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Abstract— In implementing a vision localization system, a
crucial issue to consider is how to efficiently store and recall
the necessary information so that the robot is not only able to
accurately localize itself, but does so in a timely manner. In the
presented system, we discuss a strategy to minimize the amount
of stored data by analyzing the strengths and weaknesses of
several cooperating recognition modules, and by using them
through a prioritization scheme, which orders the data entries
from the most likely to match to the least. We validate the
system is a series of experiments at three large scale outdoor
environments: a building complex (126x180ft. area, 3583 testing
images), a vegetation-filled park (270x360ft. area, 6006 testing
images), and an open-field area (450x585ft. area, 8823 testing
images) - each with its own set of challenges. Not only is
the system able to localize in these environments (on average
3.46ft., 6.55ft. 12.96ft. of error, respectively), it doesso while
searching through only 7.35%, 3.50%, and 6.12% of all the
stored information, respectively.

I. INTRODUCTION

Vision localization has been an active research branch for
the past few dacades [1]. In general, a localization system has
the following parts: image acquisition and pre-processing,
database matching, pose estimation, and localization. In
image acquisition and pre-processing, the system computes
the necessary discriminating visual cues from a raw image.
Database matching is a process of comparing those cues to
stored information, usually obtained during training. After a
match is found, the system still has to estimate the current
pose of the robot’s camera with respect to the database
(reference) entry before an actual attempt at localization
is performed. In recent years, probabilistic localizationhas
matured and its standard techniques (largely utilize other
sensors such are range sensors [2], [3], GPS [4], and odom-
etry) are now well understood. However, the use of vision
sensors (cameras) has not been as extensively developed. In
order to implement a successful vision localization system,
everything hinges on achieving a reliable database matching
process, one that leads to satisfactory pose estimation. And
because robots are real-time systems, it is not enough just
to have an accurate recognition system; it is also important
to consider the amount of time needed to find a match,
especially when exploring large environments.

A way to solve this problem is by storing as little as
possible while still able to cover all pertinent aspects of the
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environment. The decision of what to store is tightly coupled
with the capability of the system’s recognition module, the
part most responsible for its accuracy. If the module is
able to robustly match an object in any condition, then one
photograph would suffice. However, such capability is not
yet achievable, for example, in invariance with respect to
lighting (particularly outdoors) and viewpoint. What is the
alternative? We are forced to consider objects under different
conditions as different objects.

One may want to deduce that the better the recognition
system, the smaller the database size. However, sometimes,
the reason that a system is better than another is because
the number of descriptors associated is higher than its com-
petition. Consequently, even though we lower the number
of entries in the database, we also increase the number of
features per entry. And thus, when looking into the amount of
information stored by a system, we have to note the numbers
of features it extracts as well.

Broadly speaking, there are two types of visual features:
local features and global features. Local features are com-
puted over a limited area of the image, as opposed to global
features which may pool information over the entire image
into, e.g., histograms.

In recent years we have seen a number of systems utilizing
local features called the SIFT keypoints [5], which have been
proven to be quite accurate for this purpose [6], [7] because
they are invariant to scale, with some viewpoint and lighting
invariance. Other local-feature such as Kernel PCA features
[8] and Harris corners [9] are also used with varying degrees
of success. One disadvantage of using local features is the
number of features needed to be stored for each image. In
addition, in general, local features are less stable than global
features. For example, in a park where vegetation dominates
(observe second row of figure 5), the majority of the local
features is probably only be found in a single image.

Global features, on the other hand, never have to perform
matching to such level of detail as histograms average out
the local activities to form more robust values. However,
these holistic approaches, which utilize color [10], [11],
textures [12], or a combination of [13], [14], are limited,
for the most part, to classifying places. This is because the
end correspondences are not at the coordinate level, which
are needed for accurate pose estimation. Nevertheless, with
lower localization resolution, global features gain sizable
advantage in speed as classifiers usually output their results
almost instantaneously. And yet, in the end, it would be hard
to perform metric localization using just global features.

