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Abstract—We present a robot localization system using
biologically-inspired vision. Our system models two extensively
studied human visual capabilities: (1) extracting the “gist” of
a scene to produce a coarse localization hypothesis, and (2)
refining it by locating salient landmark points in the scene.
Gist is computed here as a holistic statistical signature ofthe
image, yielding abstract scene classification and layout. Saliency
is computed as a measure of interest at every image location,
efficiently directing the time-consuming landmark identification
process towards the most likely candidate locations in the image.
The gist features and salient regions are then further processed
using a Monte-Carlo localization algorithm to allow the robot
to generate its position. We test the system in three different
outdoor environments — building complex (38.4x54.86m area,
13966 testing images), vegetation-filled park (82.3x109.73m area,
26397 testing images), and open-field park (137.16x178.31marea,
34711 testing images) — each with its own challenges. The system
is able to localize, on average, within 0.98, 2.63, and 3.46m,
respectively, even with multiple kidnapped-robot instances.

Index Terms—Gist of a scene, saliency, scene recognition,
computational neuroscience, image classification, image statistics,
landmark recognition, robot vision, robot localization.

I. I NTRODUCTION

T HE problem of localization is central to endowing mobile
machines with intelligence. Range sensors such as sonar

and ladar [1], [2] are particularly effective indoors due tomany
structural regularities such as flat walls and narrow corridors.
In the outdoors, these sensors become less robust given all
the protrusions and surface irregularities [3]. For example,
a slight change in pose can result in large jumps in range
reading because of tree trunks, moving branches, and leaves.
GPS, coupled with other sensors or by itself [4], has also
been extensively used. However, GPS may not be applicable
in environments where there is no satellite visibility, such as
underwater, in caves, indoors, or on Mars. In those places,
vision, our main perceptual system for localization, should be
a viable alternative.

We first describe traditional vision localization techniques as
background information to better demonstrate the advantages
of using biological approaches. In section I-B, we then intro-
duce a robust biologically plausible vision system that concur-
rently observes a scene from two contrasting perspectives:its
rough overall layout (using gist) and detailed recognitiononly
on select globally conspicuous locations (using saliency). In
addition, section I-C describes how using topological maps,
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which is analogous to how humans deal with spatial informa-
tion, allows for a compact and accurate representation.

A. Traditional Vision-Based Localization

Existing vision-based localization systems can be catego-
rized along several lines. The first one is according to image-
view types, where some systems use ground-view images [5],
[6] and others use omni-directional images [7], [8]. Another
categorization is according to localization goal, such as actual
metric location [9] or a coarser place or room number [7]. Yet
another grouping is according to whether or not the system
is provided with a map, or must build one as it locates itself
(SLAM) [10], [11].

One additional categorization to consider comes from the
vision perspective, which classifies systems according to visual
feature type: local and global features. Local features arecom-
puted over a limited area of the image, whereas global features
pool information over the entire image, e.g., into histograms.
Before analyzing various approaches, which by no means is
exhaustive, it should be pointed out that, like other vision
problems, any localization and landmark recognition system
faces the general issues of occlusion, dynamic background,
lighting, and viewpoint changes.

A popular starting point for local features are SIFT key-
points [12]. There have been a number of systems that utilize
SIFT features [5], [13] in recent years for object recognition
because they can work in the presence of occlusion and
some viewpoint changes. Other examples of local features
are SURF [14] and GLOH [15]. Some systems [16], [17]
extend their scope of locality by matching image regions to
recognize a location. At this level of representation, the major
hurdle lies in achieving reliable segmentation and in robustly
characterizing individual regions. This is especially difficult
with unconstrained environments such as a park full of trees.

Global feature methods usually rely on comparing image
statistics for color [7], [8], textures [6], or a combination of
both [18], [19]. Holistic approaches, which do not have a
segmentation stage, may sacrifice spatial information (feature
location). Yet, some systems [6], [18] try to recover crude
spatial information by using a predefined grid and computing
global statistics within each grid tile. These methods are
limited, for the most part, to recognizing places (e.g. rooms in
a building, as opposed to exact metric geographical locations)
because with global features, it is harder to deduce a change
in position even when the robot moves considerably.
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B. Biologically Plausible Scene Recognition

Today, with many available studies in human vision, there is
a unique opportunity to develop systems that take inspiration
from neuroscience and bring a new perspective in solving
vision-based robot localization. For example, even in the initial
viewing of a scene, the human visual processing system
already guides its attention to visually interesting regions
within the field of view. This extensively studied early course
of analysis [20]–[23] is commonly regarded as perceptual
saliency. Saliency-based or “bottom-up” guidance of attention
highlights a limited number of possible points of interest in
an image, which would be useful [24] in selecting landmarks
that are most reliable in a particular environment (a chal-
lenging problem in itself). Moreover, by focusing on specific
sub-regions and not the whole image, the matching process
becomes more flexible and less computationally expensive.

