configuration) known to be present at that
location. This typically involves intermediate steps
such as segmentation, feature grouping, and object
recognition. Such layered approach is prone to car-
rying over and amplifying low-level errors along
the stream of processing. For example, upstream
identification of very small objects (pixel-wise) is
hindered by downstream noise inherent to camera
sensors, and by variable lighting conditions. This
is particularly problematic in spacious environments
like the open outdoors, where the landmarks tend to
be more spread out and possibly at farther distances
from the agent. It should also be pointed out that
this approach needs to be environment-specific for
the simplicity of selecting a small set of anchor
objects, and that deciding on reliable and persistent
candidate objects as landmarks is an open problem.

In recent years Scale Invariant Feature Transform
(SIFT) [8] has been used in robotics quite exten-
sively. We put SIFT in the object-based category
because it is still a local feature and its usage are tied
to the existance of reliable distinctive sub-structures,
an object. This is especially true if the background
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is close to textureless (wide open spaces, the sky).
On the other extreme, distracting background with
too much texture that are mostly ephemeral (moving
vegitation inside a forest) may also be too much
to deal with, increasing the number of keypoints.
On visually distinctive backgrounds, however, this
method can be much more powerful than strictly
object-based. Some systems [9], [10] bypass the
segmentation stage and use the whole scene is one
landmark. Because SIFT also allows for partial
recognition, foreground objects, which tend to be
less reliable (people walking, etc.), can be treated as
distractions and the background become the prevail-
ing strength (so long as the foreground object does
not dominate the scene). And because SIFT’s ability
to absorb variability from out-of-plane rotation can
only go so far, systems are also burdened with the
need to store a large number of key-points from
multiple views, which do not scale well.

B. Region-Based Scene Recognition

A different set of approaches [11]–[13] eliminates
landmark objects, instead using segmented image
regions and their configurational relationships to
form a signature of a location. At this level of repre-
sentation, the major problem is reliable region-based
segmentation in which individual regions have to
be robustly characterized and associated. Naı̈ve
template matching involving rigid relationships is
often not flexible enough in the face of over/under-
segmentation. This is especially true with uncon-
strained environments such as a park where vegeta-
tion dominates (refer to Experiment 2 in the present
study). As a remedy, one can combine object-based
and region-based approaches [13] by using regions
as an intermediate step to locate landmark objects.
Nevertheless, such technique is still prone to the
same caveats as the object-based approach.

C. Context-Based Scene Recognition

The last set of approaches, which is context-
based, bypasses the above traditional processing
steps. Context-based approaches consider the input
image as a whole and extract a low-dimensional
signature that compactly summarizes the image’s
statistics and/or semantics. One motivation for such
approach is that it should produce more robust solu-
tions because random noise, which may catastrophi-
cally influence local processing, tends to average out

globally. By identifying whole scenes, and not small
sets of objects or precise region boundaries within
the scenes, context-based approaches do not have
to deal with noise and low-level image variations
in small isolated regions, which plague both region
segmentation and landmark recognition. The chal-
lenge to discover a compact and holistic representa-
tion for unconstrained images has hence prompted
significant recent research. For example, Renniger
and Malik [14] use a set of texture descriptors, and
histogram to create an overall profile of an image.
Ulrich and Nourbakhsh [15] build color histograms
and perform matching using a voting procedure.
In contrast, Oliva and Torralba [16] also encode
some spatial information by performing 2D Fourier
Transform analyses in individual image sub-regions
on a regularly-spaced grid. The resulting spatially-
arranged set of signatures, one per grid region,
is then further reduced using principal component
analysis (PCA) to yield a unique low-dimensional
image classification key. Interestingly, Torralba re-
ports that the entries in the key vector sometimes
tend to correlate with semantically-relevant dimen-
sions, such as city vs. nature, or beach vs. for-
est. In more recent implementations, Torralba [17]
also used steerable wavelet pyramids instead of the
Fourier transform.

D. Biologically-Plausible Scene Recognition

Despite all the recent advances in computer vision
and robotics, humans still perform orders of magni-
tude better than the best available vision systems in
outdoors localization and navigation. As such, it is
inspiring to examine the low-level mechanisms as
well as the system-level computational architecture
according to which human vision is organized. Early
on, the human visual processing system already
makes decisions to focus attention and processing
resources onto those small regions within the field of
view which look more interesting. The mechanism
by which very rapid holistic image analysis gives
rise to a small set of candidate salient locations in a
scene has recently been the subject of comprehen-
sive research efforts and is fairly well understood
[18]–[21].

Parallel with attention guidance and mecha-
nisms for saliency computation, humans demon-
strate exquisite ability at instantly capturing the
“gist” of a scene; for example, following presen-
tation of a photograph for just a fraction of a
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second, an observer may report that it is an indoor
kitchen scene with numerous colorful objects on the
countertop [22]–[25]. Such report at a first glance
onto an image is remarkable considering that it
summarizes the quintessential characteristics of an
image, a process previously expected to require
much analysis. With very brief exposures (100ms or
below), reports are typically limited to a few general
semantic attributes (e.g., indoors, outdoors, office,
kitchen) and a coarse evaluation of distributions
of visual features (e.g., highly colorful, grayscale,
several large masses, many small objects) [26],
[27]. However, answering specific questions such as
whether an animal was present or not in the scene
can be performed reliably down to exposure times
of 28ms [28], [29], even when the subject’s attention
is simultaneously engaged by another concurrent vi-
sual discrimination task [30]. Gist may be computed
in brain areas which have been shown to prefer-
entially respond to “places,” that is, visual scene
types with a restricted spatial layout [31]. Spectral
contents and color diagnosticity have been shown to
influence gist perception [25], [32], leading to the
development of the existing computational models
that emphasize spectral analysis [33], [34].