So where do we go from here? Up to this point we are
only working on the hypothesis that the smaller the database



Fig. 1. Diagram of the Vision Localization System. The system extract various features from several domains (color, orientation, and intensity) and
computes gist features and salient regions. At the next stage the system estimate the segment using gist and tries to match the regions with the ones
previously seen in the environment. These matches are then used as an input to the localization stage to make a decision ofwhere the robot might be.

or the lower the number of features per image, the faster the
matching procedure is. The problem is, it implicitly assumes
the need for a best match, which requires comparisons with
the whole database. However, for real-time systems such
as robot localization, a positive match is all that we need.
And once it is found, the search process can be stopped. To
increase the likelihood of this event to occur early, our system
utilizes a prioritization step to compare database entriesin the
order of the most likely to the least. Thus, in practice, it never
has to look at all the entries because (through experiments)
it has a good idea when to stop given the unlikelihood
that a match will be found thereafter. In previous work
[15], we presented a biologically plausible vision localization
system. Here we improve it by prioritizing the search through
the stored information that is already minimized both in
the number of entries as well as the number of features
per entry. We then test the system in visually contrasting
and challenging large-scale environments, which validatethe
accuracy and scalability of the approach.

II. DESIGN AND IMPLEMENTATIONS

At the core of the system [15] illustrated in figure 1, is
the utilization of saliency [16], [17] and gist [13], which
complement each other to form a multi-expert recognition
system that localizes at two levels. That is, gist, which is a
global feature, tries to recognize places called segments and
saliency combined with SIFT (both are local features) form
a salient region to further refine the result to the coordinate
location using a back-end Monte Carlo Localization.

A segment is an ordered list of edges to form a contin-

uous pathway in an environment. It can be a portion of a
hallway or a road interrupted by physical barriers (crossing,
intersection, etc.) at both ends for natural delineations.This
grouping is motivated by the fact that the views in a segment
are coarsely similar, which allows the segment estimator to
classify them using gist features. The selected three-edge
segment (highlighted in green) in the map of figure 1 is an
example. Because the segment classifier (a back-propagation
neural networks [13]) runs trivially fast, our effort to speed
up the system mostly focuses on the salient region matching.

A salient region, which can be viewed in figure 1 (there
are 5 of them in the frame), refers to a conspicuous area of
an input image that is easily detected in the environment,
making it a good candidate for a localization cue. An
ideal salient region is one that is persistently observed from
different points of view and at different times of the day. A
salient region does not have to depict an individual object
(many times it is a small part of an object or a set of
objects), it just has to be a snapshot of a point of interest
situated in the real world that, as time goes on, is proven
to be consistently detectable. To this end, a set of salient
regions that portrays the same point of interest is grouped
together and the set is called a landmark. And so, a salient
region can be considered as an evidence of a landmark.
One important consequence of using salient regions, which
has been demonstrated in previous works [18], [19], [9], is
that it relieves the system from matching whole scenes. By
extracting features within a small window, the number of
SIFT keypoints can be drastically reduced. This is substantial
because SIFT matching is the slowest part of the system.



Fig. 2. The landmark database building procedure is done in two steps: create a current-episode landmark database for each training session, then
iteratively (not all at once) integrate them together to create one complete landmark database.

Therefore, in constructing an optimal sized landmark
database, we have to pay close attention to the shortcomings
of SIFT keypoints, which have less invariance to lighting
and out-of-plane viewpoint change. That is, multiple entries
of a landmark should directly increase the robustness of the
recognition step to those changes. For improving viewpoint
invariance, when building a landmark, we keep its snapshots
from all the viewing angles spaced as far as SIFT allow us
to. This strategy actually produces low salient region counts
because a lot of the regions isolate parts of images that are
physically far away from the robot (signs, buildings), which
means that angle changes induced by its movement do not
affect their viewing as much. As for lighting, as with other
textures, SIFT keypoints are usually very different in wider
disparity cases. Our solution is to survey and select training
sessions to include all distinct conditions but with enough
overlap for the same landmarks from each session to be
considered similar.

The landmark database building procedure is illustrated in
figure 2 and it goes as follows: create a landmark database
for each training session (section II-A), then combine them
to create one complete landmark database (section II-B). We
can then discuss the run-time prioritization step in section
II-C. In these sections, we describe procedures that need a
few decision thresholds, which may be viewed as making
the approach weaker. However, they are quite intuitive and
we try to characterize what overall impact each of them has.