Concurrent with the mechanisms of saliency, humans also
exhibit the ability to rapidly summarize the “gist” of a scene
[25]–[27] in less than 100ms. Human subjects are able to
consistently answer detailed inquiries such as the presence of
an animal in a scene [28], [29], general semantic classification
(indoors vs. outdoors, room types: kitchen, office, etc.) and
rough visual feature distributions such as colorful vs. gray-
scale images or several large masses vs. many small objects
in a scene [30], [31]. It is reported that gist computations may
occur in brain regions which respond to “places”, that is, prefer
scenes that are notable by their spatial layout [32] as opposed
to objects or faces. In addition, gist perception is affected by
spectral contents and color diagnosticity [33], which leads to
the implementation of models such as [34], [35].

In spite of how contrasting saliency and gist are, both
modules rely on raw features that come from the same area, the
early visual cortex. Furthermore, the idea that gist and saliency
are computed in parallel is demonstrated in a study in which
human subjects are able to simultaneously discriminate rapidly
presented natural scenes in the peripheral view while being
involved in a visual discrimination task in the foveal view
[36]. From an engineering perspective it is an effective strategy
to analyze a scene from opposite coarseness levels, a high-
level, image-global layout (corresponding to gist) and detailed
pixel-wise analysis (saliency). Also, note that, while saliency
models primarily utilize local features [23], gist features are
almost exclusively holistic [6], [18], [33]. Our presentedmodel
(figure 1) seeks to employ the two complementary concepts
of biological vision, implemented faithfully and efficiently, to
produce a critical capability such as localization.

After early preprocessing at both retina and LGN (figure 1),
the visual stimuli arrive at Visual Cortex (cortical visualareas
V1, V2, V4, and MT) for low-level feature extractions which
are then fed to saliency and gist modules. Along the Dorsal
Pathway or “where” visual processing stream [37] (posterior
parietal cortex), the saliency module builds a saliency map
through the use of spatial competition of low-level featurere-
sponses throughout the visual field. This competition silences
locations which, at first, may produce strong local feature re-
sponses but resemble their neighboring locations. Conversely,
the competition strengthens points which are distinct from

Fig. 1. A sketch of the full system with each sub-system projected onto
anatomical locations that may putatively play similar roles in human vision.

their surroundings. On the contrary, in the Ventral Pathway
or the “what” visual processing stream (Inferior Temporal
cortex), the low-level feature-detector responses are combined
to yield a gist vector as a concise global synopsis of the scene
as a whole. Both pathways end up at the pre-frontal cortex
where conscious decisions and motor commands are formed.
In this paper, we concentrate mostly on the biologically-
inspired localization computations of the ventral pathway.

C. Topological Maps

In addition to biological vision, our utilization of topological
maps also draws from various human experiments. A topolog-
ical map [38], [39], which refers to a graph annotation of an
environment, assigns nodes to particular places and edges as
paths if direct passage between pairs of places (end-nodes)ex-
ist. One of the distinct ways humans manage spatial knowledge
is by relying more on topological information than metric.
That is, although humans cannot estimate precise distances
or directions [40], they can draw a detailed and hierarchical
topological (or cognitive) map to describe their environments
[41]. Nevertheless, approximate metric information is still
deducible and is quite useful. In addition, the amount of
added information is not a heavy burden (in terms of updating
and querying) for the system, because of the concise nature
of a basic graph organization. This is in sharp contrast to
a more traditional metric grid map in robotics localization
literature [1], [9], where every area in the map is specified
for occupancy, as opposed to being assumed untraversable if
not specified as places or paths.

In our system, as well as a number of others [38], [42],
we use an augmented topological map with directed edges.
The map has an origin and a rectangular boundary, and each
node has a Cartesian coordinate. In addition, each edge has a
cost, which is set to the distance between the corresponding
end-nodes. This way the system benefits from the compact
representation of a graph while preserving the important metric
information of the environment. The robot state (position and
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Fig. 2. Diagram for the Vision Localization System. From an input image the system extracts low-level features consisting of center-surround color, intensity,
and orientation that are computed in separate channels. They are then further processed to produce gist features and salient regions. We then compare them
with previously obtained environment visual information.The results are used to estimate the robot’s location.

viewing direction) is represented by a point which can lie on
a node or an edge.

It should be noted that various parts of our system, such
as the localization module (we use a standard probabilistic
approach [1], [9], [10]) may not be biologically plausible.
This is why we simply claim that the system is biologically
inspired. Our philosophy is that although we are committed
to studying biological systems (human vision in particular),
we also would like to build systems that are useful in the real
world now. We see this dual intention as a two-way street,
where engineering ideas can help bring inspiration to explain
scientific phenomena, not just the other way around in building
neuromorphic robots.