In what follows, we use the term gist in a more
specific sense than its broad psychological definition
(what observers can gather from a scene over a
single glance): we formalize gist as a relatively low-
dimensional (compared to a raw image pixel array)
scene representation which is acquired over very
short time frames, and we thus represent gist as a
vector in some feature space. Scene classification
based on gist then becomes possible if and when
the gist vector corresponding to a given image can
be reliably classified as belonging to a given scene
category.

From the point of view of desired results, gist
and saliency appear to be complementary oppo-
sites: finding salient locations requires finding those
image regions which stand out by significantly
differing from their neighbors, while computing
gist involves accumulating image statistics over the
entire scene. Yet, despite these differences, there is
only one visual cortex in the primate brain, which
must serve both saliency and gist computations.
Part of our contribution is to make the connection
between these two crucial components of biological
vision. To this end, to be biologically-plausible,
we here explicitly explore whether it is possible to

devise a working system where the low-level feature
extraction mechanisms — coarsely corresponding to
cortical visual areas V1 through V4 and MT — are
shared and serve both attention and gist, as opposed
to computed separately by two different machine
vision modules.

The divergence comes at a later stage, in how
the low-level vision features are further processed
before being utilized. In our neural simulation of
posterior parietal cortex along the dorsal or “where”
stream of visual processing [35], a saliency map is
built through spatial competition of low-level fea-
ture responses throughout the visual field. This com-
petition quiets down locations which may initially
yield strong local feature responses but resemble
their neighbors, while amplifying locations which
have distinctive appearances. In contrast, in our
neural simulation of inferior temporal or the “what”
stream of visual processing, responses from the low-
level feature detectors are combined to produce the
gist vector as a holistic low-dimensional signature
of the entire input image. The two models, when
run in parallel, can help each other and provide a
more complete description of the scene in question.
Figure 1 shows a diagram of our implementation.

In the present paper, our focus is on image
classification using the gist signature computed by
this model, while exploitation of the saliency map
has been extensively described previously for a
number of vision tasks [20], [21], [36], [37]. We
describe, in the following sections, our algorithm to
compute gist in a very inexpensive manner by using
the same low-level visual front-end as the saliency
model. We then extensively test the model in three
challenging outdoor environments across multiple
days and times of days, where the dominating
shadows, vegetation, and other ephemerous phe-
nomena are expected to defeat landmark-based and
region-based approaches. Our success in achieving
reliable performance in each environment is further
generalized by showing that performance does not
degrade when combining all three environments.
These results support our hypothesis that gist can
reliably be extracted at very low computational cost,
using very simple visual features shared with an
attention system in an overall biologically-plausible
framework.
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Fig. 1. Model of Human Vision with Gist and Saliency

II. DESIGN AND IMPLEMENTATION

The core of our present research focuses on
the process of extracting the gist of an image
using features from several domains, calculating its
holistic characteristics but still taking into account
coarse spatial information. The starting point for the
proposed new model is the existing saliency model
of Itti et al. [20], [38], which is freely available on
the World-Wide-Web.

A. Visual Cortex Feature Extraction

In the saliency model, an input image is filtered
in a number of low-level visual “feature channels”
at multiple spatial scales, for features of color,
intensity, orientation, flicker and motion (found in
Visual Cortex). Some channels (color, orientation,
and motion) have several sub-channels (color type,
orientation, direction of motion). Each sub-channel

has a nine-scale pyramidal representation of filter
outputs, a ratio of 1:1 (level 0) to 1:256 (level
8) in both horizontal and vertical dimensions, with
a 5-by-5 Gaussian smoothing applied in between
scales. Within each sub-channel i, the model per-
forms center-surround operations (commonly found
in biological-vision which compares image val-
ues in center-location to its neighboring surround-
locations) between filter output maps, Oi(s), at
different scales s in the pyramid. This yields feature
maps Mi(c, s), given “center” (finer) scale c and
“surround” (coarser) scale s. Our implementation
uses c = 2, 3, 4 and s = c+d, with d = 3, 4. Across-
scale difference (operator 	) between two maps is
obtained by interpolation to the center (finer) scale
and pointwise absolute difference (eqn. 1).

For color and intensity channels:

Mi(c, s) = |Oi(c) 	 Oi(s)| = |Oi(c)−Interps−c(Oi(s))|
(1)

Hence, we compute six feature maps for each
type of feature at scales 2-5, 2-6, 3-6, 3-7, 4-7, and
4-8, so that the system can gather information in
regions at several scales, with added lighting invari-
ance provided by the center-surround comparison
(further discussed below).

In the saliency model, feature maps were used to
detect conspicuous regions in each channel, through
additional winner-take-all mechanisms which em-
phasize locations which substantially differ from
their neighbors [20]. The feature maps are then
linearly combined to yield a saliency map.

To re-use the same low-level maps for gist as for
attention, our gist model uses the already available
orientation, color and intensity channels. Flicker
and motion channels, which also contribute to the
saliency map, are assumed to be more dominantly
determined by the robot’s egomotion and hence
unreliable in forming a gist signature of a given
location. Our basic approach is to exploit statistical
data of color and texture measurements in prede-
termined region subdivisions. These features are
independent of shape as they are simply denoting
lines and blobs. We incorporate information from
the orientation channel, employing Gabor filters to
the greyscale input image (eqn. 2) at four different
angles (θi = 0, 45, 90, 135◦) and at four spatial
scales (c = 0, 1, 2, 3) for a subtotal of sixteen sub-
channels.
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For orientation channels:

Mi(c) = Gabor(θi, c) (2)

We do not perform center-surround on the Gabor
filter outputs because these filters already are differ-
ential by nature. The color and intensity channels
combine to compose three pairs of color opponents
derived from Ewald Hering’s Color Opponency the-
ories [39], which identify four primary colors red,
green, blue, yellow (denoted as R,G,B, and Y in
eqns. 3, 4, 5, and 6, respectively) and two hueless
dark and bright colors 7, computed from the raw
camera r, g, b outputs [20].