A. Building a Database Within an Episode

Given a series of frames of robot traversal from a training
session, we create a database that stores all of its persistent
landmarks. Training is done with a person controlling the

robot’s movement, running straight through all the paths in
the map, noting which segment the current frame belongs to
(the landmarks are compartmentalized in segments of origin).

From the first frame we obtain a set of salient regions to
create initial landmarks. When the next set of regions arrives
(from the subsequent frame), the system tries to concurrently
match them with the ones in existing landmarks . We first
create a two-dimensional match score matrix between all
combinations of the incoming regions and current landmarks.
This is done through a matching process is illustrated in
figure 3. In the figure, location of the salient points are
drawn as yellow points. These points are where we obtain
a set of values called the salient feature vector [15], which
are normalized values from the six center-surround (feature)
maps [16], [17] of each of the sub-channels of the color,
intensity, and orientation channels. For each of the maps we
store values from a 5-by-5 window centered at the salient
point.

Fig. 3. Matching process of two salient regions using SIFT keypoints and
salient feature vector



There are two matching steps: SIFT and saliency feature
vector matching. If either step turned up negative, the score
entry in the match matrix is set to zero. For SIFT matching,
the [5] procedure is directly applied, and we use a general-
ized Hough transform to estimate the affine motion. For the
latter step, we use equation 1, which factors in both salient
feature similaritysdiff (euclidian distance) and salient point
location proximitysdist (observe the fused image in figure
3 where the two regions are aligned together) normalized by
the image diagonal lengthlDiag. The second term is reversed
to allow for increase in value the closer the points are. The
threshold score is .75 out of the maximal 1.0. We find that,
in experimentation, any values above the threshold are most
likely a match (it is a conservative cut-off).

score = sdiff ∗ (1 −

sdist

lDiag

) (1)

Once all the comparisons are performed, we start the
insertion process by calculating the best/2nd best salient
feature similarity score ratio for each region-landmark pair.
The region with the highest remaining ratio at the current
iteration is inserted to the corresponding landmark. We keep
doing this until there are no more matches, in which we
can then create new landmarks for the remaining regions.
We only take the saliency score into account (and not the
SIFT score) because we want to cluster regions based on just
the salient landmark they depict, not on the overall region
similarity. Adding the SIFT score can allow overlapping
regions that depict different landmarks to be clustered.

After all the frames are processed, we prune out landmarks
using two criteria: number of salient regions and range of
frame numbers, both of which indicate persistance in the
environment. The first one is for landmarks that are very
salient but are viewed briefly (20 frames or less): their
total counts have to be larger than 7. The second one is
for landmarks that are less salient but are detected for a
long period (frame number range larger than 20): at least 5
regions. These set of thresholds control how many landmarks
we want to keep. We find that these values allow enough of
the smaller but useful landmarks (fewer number of regions
registered) to be kept by the database. Adding even smaller
ones would just increase the size of the database without
getting much in return.

In the region assigment step, for regions that are positively
matched with multiple landmarks, the situation becomes
complicated. First, we have to find the best landmark to
insert to; adding a salient region to multiple landmarks
would unnecessarily increase the size of the database. Here,
we select the one with the highest number of regions to
create a momentum towards the larger landmarks. Multiple
landmark matches occur because matches that were supposed
to happen in the previous frames did not go through, and we
are left with more than one landmark depicting the same
point of interest. The reason we use landmark size and not
the score is because it is not unusual to have two landmark
matches where one has a large number of salient regions
and the other has one that comes from the previous frame,

and thus have a higher score. It is obvious that the smaller
landmark is supposed to be part of the larger one, and the
new region makes the connection evident. With the policy,
we keep landmarks from spliting to smaller ones.

For this reason, the system also consolidates all the regions
involved in the multiple match to the largest landmark. It
does not combine the landmarks together because the other
regions in those landmarks may legitimately describe other
points of interest. For example, there is a possibility that
two landmarks somehow move closer together and create an
ambiguity. What is achieved by moving these regions is that
the landmarks become less similar, which is a reasonable
compromise.