II. DESIGN AND IMPLEMENTATION

In this paper we describe our biologically inspired vision
localization system. We have reported in [18] our gist-based
place recognition system, which is only a part of the presented
system. We define the gist features as a low-dimensional
vector (compared to raw image pixel array) that represents
a scene and can be acquired over very short time frames.
Place classification based on gist then becomes possible if
and when the vector can be reliably classified as belonging
to a given place. In the presented system, we also utilized
salient landmarks obtained from the attention system to refine
the place estimation to a more accurate metric localization.
Previously [43], we reported a preliminary result. Here, the
original contribution is explaining the system in more detail
(especially the salient landmark acquisition and recognition)
and, more importantly, rigorously testing it in multiple chal-
lenging outdoor environments at various times of the day to

demonstrate its lighting invariance. In addition, we also test
the individual modules within the system — salient region
recognition (a local-feature system) and gist-based localization
— to gauge their contributions to the end result.

The localization system (illustrated in figure 2) is divided
into 3 stages: feature extraction, recognition, and localization.
The first takes a camera image and outputs gist features and
salient regions. In the next stage, we compare them with
memorized environment visual information. These matches are
input to the localization stage to decide where the robot is.

The term salient region refers to a conspicuous area in an in-
put image depicting an easily detected part of the environment.
An ideal salient region is one that is persistently observedfrom
different points of view and at different times of the day. A
salient region does not have to isolate a single object (often
times it is part of an object or a jumbled set of objects), it just
has to be a consistent point of interest in the real world. To this
end, the set of salient regions that portray the same point of
interest are grouped together and the set is called a landmark.
Thus, a salient region can be considered as an evidence of
a landmark and “to match a salient region with a landmark,”
means to match a region with the landmark’s saved regions. It
is also important to note that the process of discovering salient
regions is done using biological computations, but the process
of region matching is not. We use SIFT keypoints [12] because
they are the current gold standard for pattern recognition.

Within the augmented topological map we group an area
in the environment as a segment. A segment is an ordered
list of edges with one edge connected to the next to form
a continuous path. This grouping is motivated by the fact
that views/layout in one path-segment are coarsely similar.
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An example is the selected three-edge segment (highlighted
in green) in the map in figure 2. Geographically speaking,
a segment is usually a portion of a hallway, path, or road
interrupted by a crossing or a physical barrier at both ends for
a natural delineation. The term segment is roughly equivalent
to the generic term “place” for place recognition systems
(mentioned in section I-A), which refer to a general vicinity of
an environment. With this, the robot location can be noted as
both Cartesian coordinate(x, y) or a pair of segment number
snum and the fraction of length traveled (between 0.0 to 1.0)
along the pathltrav.

In the following sub-sections we will describe the details of
each of the three stages in its order of operation.

A. Feature extraction: Gist and Salient Regions

The shared raw low-level features (which emulate the ones
found in the visual cortex) for gist [18] and saliency [22],
[44] models are filter outputs computed in color, intensity,
and orientation channels. Within them, there are sub-channels
to account for sub-categories: color opponencies (in color
channel), degree orientation (orientation channel), intensity
opponency (intensity channel). Each sub-channel has a nine-
scale pyramidal representation of filter outputs. Within each
sub-channel, the model performs center-surround operations
(commonly found in biological-vision which compares im-
age values in center-location to their neighboring surround-
locations) between filter output maps at different scales in
the pyramid. These center-surround maps (also called feature
maps) are then fed into both gist and saliency modules.

1) Gist Feature Extraction:The gist model [18] computes
average values (biologically plausible accumulation opera-
tions) from 4-by-4 grid sub-regions of the feature maps. Figure
2 illustrates gist extraction on an intensity feature map. By
doing so, we encode information from various visual domains
with a small number of values, while still taking into account
coarse spatial information. The raw gist feature dimensionis
544: 34 feature maps (from all sub-channel center-surround
combinations) times 16 regions per map.

2) Salient Region Selection and Segmentation:The saliency
model [22], on the other hand, uses the feature maps to detect
conspicuity regions in each channel. It first performs a linear
combination (simple unweighted pixel-wise addition) between
feature maps within each channel to produce conspicuity maps
(one per channel). The model then combines the maps through
winner-take-all mechanisms, which emphasize locations that
substantially differ from their neighbors, to yield a saliency
map. We then further process the saliency map to produce a
set of salient regions (figure 3).