R = r − (g + b)/2 (3)

G = g − (r + b)/2 (4)

B = b − (r + g)/2 (5)

Y = r + g − 2(|r − g| + b) (6)

I = (r + g + b)/3 (7)

The color opponency pairs are the two color
channels’ red-green and blue-yellow (eqn. 8 and
9), along with the intensity channel’s dark-bright
opponency (eqn. 10). Each of the opponent pairs
are used to construct six center-surround scale com-
binations. These eighteen sub-channels along with
the sixteen Gabor combinations add up to a total
of thirty-four sub-channels altogether. Because the
present gist model is not specific to any domain,
other channels such as stereo could be used as well.

RG(c, s) = |(R(c) − G(c)) 	 (R(s) − G(s))|(8)

BY (c, s) = |(B(c) − Y (c)) 	 (B(s) − Y (s))|(9)

I(c, s) = |I(c) 	 I(s)| (10)

Figure 2 illustrates the gist model architecture.

B. Gist Feature Extraction

After the low-level center-surround features are
computed, each sub-channel extracts a gist vector
from its corresponding feature map. We apply av-
eraging operations (the simplest neurally-plausible
computation) in a fixed four-by-four grid of sub-
regions over the map. Observe figure 3 for visual-
ization of the process.

Cross Scale Center-Surround Differences

PCA/ICA Dimension Reduction

Place Classifier

Most Likely Location

Input image

Linear Filtering at 8 Spatial Scales

Orientation Channel Color Channel Intensity Channel

Gist Feature Extraction

Gist Feature Vector

Fig. 2. Visual Feature Channels Used in the Gist Model

Fig. 3. Gist Decomposition of Vertical Orientation Sub-channel. The
original image (top left) is put through a vertically-oriented Gabor
filter to produce a feature map (top right). That map is then divided
into 4-by-4 grid sub-regions. We then take the mean of each grid to
produce 16 values for then gist feature vector (bottom).

Thus, as proposed in introduction, gist cumu-
lates information over space in image sub-regions,



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

while saliency relied on competition across space.
Equation 11 formalizes the computation for each of
the sixteen raw gist features (Gk,l

i (c, s)) per map,
taking the sum, over a given sub-region (specified
by indices k and l in the horizontal and vertical
direction, respectively), of the values in Mi(c, s),
then dividing by the number of pixels in the sub-
region.

For color, intensity channels:

Gk,l
i (c, s) =

1

16WH

(k+1)W
4

−1∑

u=
kW

4

(l+1)H
4

−1∑

v=
lH

4

[Mi(c, s)](u, v)

(11)
Where W and H are the width and height of the
entire image. We similarly process the orientation
maps Mi(c) to compute Gk,l

i (c).
Although additional statistics such as variance

would certainly provide useful additional descrip-
tors, their computational cost is much higher than
that of first-order statistics and their biological plau-
sibility remains debated [40]. Thus, here we explore
whether first-order statistics would be sufficient to
yield reliable classification, if one relies on using the
available variety of visual features to compensate for
more complex statistics within each feature.

C. Color Constancy

The advantage of coarse statistical-based gist is
stability in averaging out local and random noise.
What is more concerning is global bias such as
lighting as it changes the appearance of the entire
image. Color constancy algorithms such as gray
world and white patch assume that lighting is con-
stant throughout a scene [41], [42]. Unfortunately,
outdoor ambient light is not quite as straightfor-
ward. Not only does it change over time, both in
luminance and chrominance, but also vary within
a single scene as it is not a point light-source.
Different sun positions and atmospheric conditions
illuminate different parts of a scene in varying
degrees as illustrated by images taken one hour
apart, juxtaposed in the first row of figure 4. We
can see that the foreground of image 1 receives
more light while the background does not. Con-
versely, the opposite occurs in image 2. It is im-
portant to note that the goal of the step is not
to recognize/normalize color with high accuracy,
but to produce stable gist features over color and

Channel Image 1 Image 2 Sub- pSNR
channel (db)

Raw

r 9.24
g 9.60
b 10.08

Green

2 & 5 32.57
2 & 6 32.13
3 & 6 34.28

Red - 3 & 7 33.95
Green 4 & 7 36.32

4 & 8 35.82

2 & 5 32.44
2 & 6 30.83
3 & 6 32.42

Blue - 3 & 7 30.95
Yellow 4 & 7 31.95

4 & 8 31.95

2 & 5 15.03
2 & 6 12.72
3 & 6 13.79

Dark- 3 & 7 12.21
Bright 4 & 7 13.29

4 & 8 13.33

Fig. 4. Example of two lighting conditions of the same scene.
pSNR (peak signal-to-noise ratio) values measure how similar the
maps are between images 1 and 2. Higher pSNR values for a given
map indicate better robustness of that feature to variations in lighting
conditions. Our center-surround channels exhibit better invariance
than the raw r, g, b channels although, obviously, are not completely
invariant.

intensity. We also consider another (iterative and
slower converging) normalization technique called
Comprehensive Color Normalization (CCN) [43],
which can be seen as both global and local.