Before explaining the transfer of salient regions, we would
like to describe the actual inner working of a landmark. In
training, when a landmark is being built, it actually consists
of two lists: a main list and a temporary list. The main list
has regions that are saved at the end. For the purpose of
pruning, however, the total number of salient regions is taken
as the sum of the two lists. When an incoming salient region
is compared to a landmark, it is first compared with the
main list (actually, just the last 10 in reverse order) and, if
needed, the temp list as well (also the last 10 in reverse
order). If there is a match in the main list (and the landmark
is also selected through the ratio test), the new region goes
to the temporary list. If we find no match in the main list
but one is found in the temporary list (and also passes the
ratio test) the corresponding matched region in the temporary
list is put to the main list and the new one is put to the
temporary list. What is essentially accomplished is that one
region is a representative for as many regions as possible
until its appearance becomes so different compared to an
incoming region that we are forced to store an additional
one.

Fig. 4. An example of how a series of 8 frames affects the number of
salient regions that are stored in a landmark during training/building. The
number in the top left corner of each grid is the frame number.The label
next to it is the matching condition or command that comes thesystem.



Figure 4 shows how the algorithm works in a series of 8
frames. In the first frame, an initial salient region is used to
create a landmark and it is automatically put to the main list.
In frames 1 and 2, the new regions are sufficiently similar
to region 0 that they are put to the temp list (this is what
happens the majority of the time). Frame 3 is an example
where the landmark is not salient enough in the frame and
thus is not detected. In frame 4, the new region is again still
similar to frame 0, so it goes to temp. Frame 5 is where
the algorithm provides a benefit, the incoming region is not
similar to region 0 but close enough to the one from frame
4 (obviously because they are from back-to-back frames).
And thus, region 4 is moved to the main list and region 5
is inserted to the temp list. After another uneventful frame
6, the end signal is received and the last entry in the temp
list is moved to the main list to produce a complete list that
will be saved. We find that the save:discard ratio obtained is
(on average) about 1:5.

In transfer of evidence for multiple landmark matches, we
have to be careful in how to re-link the lists in landmarks
that lose a salient region. There are two different cases, the
region to be moved is either in a main or a temp list. If the
latter is the case, it can simply be moved because there is
a similar region in the main list. If, on the other hand, the
region is in the main list we have to replace it with one most
similar in the temp list: the one from the closest but higher
frame number.

B. Building a Database Across Episodes

The procedure of combining databases from individual
training episodes to a complete database is done iteratively;
we match and add one episode at a time. The matches are
done at landmark-to-landmark level for all incoming-and-
stored landmark combinations. That is, when deciding if
two landmarks depict the same real-world point-of-interest,
the system counts how many regions from one landmark
matches the ones from the other. In addition, it also looks
at the percentage of regions matched in the landmark to be
added. For two landmarks to be combined, they have to pass
any of the following thresholds:

• 2 to 5 match count and>= 50% of matches
• 6 to 10 match count and>= 25% of matches
• above 10 match count
We find that these values to be fairly safe, that the

combined landmarks are almost always the same ones found
at different sessions. In the overall scheme, knowledge that
certain landmarks are found at multiple occasions would be
helpful in gauging its recall reliability, which we have not
fully exploit. For one, we can add a filtering step in the end
that prunes landmarks across sessions, only keeping the ones
that occur in more than one episodes.

When combining two landmarks, no salient regions are
deleted (even if there are identical ones taken from different
sessions). We simply append one list to the back of the other
to keep the episodic progression (for priming where to expect
to landmark at later frames) in tact. Also, if a landmark
from the currently processed database matches with more

than one landmark in the accumulated database, these stored
landmarks are first combined before appending the incoming
landmark. To keep the salient regions properly stored, they
are sorted based on the session names first (alpha-numeric
order), and frame numbers second.

C. Landmark Database Search Prioritization

The database search prioritization module is a fast run-
time procedure that puts the landmarks to be compared in
an order from the most likely to be positively matched to the
least. This procedure speeds up the database search because
once a match is found, the search is called off.

We formulate a priority value for comparison between
landmarklmki,j (from segmenti of index j) and incoming
salient regionsRegk denoted in equation 2 which weighs
the following factors: segment estimation using gist features,
salient feature similarity, and current location belief.

priority(lmki,j , sRegk) =

Wgist ∗ svali +

Wsal ∗ salDiff (lmki,j , sRegk) +

Wloc ∗ dist(lmki,j, loc(St)) (2)

The weights used areWgist = .5, Wsal = .2, andWloc =
.3, which we found through experimentation.