The system starts at the pixel location of the saliency map’s
highest value. To extract a region that includes the point, we
use a shape estimator algorithm [45] (region growing with
adaptive thresholding) to segment the feature map that gives
rise to it. To find the appropriate feature map, we compare
the values of the conspicuity maps at the salient location and
select the channel with the highest value (this is the winning
channel). Within the winning channel, we compare values at
the same location for all the feature maps. The one with the
highest value is the winning center-surround map.

Fig. 3. A salient region is extracted from the center-surround map that gives
rise to it. We use a shape estimator algorithm to create a region-of-interest
(ROI) window and use inhibition-of-return (IOR) in the saliency map to find
other regions.

The system then creates a bounding box around the seg-
mented region. Initially, we fit a box in a straight-forward
manner: find smallest-sized rectangle that fits all connected
pixels. The system then adjusts the size to between 35% and
50% in both the image width and height, if it is not yet within
the range. This is because small regions are hard to recognize
and overly large ones take too long to match. In addition,
the system also creates an inhibition-of-return (IOR) maskto
suppress that part of the saliency map to move to subsequent
regions. This is done by blurring the region with a Gaussian
filter to produce a tapering effect at the mask’s border. Also,
if a new region overlaps any previous regions by more than
66%, it is discarded but is still suppressed.

We continue until 1 of 3 exit conditions occur: unsegmented
image area is below 50%, number of regions processed is
5, and the saliency map value of the next point is lower
than 5% of the first (most salient). We limit the regions to
5 because, from experiments, subsequent regions have a much
lower likelihood of being repeatable in testing. Figure 4 shows
extraction of 5 regions. There are reasons why multiple regions
per image is better. First, additional perception (there are
many salient entities within the field of view) contributes to a
more accurate localization, given the possibility of occlusion
in an image. Second, the first region may be coincidental
or a distraction. In figure 4, the first one returned is a ray
of sunshine hitting a building. Although from the saliency
perspective, it is correct, it is not a good location cue. The
second region is better because it depicts details of a building.

B. Segment and Salient Region Recognition

This stage attempts to match the visual stimuli (salient
regions and gist features) with stored environment information.
The results are then used to localize at the next stage. The
system acquires the information through two training steps:
building a landmark database and training a segment classifier
using gist features. The procedure involves a guided traversal
of the robot through all the paths in the map. As the robot
moves about the environment, we store the salient regions
found along with the corresponding robot locations when they
are discovered. We perform the traversal several times for
ample lighting coverage. At the same time, we also store the
gist features from each input frame for segment classification
training. To determine how many segments to classify, we
group the edges according to view similarity by a human
operator estimation. The operator uses a simple heuristic:start
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Fig. 4. Process of obtaining multiple salient regions from aframe, where the IOR mask (last row) dictates the shift in attention of the system to different
parts of the image.

a new segment and stop the previous one when an abrupt
visual change occurs. This is usually because an intersection
is reached and the robot is turning in place to another direction.

The following sub-sections describe the run-time matching
process, and formulate the output for our back-end Monte
Carlo localization (MCL) module [1], [9], [10]. Within the
MCL framework, we need to provide observation models to
weight the likelihood of a particular observation to occur in
a given state. The system observes two types of evidence:
segment classification and matched salient regions.

1) Segment Classification:The segment estimator is imple-
mented as a 3-layer neural network classifier trained using the
back-propagation algorithm on gist features that have already
undergone PCA/ICA dimension reduction [18]. One of the
main reasons why the classifier succeeds is because of the
decision to group edges into segments. It would have been
difficult to train an edge-classifier using coarse features like
gist as adjacent edges that are part of the same segment usually
are moving toward the same general direction and thus tend
to share a lot of the background scene. Each segment in the
environment has an associated classifier output node and the
output potential is the likelihood that the scene belongs tothat
segment, stored in a vectorz

′

t to be used as an observation
where

z
′

t = { svalt,j } j = 1 ... Nsegment (1)

with svalt,j being the segment likelihood value for timet
and segmentj is one ofNsegment segments.

2) Salient Region Recognition:In order to recall the stored
salient regions we have to find a robust way to recognize
them. We use two sets of signatures: SIFT keypoints [12]
and salient feature vector. We employ a straight-forward SIFT
recognition system [12] (using all the suggested parameters
and thresholds) but consider only regions that have more than
5 keypoints to ensure that the match is not a coincidence.

A salient feature vector [43] is a set of values taken from a
5-by-5 window centered at the salient point location (yellow
disk in figure 5) of a regionsreg. These normalized values
(between 0.0 to 1.0) come from the sub-channels’ feature maps
[22], [44] for all channels (color, intensity, and orientation). In
total, there are 1050 features (7 sub-channels times 6 feature
maps times 5x5 locations). Because the feature maps are
produced in the previous feature extraction step (section II-A),
even though they are computed over the entire image for each
visual domain, from the salient feature vector perspective, they
come at almost no computational cost.