One indisputable fact is that when texture is lost
because of lighting saturation (both too bright or
too dark for the camera sensor), no normalization,
however sophisticated, can bring it back. To this
end, because of the nature of our gist computation,
the best way is to recognize gists of scenes with
different lighting separately. We thus opted not to
add any preprocessing, but instead to train our
gist classifier (described below) on several lighting
conditions. The gist features themselves already
helped minimize the effect of illumination change
because of their differential nature (Gabor or center-
surround). Peak Signal-to-Ratio (pSNR) tests for
the two images with differing lighting conditions
in figure 4 show better invariance for our differ-
ential features than for the raw r, g, b features,
especially for the two opponent color channels. This
shows that the low-level feature processing produces
contrast information that is reasonably robust to
lighting. Note that using differential features comes
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at a price: baseline information (e.g., absolute color
distributions) is omitted from our gist encoding even
though it has been shown to be useful [15]. The
center-surround can be construed as only looking
for edges surrounding regions (and not the regions
themselves), because that is where the contrasts are.
On the other hand, calculating color distribution
histograms amounts to measuring the size of those
regions. This is where the pyramid scheme helps
recover some of the information. With the pyramid
scheme the system can pick up regions, at coarser
scales [25] and indirectly infer the absolute distribu-
tion information with the added lighting invariance.
As an example, the intensity channel output for
the illustration image of figure 5 shows different-
sized regions being emphasized according to their
respective center-surround parameter.

D. PCA/ICA Dimension Reduction

The total number of raw gist feature dimension
is 544, 34 feature maps times 16 regions per map
(figure 5). We reduce the dimensions using Principal
Component Analysis (PCA) and then Independent
Component Analysis (ICA) with FastICA [44] to a
more practical number of 80 while still preserving
up to 97% of the variance for a set in the upwards
of 30,000 campus scenes.

E. Scene Classification

For scene classification, we use a three-layer neu-
ral network (with intermediate layers of 200 and 100
nodes), trained with the back-propagation algorithm
done on a 1.667GHz Athlon AMD machine. The
main reason for using a neural network classifier is
the success rate (see Results) which proves that it is
adequate. In addition, it is easy to add more samples
and the training process takes a short amount of
time. The complete process is illustrated in figure
5.

III. TESTING AND RESULTS

We test the system at several sites on campus
(map shown in figure 6). The first one is the
Ahmanson Center for Biological Research (ACB),
in which the scenes are filmed around the building
complex. Most of the surroundings are flat walls
with little texture and solid lines that delineate the
walls and different parts of the buildings. A region-
based representation would find the environment

2 3

1

Fig. 6. Map of the experiment sites

ideal. Figure 7 shows some of the scenes around
ACB with their corresponding visual depiction of
gist. The second site is a region comprised of two
adjoining parks: Associate and Founders park (AnF)
which are dominated by vegetations. Large areas
of the images are practically un-segmentable as
leaves overrun most regions. And although there are
objects such as lamp posts and benches, lighting
inside the park may often render their recognition
difficult because the sunlight is randomly blocked
by the trees. Refer to Figure 8 for the variety of the
visual stimuli collected along the path. The third
site we tested are an open area in the Frederick. D.
Fagg park. A large portion of the scenes (figure 9) is
the sky, mostly textureless space with random light
clouds.

To collect visual data we use an 8mm handheld
camcorder. The captured video clips are hardly
stable as the camera is carried by a person walking
while filming. Moreover, attempts to smooth out
image jitters are not always successful. At this
point the data is still view-specific, as each location
is only traversed from one direction. For a view-
invariant scene recognition, we need to train the
system on multiple views [17]. We have tried to
sweep the camera left to right (and vice versa) to
create a wider point of view, although to retain
performance the sweep has to be done at a much
slower pace than regular walking speed [45]. The
current testing setup is slightly selective as the
amount of foreground interference is minimized by
filming during off-peak hours where fewer people
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PCA/ICA Dimension Reduction

Place Classifier

Most Likely Location

Gist Feature
Vectors

Orientation Channel Color Channel Intensity Channel
Feature Maps

Gist Features

Input Image

Fig. 5. Example of Gist Feature Extraction

are out walking. It should be pointed out that gist
can include foreground objects as part of a scene as
long as they do not dominate it.

For classification, we divide the video clips into
segments. A segment is a portion of a hallway,
path, or road interrupted by a crossing or a physical
barrier at both ends. The path is divided this way be-
cause, along with natural geographical delineation,
images within each segment look similar to a human
observer. Moreover, when separating the data at the
junction, we take special care in creating a clean
break between the two involved segments. That is,
we stop short of a crossing for the current segment
and wait a few moments before starting the next
one. This ansures that the system will be trained
with data where ground-truth labeling (assigning a

segment number to an image) is unambiguous. In
addition, for the frames in the middle of the clips
we include all of them, there is no by-hand selection
being done.

The main issue in collecting training samples is
the selection of filming times that include all light-
ing conditions. Because lighting space is hard to
gauge, we perform trial-and-error to come up with
times of the day which attempt to cover the space.
We take data on up to six different times of the
day, twice for each, for several days. They cover the
brightest (noon time) to the darkest (early evening)
lighting conditions, overcast vs. clear, and encom-
pass notable changes in apperance due to increases
in temperature (hazy mid-afternoon). Although we
are bound to exclude some lighting conditions, the
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Fig. 7. Examples of images in each segment of ACB

results show that the collected samples cover a large
portion of the space. It should be noted that most (10
of 12) of the training and testing data are taken on
different days. For the two taken on the same day,
the testing data was recorded is in the early evening
(dark lighting) while training data was recorded near
noon (bright lighting).

Each of the first three experiments uses the same
classifier neural network structure, with nine output
layer nodes (same as the number of segments).
We use absolute encoding for the training data.
For example, if the correct answer for an image is
segment 1, the corresponding node is assigned 1.0,
while the others are all 0.0. The encoding allows for
probabilistic outputs for scenes in the testing data.
For completeness, the intermediate layers have 200
and 100 nodes, respectively, while we have 80 input

nodes (for the 80 features of the gist vector). That
is a total of: 80*200 + 200*100 + 100*9 = 36,900
connections. Our cut-off for convergence is 1%
training error. All training is done on a 1.667GHz
Athlon AMD machine.