Because the landmarks are arranged by segment of origin,
the segment estimator valuessvali can be used to prioritize
search order by most likely segment first. For salient feature
similarity (second term), we pre-compute the average salient
feature values for each stored landmarklmki,j and, during
run time, we computesalDiff (lmki,j , sRegk) (the euclid-
ian distance between the salient features of the incoming
region sRegk and the landmarklmki,j average feature
vector). Because this priority computation is done on the
landmark level (a landmark, on average, have a little less
than 20 regions), the procedure is still fast. The third term,
dist(lmki,j , loc(St)), orders the landmarks by its proximity
to the current belief locationSt (formulation convention in
[15]) for the state of the robot at timet, which adds a
temporal aspect to the priority value.

The system then creates a job item for all incoming
salient-region-and-landmark combinations for multi-threaded
search. These job items are put to a priority queue accessible
by all the processors in the robot, so that each can start
the slow region recognition process. We noticed that most
regions that are found are discovered early in the search.
Equipped with this knowledge we employ a number of exit
conditions that calls off the searches if:

• 3 regions are matched.
• 2 regions matched and 10% of queue has been processed

since last match.
• 1 region is matched and 20% of queue has been

processed since last match.
• no regions are matched and 33% of queue has been

processed.
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Fig. 5. Examples of images in each of the nine segments (with corresponding label) of ACB (first row), AnFpark (second row), and FDFpark (third row)

These thresholds are very conservative, as shown in the
following testing section III.

III. TESTING AND RESULTS

We test the system at three sites on campus with example
scenes of each site occupying a row of figure 5. Each of
the sites has nine segments and each image is a sample
for a segment. The first site (first row of figure 5) is the
126x180ft. Ahmanson Center for Biological Research (ACB)
building complex. The second site (second row) is a region
comprised of two adjoining parks: Associate and Founders
park (AnF), which are dominated by vegetation and make up
270x360ft. area. The third site (third row) is an open area
in the 450x585ft. Frederick. D. Fagg park where a large
portion of the scenes is the sky. The same environments
are used to test the gist model in [13] (maps of individual
sites and the campus and available there) to perform segment
classification, and in [15] for localization. Here we test and
report not only the accuracy of the system, but also its
efficiency in the number of comparisons with the salient
regions in the landmark database.

To collect visual data we use an 8mm handheld camcorder
carried by a person walking while filming. Moreover, be-
cause data is taken at approximately constant speed, we use
interpolation to come up with the ground-truth location of
the person for both training and testing. The main issue
in collecting training samples is the selection of filming
times that include all lighting conditions. We perform trial-
and-error to come up with times of day (morning, noon,
afternoon, early evening) and other natural events (overcast,
after raining) that cover the whole lighting space. In each
site we have between 9 and 11 training runs.

For each site we run the system several times with
different prioritization strategies to show their impact.As
a baseline localization accuracy and efficiency, we assign
random priorities for each landmark in the first run. We then
run the system using individual context cues (segment esti-
mation, salient feature vector proximity, and current location
belief) exclusively by zeroing out the weight of each but
one (the desired) of the terms in equation 2. And lastly,
we report the results using weights that we find optimum
using trial and error, both with and without the early exit

policy. We compare speeds of the different runs by using the
total percentage of regions searched (a platform independent
measure) and because the salient region recognition process
is, by far, the slowest part of the system.

In our platform (a 16-core 2.6GHz machine, operating
on input image size of 160x120), the Visual Cortex, gist,
and saliency computations, which are also implemented in
parallel (each sub-channel has its own thread), takes about
50ms/frame, while the segment estimation takes less than
1 ms. The search process, on the other hand, usually takes
a few seconds to finish (note the stored number of salient
regions for the large environments are between 29710 and
90660), even with the parallel implementation (we dispatch
16 threads to compare input with different parts of the
landmark database). Therefore, system at its current stateis
not yet real time. However, we are developing a framework
where the system can use just the segment estimation to
provides a coarse localization hypothesis on every frame,
while salient region recognition, which takes multiple time-
steps, can refine the location belief whenever it is available.

Tables I, II, and III report the results. The first part of each
table reports the statistics of the testing condition and the
size of the database. The second part shows the performance
of each run (with different prioritization parameters), which
consists of the percentage of the searched salient regions in
the database and number of input regions per frame for the
ones that are found, not found, and the total. The numbers of
input salient regions are capped at 5 per frame [15] and the
totals differ slightly because of the small amount of noise
added in the saliency model.