To compare salient feature vectors from two salient regions
sreg1 andsreg2, we factor in both feature similaritysfSim

(equation 2) and salient point location proximitysfProx

(equation 3). The former is based on the Euclidian-distance
in feature space:

sfSim(sreg1, sreg2) = 1 −

√

∑Nsf

i=1
(sreg1,i − sreg2,i)2

Nsf

(2)
Nsf is the total number of salient features. For a match to
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be confirmed, the feature similarity has to be above .75 out
of the maximal 1.0. The location proximitysfProx, on the
other hand, is the Euclidian distance in pixel units (denoted by
the functiondist), normalized by the image diagonal length:

sfProx(sreg1, sreg2) = 1 −
dist(sreg1, sreg2)

lDiagonal

(3)

The positive match score threshold for the distance is 95%
(within 5% of input image diagonal). Note that the proximity
distance is measured after aligningsreg1 andsreg2 together,
which is after a positive SIFT match is ascertained (observe
the fused image in figure 5). The SIFT recognition module
estimates a planar (translational and rotational) transformation
matrix [12] that characterizes the alignment. In short, individ-
ual reference-test keypoint pairs are first compared based on
the descriptor’s similarity. Each matched pair then “votes” for
possible 2D affine transforms (there is no explicit notion of
an object location in 3D space) that relate the two images.
An outlier elimination is performed using the most likely
transform given all matches. Using the remaining pairs, we
compute a final affine transform. With this matrix, the system
can check the alignment disparity between the two regions’
salient point location.

Fig. 5. Matching process of two salient regions using the SIFT keypoints
(drawn as red disks) and salient feature vector, which is feature map values
taken at the salient point (drawn as the yellow disk). The lines indicate the
correspondences that are found. The fused image is added to show that we
also estimate the pose change between the pair.

Once the incoming salient regions are compared with the
landmark database, the successful matches (ones which pass
both salient feature vector and SIFT match thresholds de-
scribed above) are denoted as observationz

′′

t , where

z
′′

t = { omatcht,k }, k = 1 ... Mt (4)

with omatcht,k being thek-th matched database salient
region at timet. Mt denotes the total number of positive
matches at timet. Note that the recognition module may not
produce an observation for every timet, it is possible that it
finds no matches,Mt = 0.

C. Monte-Carlo Localization

We estimate robot position by implementing Monte-Carlo
Localization (MCL) which utilizes Sampling Importance Re-
sampling (SIR) [1], [9], [10]. We formulate the location belief
stateSt as a set of weighted particles:St = {xt,i, wt,i} i =

1 ... N at time t andN being the number of particles. Each
particle (possible robot location)xt,i is composed of a segment
numbersnum and percentage of length traveledltrav along
the segment edges,xt,i = {snumt,i, ltravt,i}. Each particle
has a weightwt,i, which is proportional to the likelihood of
observing incoming data modeled by the segment and salient
region observation model (explained in sections II-C2 and
II-C3 below, respectively). Note that the segment observation
is applied before salient region observation because segment
estimation can be calculated almost instantaneously whilethe
salient region matching is much slower. We have not tried it,
but, if the order of application is reversed, we believe that
the results would be similar given that the observations are
integrated over time. From experiments,N = 100 suffices
for the simplified localization domain where a hallway is
represented by an edge and not a two dimensional space. We
tried N as high as 1000 with unnoticeable performance or
computation speed change. WithN = 50 the performance
starts to degrade, namely in kidnapped robot instances. We
estimate the location beliefBel(St) by recursively updating
posterior p(St|z

t, ut) — zt being an evidence andut the
motion measurement using [46]:

Bel(St) = p(St|z
t, ut) (5)

= αp(zt|St)

∫

St−1

p(St|St−1, ut)Bel(St−1) dSt−1

We first compute p(St|St−1, ut) (called the predic-
tion/proposal phase) to take robot movement into account
by applying the motion model to the particles. Afterwards,
p(zt|St) is computed in the update phase to incorporate the
visual information by applying the observation models —
segment estimationz

′

t (eqn. 1) and matched salient regions
z

′′

t (eqn. 4) — to each particle for weighted resampling steps.
The following algorithm shows the order in which the system
computes belief estimationBel(St) at each time stept:

1) apply motion model toSt−1 to createS
′

t

2) apply segment observation model toS
′

t to createS
′′

t

3) if (Mt > 0)
a) apply salient region observation model toS

′′

t to
yield St

b) elseSt = S
′′

t

Here, we specify two intermediate states:S
′

t and S
′′

t . S
′

t

is the belief state after the motion model is applied to the
particles.S

′′

t is the state after the segment observation (first
step of update phasep(zt|St)) is subsequently applied to
S

′

t. Segment observation application is done by weighted
resampling using likelihood functionp(z