A. Experiment 1: Ahmanson Center for Biological
Research (ACB)

This experimental site was chosen to investigate
what the system can achieve in a rigid and less
spacious man-made environment. Each segment is
a straight line and part of a hallway. Some hallways
are divided into two segments so that each segment
is approximately of the same length. Figure 10
shows the map of the segments while figure 7
displays scenes of each segment. Note that the
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Fig. 8. Examples of images in each segment of Associate and Founders park

map shows that the segments are not part of a
single continuous path, but a series of available
walkways within an environment, traversed from a
single direction.

Figure 11 represents the four lighting conditions
used in testing: late afternoon, early evening (note
that the lights are already turned on), noon, and mid-
afternoon. We chose two dark and two bright con-
ditions to assure a wide range of testing conditions.

We train the system several times before choosing
a training run that gives the highest classification
result on the training data. After only about twenty
epochs, the network converges to less than 1% error.
A fast rate of training convergence in the first few
epochs appears to be a telling sign of how successful
classification will be during testing. Table I shows
results. The term “False+” for segment x means the

number of incorrect segment x guesses given that
the correct answer is another segment, divided by
the total number frames in the segment; conversely,
“False-” is the number of incorrect guesses given
that the correct answer is segment x, divided the
total number frames in the segment. The table shows
that the system is able to classify the segments
consistently during the testing phase with a total
error of 12.04% or an overall 87.96% correctness.

We also report the confusion matrix in table II
and find that the errors are, in general, not uniformly
distributed. Spikes of classification errors between
segments 1 and 2 would suggest a possibility of
significant overlapping scenes (segment 2 is a con-
tinuation of segment 1; see figure 10). On the other
hand, there are also errors that are not as easily
explainable. For example, 163 false positives for
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Fig. 9. Examples of images, one from each segment of Frederick D. Fagg park (segments 1 through 9 from left to right and top to bottom).

TABLE I

AHMANSON CENTER FOR BIOLOGY EXPERIMENTAL RESULTS

Trial 1 Trial 2 Trial 3 Trial 4 Total
Segment False+ False- False+ False- False+ False- False+ False- False+ Percent. False- Percent.

1 14/390 11/387 17/380 47/410 32/393 27/388 39/445 5/411 102/1608 6.34% 90/1596 5.64%
2 20/346 114/440 133/468 101/436 85/492 54/461 18/325 131/438 256/1631 15.70% 400/1775 22.54%
3 1/463 3/465 0/456 29/485 82/502 43/463 33/475 31/473 116/1896 6.12% 106/1886 5.62%
4 7/348 18/359 24/338 7/321 5/226 84/305 7/148 108/249 43/1060 4.06% 217/1234 17.59%
5 46/348 5/307 52/389 0/337 64/290 95/321 125/403 41/319 287/1430 20.07% 141/1284 10.98%
6 24/567 13/556 39/478 56/495 23/533 24/534 69/564 7/502 155/2142 7.24% 100/2087 4.79%
7 43/410 71/438 55/371 129/445 136/439 95/398 108/486 22/400 342/1706 20.05% 317/1681 18.86%
8 101/391 0/290 18/265 0/247 67/320 21/274 37/303 22/288 223/1279 17.44% 43/1099 3.91%
9 65/320 86/341 46/404 15/373 17/262 68/313 29/227 98/296 157/1213 12.94% 267/1323 20.18%

Total 321/3583 384/3549 511/3457 465/3376 1681/13965
Percent. 8.96% 10.82% 14.78% 13.77% 12.04%
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Fig. 10. Map of the path segments of ACB

segment 2 when the ground truth is segment 7 (and
141 false positives in the other direction). From
figure 7 we can see that there is little resemblance
between the two apperance-wise. However, if we
consider just the coarse layout, the structure of both
segments are similar, with a white region on the left
side and a dark red one on the right side.

B. Experiment 2: Associates and Founders Park
(AnF)

We now compare the results of Experiment 1
with, conceivably, a more difficult classification
task: segmenting paths in a vegetation-dominated
site. Figure III maps out the segments while figure
8 displays a sample image from each of them. As
we can see there are fewer extractable structures.
In addition, the lengths of the segments at this
site are about twice the lengths of the segments in
Experiment 1. As with Experiment 1, we perform
multi-layer neural network classification using the

Fig. 11. Lighting conditions used for testing at Ahmanson Center
for Biology (ACB). Clockwise from top left: late afternoon, early
evening, noon, and mid-afternoon

TABLE II

AHMANSON CENTER FOR BIOLOGY CONFUSION MATRIX

Segment number guessed by algorithm

T
ru

e
se

gm
en

t
nu

m
be

r

Segment 1 2 3 4 5 6 7 8 9

1 1506 39 0 1 0 12 25 0 13
2 77 1375 0 0 0 54 141 11 117
3 1 6 1780 19 40 11 4 24 1
4 3 1 66 1017 66 49 14 18 0
5 0 10 4 0 1143 4 114 4 5
6 0 9 7 3 61 1987 10 10 0
7 18 163 0 13 1 19 1364 82 21
8 0 14 1 3 15 3 7 1056 0
9 3 14 38 4 104 3 27 74 1056

back-propagation algorithm with the same network
architecture and parameters. The number of epochs
for training convergence is less than 40, about twice
that found for Experiment 1.

Figure 13 shows four lighting conditions tested:
early evening (lights already turned on), overcast,
noon, and mid-afternoon. Also note that at the first
test run, the bench in the front is missing from
the image. We encounter similar challenges in other
segments, such as service vehicles parked or a huge
storage box placed in the park for a day.
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TABLE III

ASSOCIATE AND FOUNDERS PARK EXPERIMENTAL RESULTS

Trial 1 Trial 2 Trial 3 Trial 4 Total
Segment False+ False- False+ False- False+ False- False+ False- False+ Percent. False- Percent.