Within each environment, the errors are approximately the
same, with the combination priority with the early exit policy
being barely better, although not statistically significant given
the standard deviation. The position disparities are mostly
along the path where the ground truth is (the belief is either
a bit behind or ahead), but not completely off. In FDF site
in particular, a substantial number of the salient regions
are far away from the robot which makes deducing very
accurate (within a foot) localization visually difficult. Here,
localization using regions that are closer to the robot is
actually essential for convergence to the correct location.

We attribute the small difference of errors between the



TABLE I

AHMANSON CENTER FORBIOLOGY EXPERIMENTAL RESULTS

Number of Segments: 9 Number of Landmarks in Database: 1501
Number of Training Sessions: 9 Number of Salient Regions/landmark: 19.79
Number of testing frames: 3583 Number of Salient Regions: 29710

Search Order Policy
found not found total error

% search # of sreg./fr. % search # of sreg./fr. % search # of sreg./fr. (ft.)

random priority 27.64% 2.77± 1.14 100.00% 2.13± 1.14 59.06% 4.89 ± 0.40 3.46 ± 4.84

segment priority 6.17% 2.77± 1.14 100.00% 2.13± 1.14 46.91% 4.89 ± 0.40 3.57 ± 3.61

saliency priority 6.24% 2.77± 1.14 100.00% 2.13± 1.14 46.95% 4.89 ± 0.40 3.62 ± 4.98

location priority 3.38% 2.77± 1.14 100.00% 2.13± 1.14 45.34% 4.89 ± 0.40 3.67 ± 3.58

combination 1.03% 2.77± 1.14 100.00% 2.13± 1.13 44.00% 4.89 ± 0.40 3.63 ± 3.83

combination + early exit 0.85% 2.50± 0.85 14.16% 2.39± 0.88 7.35% 4.89 ± 0.40 3.46 ± 3.08

NOTE (applies to all 3 tables): The first part of the table reports the environment parameters and training results.
The second part shows the performance of each run (with different prioritization parameters), which consists of the percentage
of the compared salient regions in the database and the average number of regions/frame for input regions that are
found, not found, and the total.

TABLE II

ASSOCIATE ANDFOUNDERSPARK EXPERIMENTAL RESULTS

Number of Segments: 9 Number of Landmarks in Database: 4664
Number of Training Sessions: 10 Number of Salient Regions/landmark: 17.69
Number of testing frames: 6006 Number of Salient Regions: 82502

Search Order Policy
found not found total error

% search # of sreg./fr. % search # of sreg./fr. % search # of sreg./fr. (ft.)

random priority 24.87% 3.52 ± 1.14 100.00% 1.47± 1.14 46.96% 4.98± 0.14 7.48± 10.33

segment priority 5.77% 3.52 ± 1.14 100.00% 1.47± 1.14 33.47% 4.98± 0.14 7.60± 10.00

saliency priority 5.24% 3.52 ± 1.14 100.00% 1.47± 1.14 33.09% 4.98± 0.14 7.25 ± 9.92

location priority 2.36% 3.52 ± 1.14 100.00% 1.47± 1.14 31.06% 4.98± 0.14 7.35 ± 9.45

combination 0.86% 3.52 ± 1.14 100.00% 1.47± 1.14 30.00% 4.98± 0.14 7.07 ± 9.29

combination + early exit 0.54% 2.84 ± 0.68 7.41% 2.14± 0.68 3.50% 4.98± 0.14 6.55 ± 5.20

TABLE III

FREDERICKD. FAGG PARK EXPERIMENTAL RESULTS

Number of Segments: 9 Number of Landmarks in Database: 4808
Number of Training Sessions: 11 Number of Salient Regions/landmark: 18.86
Number of testing frames: 8823 Number of Salient Regions: 90660

Search Order Policy
found not found total error

% search # of sreg./fr. % search # of sreg./fr. % search # of sreg./fr. (ft.)