′

t|x
′

t,i) (equation 6
below) as weights. This function denotes the likelihood that a
segment estimationz

′

t is observed at locationx
′

t,i. Afterwards,
the salient region observation model (second step of update
phasep(zt|St)) is applied to the belief stateS

′′

t to produce
St. This is done with weighted resampling using the likelihood
functionp(z

′′

t |x
′′

t,i) (equation 7 below) as weights, representing
the likelihood that salient region matchz

′′

t is found atx
′′

t,i.
1) Motion Model: The system employs a straightforward

motion model to each particlex
′

t−1,i in St−1 by moving it
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Fig. 6. A snapshot of the system test-run. Top-left (main) image contains the salient region windows. Green window meansa database match, while red is
not found. A salient region match is displayed next to the main image. Below the main image is the segment estimation vector derived from gist (there are 9
possible segments in the environment). The middle image projects the robot state onto the map: cyan disks are the particles, the yellow disks are the location
of the matched database salient region, the blue disk (the center of the blue circle, here partially covered by a yellow disk) is the most likely location. The
radius of the blue circle is equivalent to five feet. The right-most histogram is the number of particles at each of the 9 possible segments. The robot believes
that it is towards the end of the first segment, which is correct within a few feet.

with the distance traveled (odometry readingut) plus noise to
account for uncertainties such as wheel slippage. We model
this by drawing a particlex

′

t,i from a Gaussian probability
densityp(x

′

t,i|ut, xt−1,i), where the mean is the robot location
in the absence of noise and standard deviation of .1ft (about
1/6th of a typical single step). The latter controls the level
of noise in the robot movement measurement. From our
experiments, we find that this number does not affect the end
result as much because the neighborhood of particles arounda
converged location (observe the belief map in figure 6) is large
enough that motion error in any direction is well covered.

In the procedure, the distribution spawns a new location by
only changing the length traveledltrav portion of a particle
x

′

t,i. It is then checked for validity with respect to the map as
ltrav has a range of 0.0 to 1.0. If the value is below 0.0, then
the robot has moved back to a previous segment in the path,
while if it is above 1.0, the robot has moved to a subsequent
segment. We take care of these situations by changing the
segmentsnum and normalizing the excess distance (from the
end of original segment) to produce a correspondingltrav.
If the original segment ends in an intersection with multiple
continuing segments, we simply select one randomly. If no
other segment extends the path, we just resample.

2) Segment-Estimation Observation Model:This model es-
timates the likelihood that the gist feature-based segmentesti-
mation correctly predicts the assumed robot location. So, we
weigh each location particlex

′

t,i in S
′

t with w
′

t,i = p(z
′

t|x
′

t,i)
for resampling (with added 10 percent random particles to
avoid the well known population degeneration problem in
Monte Carlo methods) to create beliefS

′′

t . We take into
account the segment-estimation vectorz

′

t by using:

p(z
′

t|x
′

t,i) =
svalt,snum

′

t,i

∑Nsegment

j=1
svalt,j

∗ sval
t,snum

′

t,i
(6)

Here, the likelihood that a particlex
′

t,i observesz
′

t is
proportional to the percentage of estimation value of the
robot’s segment locationsval

t,snum
′

t,i

over the total esti-
mation value (first term) times the robot segment location
value (second term). The rationale for the first term is to
measure the segment’s dominance with respect to all values
in the vector; the more dominant the more sure we are that
the segment estimation is correctly predicting the particle’s
segment location. The second term preserves the ratio of the
robot segment location value with respect to maximum value
of 1.0 so that we can make a distinction of confidence level
of the segment estimation prediction. Note that the likelihood
function only makes use of the segmentsnum

′

t,i information
from particlex

′

t,i, while ltrav
′

t,i is left unused as the precise
location of the robot within the segment does not have any
effect on segment estimation.

3) Salient-Region-Recognition Observation Model:In this
model we want to measure the likelihood of simultaneously
observing the matched salient regions given that the robot is
at a given location. We weigh each particlex

′′

t,i in S
′′

t with
w

′′

t,i = p(z
′′

t |x
′′

t,i) for resampling (with added 20% random
noise, also to combat population degeneracy) to create belief
St+1 by taking into account the salient region matchesz

′′

t

using:

p(z
′′

t |x
′′

t,i) =

Mt
∏

k=1

p(omatcht,k|x
′′

t,i) (7)
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1 2 3 4 5 6 7 8 9

Fig. 7. Examples of images in each of the nine segments (with corresponding label) of ACB (first row), AnFpark (second row), and FDFpark (third row)

Given that each salient-region match observation is in-
dependent, we simply multiply each of them to calculate
the total likelihood. The probability of an individual match
p(omatcht,k|x