1 71/559 210/698 177/539 440/802 140/786 245/891 49/733 62/746 437/2617 16.70% 957/3137 30.51%
2 38/544 64/570 107/429 6/328 271/558 187/474 122/584 12/474 538/2115 25.44% 269/1846 14.57%
3 57/851 71/865 54/814 217/977 206/1096 78/968 38/996 5/963 355/3757 9.45% 371/3773 9.83%
4 61/518 31/488 72/611 58/597 221/730 179/688 131/652 111/632 485/2511 19.32% 379/2405 15.76%
5 82/669 30/617 142/867 45/770 121/785 110/774 54/744 87/777 399/3065 13.02% 272/2938 9.26%
6 300/1254 47/1001 265/1210 177/1122 273/1084 192/1003 148/1079 167/1098 986/4627 21.31% 583/4224 13.80%
7 42/297 167/422 177/643 104/570 54/553 62/561 76/416 59/399 349/1909 18.28% 392/1952 20.08%
8 54/577 75/598 73/696 69/692 59/771 85/797 60/770 58/768 246/2814 8.74% 287/2855 10.05%
9 106/737 116/747 53/858 4/809 146/655 353/862 69/732 186/849 374/2982 12.54% 659/3267 20.17%

Total 811/6006 1120/6667 1491/7018 747/6706 4169/26397
Percent. 13.50% 16.80% 21.25% 11.14% 15.79%
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Fig. 12. Map of the path segments of Associate and Founders Park

The result are shown at table III. The confusion
matrix (table IV) is also reported. A quick glance
at table III reveals that the performance, with a
total error of 15.79% (84.21% success rate), is
higher than in Experiment 1. However, if we look
at the challenges presented by the scenes, it is
quite an accomplishment to lose less than 4% in
performance. In addition, no calibration is done in
moving from the first environment to the second.

Fig. 13. Lighting conditions used for testing at Asociate and
Founders park (AnF). Clockwise from top left: early evening, over-
cast, noon, and mid-afternoon

Increases in length of segments do not affect the
results drastically. The results from the third exper-
iment which has even longer segments will confirm
this assessment. It appears that the longer length
does not mean more variability to absorb because
the majority of the scenes within a segment do
not change all that much. The confusion matrix
(table IV) shows that the errors are marginally more
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TABLE IV

ASSOCIATE AND FOUNDERS PARK CONFUSION MATRIX

Segment number guessed by algorithm

T
ru

e
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t
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Segment 1 2 3 4 5 6 7 8 9

1 2180 32 21 28 212 374 96 52 142
2 20 1577 43 7 1 186 7 4 1
3 118 26 3402 73 51 4 27 33 39
4 3 131 89 2026 4 66 45 5 36
5 68 2 9 13 2666 49 8 105 18
6 22 86 59 142 40 3641 161 6 67
7 38 62 1 14 15 201 1560 4 57
8 78 24 73 52 14 29 3 2568 14
9 90 175 60 156 62 77 2 37 2608

uniform than in Experiment 1 (few zero entries),
probably as the environment is less structured and
prone to more accidental classification errors among
possibly non-adjacent segments when vegetation
dominates.

C. Experiment 3: Frederick D. Fagg park (FDF)

The third and final site is an open area in front
of the Leavey and Doheny libraries called the
Frederick D. Fagg park, which the students use to
study outdoors and to catch some sun. The main
motivation for testing at this site is to assess the
gist response on sparser data. Figure 14 shows the
map of segments while figure 9 shows the scenes
from each segment. The segments are about 50%
longer than the ones in the second experiment (three
times that of experiment 1). The number of epochs
in training goes up by about ten and the amount
time of convergence roughly doubles from that
of experiment 2, to about 50 minutes. Figure 15
represents the four lighting conditions tested: early
evening (the street lights not yet turned on), evening
(the street lights are already turned on), noon, and
middle of afternoon.

Table V shows the results for the experiment,
listing total error of 11.38% (88.62% classification).
The result from trail 2 (7.95% error) is the best
among all runs for all experiments. We suspect that
this success is because the lighting very closely
resembles the one of the training data. The run
is conducted at noon, in which the lighting does
tend to stay the same for long periods of time. As
a performance reference, when we test the system
with a set of data taken right after a training set,
the error rates are about 9% to 11%. When training
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Fig. 14. Map of the path segments of Frederick D. Fagg park

images with the same lighting condition as on a
subset of testing data of interest are excluded during
training, the error for that run usually at least triples
(to about thirty to forty percent), which suggests that
lighting coverage in the training phase is a critical
factor.

The confusion matrix for Experiment 3 (table
VI is also reported. Overall, the results are better
than Experiment 1 and 2 even though the seg-
ments are longer on average. It can be argued
that the system performance degrades gracefully
with the subjectively-assessed visual difficulty of the
environment, experiment 2 (AnF) being the most
challenging one.

D. Experiment 4: Combined sites

To gauge the system’s scalability, we combine
scenes from all three sites and train it to classify
twenty seven different segments. The only differ-
ence in the neural-network classifier is that the
output layer now consists of twenty-seven nodes.
The number of the input and hidden nodes re-
mains the same. The number of connections is
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TABLE V

FREDERICK D. FAGG PARK EXPERIMENTAL RESULTS

Trial 1 Trial 2 Trial 3 Trial 4 Total
Segment False+ False- False+ False- False+ False- False+ False- False+ Percent. False- Percent.