random priority 29.33% 3.02 ± 1.24 100.00% 1.75 ± 1.25 55.30% 4.77± 0.72 15.21 ± 19.37

segment priority 8.85% 3.05 ± 1.24 100.00% 1.73 ± 1.25 41.85% 4.78± 0.71 14.56 ± 17.44

saliency priority 8.18% 3.05 ± 1.24 100.00% 1.73 ± 1.25 41.41% 4.78± 0.71 14.00 ± 15.89

location priority 3.50% 3.05 ± 1.24 100.00% 1.73 ± 1.25 38.45% 4.78± 0.71 14.44 ± 15.23

combination 1.28% 3.05 ± 1.24 100.00% 1.73 ± 1.25 37.02% 4.78± 0.71 13.95 ± 16.14

combination + early exit 0.82% 2.57 ± 0.81 12.31% 2.21 ± 0.92 6.12% 4.78± 0.71 12.96 ± 11.40

optimum priority and the rest to the fact that prioritization
indirectly influences the salient region recognition step,given
that the database search ends after the first match is found.
This is especially true because the number of SIFT keypoints
in salient region windows is lower than if we were to use
the whole scene (as low as single digits). Although this
speeds up the process by having to compare less data, it
may have a downside of turning up incorrect matches (false
positives). However, this is where additional context cues
that can be matched at a faster rate (for example, gist vector,

which encode the coarse layout of the image) can minimize
the errors. If there is a coincidental match, a number of
independent factors would also have to be in agreement. And,
in order to significantly perturb the system, because of the
use of Monte Carlo localization, that match would have to
persist for some time.

It should be noted, however, that from the random pri-
oritization (or context information being taken out) results,
it appears that salient features plus the neighborhood SIFT
keypoints are enough to find correct region matching. Most



of the times, in our testing, when the system returns a positive
region match, it is a correct assessment. The problem with
the matching method is that it has its fair number of false
negatives.

On each site, using the optimum priority with early exit
strategy, the system only needs to make a small number of
comparisons (0.85%, 0.54%, and 0.82% of the database, re-
spectively) to obtain salient regions matches, which is better
than just using individual priority terms (segment, saliency,
or location) because it has both the instantaneous appearance
and temporal factor. In addition, it is encouraging to see
that a high percentage of the regions is found early when
compared to the eventual total found (2.50/2.77, 2.84/3.52
and 2.57/3.05 per image, respectively). This indicates that the
early exit policy works, here only performing 7.35%, 3.50%,
and 6.12% of the total possible comparisons; a significant
speed up, when compared with the random (no context)
priority: 8.04 (59.06%/7.35%), 13.42 (46.96%/3.50%), and
9.04 (55.30%/6.12%) times, respectively.

IV. DISCUSSIONS AND CONCLUSIONS

At the start we set out to optimize the speed-accuracy
tradeoffs in the recognition process for vision localization.
In this work, we achieved a workable compromise and done
so with minimization in three different levels: the number
of features associated for each entry in the database, the
number of entries in the database, and the number of run-
time comparisons needed to determine if there is a match.

With the use of the saliency model we can automatically
identify a visually distinct part of an input image which
allows the system to crop out a small window called the
salient region. The effect of this operation is that we only
have to compare a small subset of the SIFT keypoints
for faster matching time. And because the system provides
context from gist and saliency features, possible increase
in false positives are minimized, as reflected in the end
localization result.

To lower the number of salient regions stored in the
database while still keeping all the necessary information, we
play to the strength of individual entries (scale and in-plane
rotation invariance) and only add new instances when they
reduce the weaknesses (out-of-plane view-point and lighting
changes). During individual database construction, viewpoint
invariance is the main reason why we add a salient region
to a landmark. Lighting invariance, on the other hand, is
achieved by training the system on multiple lighting condi-
tions. However, because there is enough lighting overlap, we
are able to make connections between landmarks that depict
the same point of interest and but are created in different
training sessions.

The on-line landmark database search prioritization is the
culmination of the benefit of using a multi-expert, multi-
level approach. By prioritizing the order of salient region
matching, we are able to cut the comparison percentage
down to single digits. The saved computation time can be
used to perform more robust and sophisticated recognition.

For example, if there is an improvement needed, it would
be to add visual cues that work across wider range of
lightings. Also, in addition to the presented prioritization
factors it would be easy to add temporal shortcuts such as
always compare the previous 10 matched landmarks first. In
the same spirit, we can also add recently matched session
priority, which, in effect, provide lighting condition priming.
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