′′

t,i) is modeled by a Gaussian with the standard
deviation σ set to 5% of the environment map’s diagonal.
The likelihood value is the probability of drawing a length
longer than the distance between the particle and the location
where the matched database salient region is acquired.σ

is set proportional to the map diagonal to reflect how the
larger the environment, the higher the level of uncertainty. The
added noise is twice that of segment observation because the
salient region observation probability density is much narrower
and we find that 20% keeps the particle population diverse
enough to allow for dispersion and correct re-convergence
in a kidnapped robot event. Also, although the SIFT and
salient feature vector matching scores (explained in section
II-B2 above) are available for weights, we do not use them
in the likelihood function directly. These matching scores
were thresholded to come up with the positive salient region
matches we are now considering in this section. We do
not reason with match quality because the thresholds alone
eliminate most false positives.

Figure 6 illustrates how the system works together.

III. T ESTING AND RESULTS

We test the system at 3 sites (each has 9 segments) on
campus with example scenes of each occupying a row of figure
7. The same data is used to test the gist model [18] in segment
classification. In this work we localize to a coordinate location
within the map. The first site is the 38.4x54.86m Ahmanson
Center for Biological Research (ACB) building complex (first
row of figure 7). Most of the surroundings are flat walls with
little texture. The second site (second row) is a 82.3x109.73m
area comprising two adjoining parks full of trees: Associate
and Founders park (AnF). The third testing (third row) site is
the Frederick. D. Fagg park (FDF), a 137.16x178.31m open
area where large portions of the scenes are the sky.

We also compare our system, which employs both local
features (SIFT keypoints within salient regions and salient
feature vector at the salient point) as well as global (gist)
features with two systems that use only salient regions or only
gist features. The back-end Monte-Carlo localization modules
in all three instances are identical. For the SIFT-only system,

we take out the salient feature vector from the region signature
to end up with only SIFT features. Also, in [47] we have
compared our gist system with other place recognition systems
and found that the results are comparable. Thus, the gist-only
localization comparison may also be indicative of what place
recognition systems can do in a metric localization task.

The visual data is gathered using an 8mm handheld cam-
corder carried by a person. There is no camera calibration or
lens distortion correction which may help in salient region
matching. Because the data is recorded at approximately
constant speed and we record clips for individual segments
separately, we use interpolation to come up with the ground-
truth location. Also, the map (edge lengths and node locations)
is currently constructed manually. With this, we calculatethe
walking velocity using the distance of a particular path divided
by the amount of time it took for the person to traverse it
(identical to the clip duration). We can place the location of
the start and end of the clip because they are prespecified.
For the frame locations in between, we assume a uniform
capture interval to advance the person’s location properly. In
all experiments, a denoted error signifies a measured difference
(in feet) between the robot belief and this generated ground
truth location. To roughly mimic odometry noise such as
slippage, we add zero-mean Gaussian noise with a standard
deviation 1/6 the average walking speed for each site.

The main issue in collecting training samples is filming time
selection that includes all lighting conditions. Because lighting
space is hard to gauge, we perform trial-and-error to come up
with the times of day (up to 6 per day): from the brightest
(noon time) to the darkest (early evening). Note that 10 of
12 of the testing clips are taken at a different date than the
training clips. As for the two other clips, the testing data was
recorded in the early evening (dark lighting) while training
data was taken near noon (bright lighting). In all, there are
26,368 training and 13,966 testing frames for the ACB cite,
66,291 training and 26,387 testing frames for the AnF site,
and 82,747 training and 34,711 testing frames for the FDF
site.

Currently, we test the system offline on a 16-core 2.6GHz
machine, operating on 160x120 images. We time individual
sub-modules and find that the slowest part by far is the salient
region recognition process (3 seconds on average). This is in
spite of a parallel search implementation using 16 dispatched
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threads that compare input regions with different parts of
the landmark database. The gist and saliency computation
time (also implemented in parallel where each sub-channel
has its own thread) is about 20ms. In addition, the salient
region acquisition (windowing) takes 10ms, while the segment
estimation takes less than 1ms. The back end localization itself
takes less than 1ms as it only uses 100 particles.

A. Experiment 1: Ahmanson Center for Biological Research
(ACB)

Fig. 8. Lighting conditions used for testing at Ahmanson Center for Biology
(ACB). Clockwise from top left: late afternoon (trial 1), early evening (trial
2), noon (trial 4) , and mid-afternoon (trial 3)

This experiment site is chosen to investigate what the
system can achieve in a rigid and less spacious man-made
environment. Each segment (scenes displayed in first row of
figure 7) is a straight line and part of a hallway. Figure
8 depicts different lighting conditions that are tested: late
afternoon (trial 1), early evening with the lights already turned
on (2), mid-afternoon (3), and noon (4).