1 22/657 246/881 40/699 11/670 44/684 207/847 28/735 246/953 134/2775 4.83% 710/3351 21.19%
2 246/1022 12/788 53/749 44/740 56/727 126/797 105/758 225/878 460/3256 14.13% 407/3203 12.71%
3 11/691 178/858 0/689 7/696 341/1218 45/922 282/1147 5/870 634/3475 16.93% 235/3346 7.02%
4 5/799 43/837 3/663 80/740 53/883 7/837 35/757 99/821 96/3102 3.09% 229/3235 7.08%
5 18/440 409/831 11/390 369/748 2/696 0/694 16/870 0/854 47/2396 1.96% 778/3127 24.88%
6 343/1976 47/1680 12/1550 27/1565 182/1772 122/1712 243/1770 145/1672 780/7068 11.04% 341/6629 5.14%
7 0/806 231/1037 25/944 4/923 0/675 182/857 30/886 38/894 55/3311 1.66% 455/3711 12.26%
8 483/1607 48/1172 436/1568 79/1211 319/1581 93/1355 149/1244 175/1270 1387/6000 23.12% 395/5008 7.89%
9 86/825 0/739 65/866 24/825 42/579 257/794 164/788 119/743 357/3058 11.67% 400/3101 12.90%

Total 1214/8823 645/8118 1039/8815 1052/8955 3950/34711
Percent. 13.76% 7.95% 11.787% 11.75% 11.38%

Fig. 15. Lighting Conditions use for Testing at Frederick D. Fagg
park (FDF). Clockwise from top left: early evening, evening, noon,
and middle of afternoon

increased by 1,800 (18 new output nodes by 100
second hidden-layer nodes), from 36,900 to 38,700
connections (4.88%). We use the same procedure
as well as training and testing data (175,406 and
75,073 frames, respectively). The training process
takes much longer than for the other experiments.
It is about 260 epochs with the last 200 epochs

TABLE VI

FREDERICK D. FAGG PARK CONFUSION MATRIX

Segment number guessed by algorithm
T

ru
e

se
gm

en
t

nu
m

be
r

Segment 1 2 3 4 5 6 7 8 9

1 2641 11 165 0 0 364 0 170 0
2 55 2796 106 0 7 97 0 70 72
3 0 71 3111 0 0 153 0 0 11
4 0 136 1 3006 0 0 0 92 0
5 9 23 0 0 2349 63 13 660 10
6 22 30 254 5 6 6288 0 3 21
7 0 154 0 0 24 62 3256 168 47
8 45 30 40 35 6 3 40 4613 196
9 3 5 68 56 4 38 2 224 2701

or so converging very slowly from 3% down to
1%. When training, we print the confusion matrix
periodically to analyze the process of convergence,
and we find that the network converges from inter-
site classification before going further and eliminate
the intra-site errors. We organize the results into
segment-level (Table VII) and site-level (Table VIII)
statistics.

For segment-level classification, the total error
rate is 13.55%. We expected the results to be
somewhat worse than all previous three experiments
when each site is classified individually. However,
such is not the case when comparing it with the AnF
experiment (15.79%; experiment 2) while being
marginally worse than the other two (12.04% for
ACB in experiment 2 and 11.38% for FDF in exper-
iment 3). Notice also that the relative error among
the individual sites changes as well. The results
for AnF segments in the combined setup improve
by 2.47% to 13.32% error while rate for segments
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TABLE VIII

COMBINED SITES EXPERIMENTAL RESULTS

Site ACB AnF FDF False-/Total Pct. err

ACB 12882 563 520 1083/13965 7.76%
AnF 350 25668 379 729/26397 2.76%
FDF 163 1433 33115 1596/34711 4.60%

False+ 513 1996 899 3408
Total 13395 27664 34014 75073

Pct. err 3.83% 7.22% 2.64% 4.54%

in ACB and FDF degrades by 4.24% and 1.25%,
respectively. From the site-level confusion matrix
(table VIII), we see that the system can reliably pin a
given test image to the correct site with only 4.54%
error (95.46% classification). This is encouraging
because the classifier can then provide various levels
of outputs. For instance, when the system is unsure
about the actual segment location, it can at least rely
on being at the right site.

One of the concerns in combining segments from
different sites is that the number of samples for
each of them becomes unbalanced as there are some
segments that take less time to walk through (as
short as 10 seconds) while others can take up to
a minute and a half. That is, the lower number of
samples for ACB may yield a network convergence
that gives heavier weights on correctly classifying
the longer segments from AnF and FDF. From the
site-level statistics (table VIII), we can see that the
trend does hold, although not to an alarming extent.

IV. DISCUSSION

We have shown that the gist features succeed in
classifying a large set of images without the help
of temporal filtering (one-shot recognition on each
image considered individually), which would be
expected to further improve the results by reducing
noise significantly [17]. In terms of robustness, the
features are able to handle translational, angular,
scale and illumination changes. Because they are
computed from large image sub-regions, it takes
a sizable translational shift to affect the values.
As for angular stability, the natural perturbation of
a camera carried while walking seems to aid the
demonstrated invariance. For larger angular discrep-
ancy, like for example in in the case of off-road
environments, an engineering approach like adding
sensors such as a gyroscope to correct the angle
of view may be advisable. The gist features are

also invariant to scale because the majority of the
scenes (background) are stationary and the system
is trained at all viewing distances. The gist fea-
tures achieve a solid illumination invariance when
trained with different lighting conditions. Lastly, the
combined-sites experiment shows that the number
of differentiable scenes can be quite high. Twenty
seven segments can make up a detailed map of a
large area.

A profound effect of using gist is the utilization
of background information moreso than foreground.
However, one drawback of the current gist imple-
mentation is that it cannot carry out partial back-
ground matching for scenes in which large parts
are occluded by dynamic foreground objects. As
mentioned earlier the videos are filmed during off-
peak hours when few people (or vehicles) are on
the road. Nevertheless, they can still create problems
when moving too close to the camera. In our system,
these images can be taken out using the motion cues
from the motion channel of the saliency algorithm as
a preprocessing filter, detecting significant occlusion
by thresholding the sum of the motion channel
feature maps [37]. Furthermore, a wide-angle lens
(with software distortion correction) can help to see
more of the background scenes and, in comparison,
decrease the size of the moving foreground objects.

The gist features, despite their current simplistic
implementation, are able to achieve a promising
localization performance. The technique highlights
the rapid nature of gist while still accurate in
performing its tasks. This, in large part, is because
the basic computational mechanisms of extracting
the gist features are simple averaging of visual cues
from different domains. Theoretically, scalability is
a concern because when we average over large
spaces, background details that may be critical in
distinguishing certain locations can be lost. How-
ever, although more sophisticated gist computation
could be incorporated, we avoid complications that
occur when trying to fit more complex models to
unconstrained and noisy data. For example, a graph
would be a more expressive layout representation
than the current grid-based decomposition (refer to
figure 3). It can represent a scene as segmented
region feature vectors, or even objects, for each
node, and coarse spatial relationships for the edges.
The node information can provide explicit shape
recognition, which, in essence, is what is lacking in
our current implementation. Howver, as mentioned
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TABLE VII

COMBINED SEGMENT EXPERIMENTAL RESULTS

ACB AnF FDF
Segment False+ % err. False- % err. False+ % err. False- % err. False+ % err. False- % err.

1 292/1657 16.20% 231/1596 14.47% 565/3120 18.11% 582/3137 18.55% 231/2306 10.02% 1276/3351 38.08%
2 277/1710 16.20% 342/1775 19.27% 636/2159 29.46% 323/1846 17.50% 455/3175 14.33% 483/3203 15.08%
3 275/2031 13.54% 130/1886 6.89% 555/4198 13.22% 130/3773 3.45% 893/3881 23.01% 358/3346 10.70%
4 61/1211 5.04% 84/1234 6.81% 233/2401 9.70% 237/2405 24.05% 56/3102 1.81% 189/3235 5.84%
5 129/1208 10.68% 205/1284 15.97% 583/3251 17.93% 270/2938 9.19% 107/3115 3.43% 119/3127 3.81%
6 162/2040 7.94% 209/2087 10.01% 926/4462 20.75% 688/4224 16.29% 784/6426 12.20% 987/6629 14.89%
7 308/1438 21.42% 551/1681 32.78% 298/1680 17.74% 570/1952 29.20% 309/3704 8.34% 316/3711 8.52%
8 83/961 8.64% 221/1099 20.11% 730/3278 22.72% 307/2855 10.75% 300/4833 6.21% 475/5008 9.48%
9 116/1139 10.18% 300/1323 22.68% 257/3115 8.25% 409/3267 12.52% 551/3472 15.87% 180/3101 5.80%

Total 1703/13395 12.714% 2273/13965 16.276% 4783/27664 17.290% 3516/26397 13.320% 3686/34014 10.837% 4383/34711 12.627%

Total 10172/75073 = 13.55%

in introduction such approach can break down when
a segmentation error occur. In our second exper-
iment (AnF), for example, overlapping trees or
overlapping buildings can be jumbled together.

Another way to increase the theoretical strength
of the gist features is to go to a finer grid to
incorporate more spatial information. For the current
extraction process, to go to next level in the pyramid
(an eight-by-eight grid) is to increase the number
of features from 16 to 64 in each sub-channel.
However more spatial resolution also means more
data (quadrupled the amount) to process and it is
not obvious where the point of diminishing return
is. We have to strike a balance in resolution and
generalization, pushing the complexity of expres-
siveness of the features while keeping robustness
and compactness in mind. That said, our goal is to
emulate human-level gist understanding that can be
applied to a larger set of problems. As such our
further direction would be to stay faithful to the
available scientific data on human vision.

We have not discussed in length the need for
localization within a segment. The gist features
would have problems differentiating scenes when
most of the background overlaps as is the case for
scenes within segment. Gist, by definition, is not
a mechanism to produce a detailed picture and an
accurate localization, just the coarse context. This
is where saliency and localized object recognition
may complement gist. The raw gist features are
shared with the saliency model so that we can attack
the problem from multiple sides efficiently. One
of the issues we encounter with this arrangement
will be the need to synchronize the representation
so that the two can coincide naturally to provide

a complete scene description. With gist we can
locate our general whereabout to the segment level.
With saliency we can now pin-point our exact loca-
tions by finding distinctive cues situated within the
segment and approximate our distance from them.
The gist model can even prime regions within a
scene [46] by providing context to prune out noisy
possible salient locations.

V. CONCLUSION

We have shown that the gist model can be useful
in outdoors localization for a walking human, with
obvious application to autonomous mobile robotics.
The model is able to provide high-level context
information (a segment within a site) from various
outdoor environments despite using coarse features.
It is able to contrast scenes in a global manner and
automatically takes obvious idiosyncrasies into ac-
count. This capability reduces the need for detailed
calibration in which a robot has to rely on the ad-hoc
knowledge of the designer for reliable landmarks.
Furthermore, we are working on extending the cur-
rent system to recognize places/segments without
having to train it explicitly. This requires the ability
to cluster gist feature vectors from a same location,
which also help alert the robot when it is moving
from one location to another.

Because the raw features are shared with the
saliency model, the system can efficiently increase
localization resolution. It can use salient cues to
create distinct signatures of individual scenes, finer
points of reference within a segment that may not
be differentiable by gist alone. The salient cues
can also help guide localization for the transitions
between segments which we did not try to classify.
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In the future we would like to present a physical
implementation of a model that uses bottom-up
salient cues as well as context to produce a useful
topographical map for navigation in unconstrained,
outdoor environment.
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