Table I shows the result with an overall error of 0.98m In
general, the error is uniformly distributed across segments,
although spikes in segments 2 and 5 are clearly visible. The
error rate for segment 2, which comes from trials 1, 2, and
4, occurred because the identified salient regions (mainly the
textured white building and its entrance door in figure 8) areat
the end of the hallway and they do not change sizes as much
even after a 3m robot displacement. It is also the case for the
error spike in segment 5 for trial 4, as the system latches to a
water tower (fifth image of the first row of figure 7).

The errors in segment 5 from trials 3 and 4 (bright lighting)
partially originate from the camera’s exposure control that tries
to properly normalize the range of frames with wide intensity
contrast (the scenes are comprised of very bright sky and dark
buildings) and it ends up darkening the building for a few
seconds — something to consider when selecting a camera to
film outdoor scenes. During this time, the segment estimator
produces incorrect values and the SIFT module is unable to
recognize any regions in the image, which throws off the robot
belief completely. It seems that for the system to fail, all parts
(saliency, SIFT, and gist matching) have to fail.

B. Experiment 2: Associates and Founders Park (AnF)

Fig. 9. Lighting conditions used for testing at Associate and Founders park
(AnF). Clockwise from top left: overcast (trial 1), early evening (trial 2), noon
(trial 4), and mid-afternoon (trial 3)

We compare experiment 1 results with, conceivably, a more
difficult vegetation-dominated site (scenes shown in the second
row of figure 7) that also has longer paths (about twice
the lengths of ACB segments). Figure 9 shows four lighting
conditions tested: overcast (trial 1), early evening with lights
already turned on (2), mid-afternoon (3), and noon (4). As
we can see in the images, there are fewer rigid structures and
the few object that exist in the environment (lamp posts and
benches) tend to look small with respect to the image size.
Also, objects can either be taken away (e.g. the bench in the
top right image in figure 9) or added such as service vehicles
parked or a large storage box placed in the park for a day. In
addition, whole scene matching using local features would be
hard because the tree leaves produce high numbers of random
texture-like patterns that significantly contaminate the process.

The results (table II) reveal an overall error of 2.63m
but with noticeably higher performance disparity between
segments. The errors are also different across trials for which
segment produces high displacements. On average (last col-
umn of the table) though, all segments have roughly equal
errors. Between trials, the error difference between the two dim
lighting trials (3 and 4) and the bright lighting trials (1 and 2)
is significant. It seems that low lighting, or more importantly
the lack of unpredictable and ephemeral sunlight (observe the
grass in the bottom two images of figure 9), allows for uniform
lighting and better correlation between training and testing
runs. In the end, although the results are worse than experiment
1, it is quite an accomplishment given the challenges presented
by the scenes and no by-hand calibration is done in moving
from the first environment to the second.

C. Experiment 3: Frederick D. Fagg park (FDF)

The third site is the Frederick D. Fagg park, an open area
used to assess the system’s response on sparser scenes (third
row of figure 7) and in an even larger environment (the
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TABLE I
AHMANSON CENTER FORBIOLOGY EXPERIMENTAL RESULTS

Trial 1 Trial 2 Trial 3 Trial 4 Total
Segment number error number error number error number error number error

frames (m) frames (m) frames (m) frames (m) frames (m)

1 387 0.96 410 1.02 388 0.73 411 0.75 1596 0.87
2 440 1.87 436 2.87 461 0.70 438 1.66 1775 1.76
3 465 1.06 485 0.69 463 0.89 474 1.35 1887 1.00
4 359 0.99 321 0.96 305 1.00 249 0.98 1234 0.98
5 307 1.17 337 0.62 321 1.77 319 1.96 1284 1.37
6 556 0.60 495 1.15 534 0.75 502 0.56 2087 0.76
7 438 0.48 445 0.60 398 0.85 400 0.82 1681 0.68
8 290 0.59 247 1.14 274 0.77 288 0.88 1099 0.83
9 341 0.66 373 0.50 313 0.60 296 0.59 1323 0.59

Total 3583 0.93 3549 1.08 3457 0.87 3377 1.06 13966 0.98

TABLE II
ASSOCIATE ANDFOUNDERSPARK EXPERIMENTAL RESULTS

Trial 1 Trial 2 Trial 3 Trial 4 Total
Segment number error number error number error number error number error

frames (m) frames (m) frames (m) frames (m) frames (m)

1 698 1.21 802 1.88 891 4.19 746 1.76 3137 2.36
2 570 2.40 328 1.90 474 5.76 474 1.90 1846 3.05
3 865 1.61 977 3.32 968 2.01 963 4.65 3773 2.93
4 488 3.20 597 1.73 688 1.57 632 2.85 2405 2.28
5 617 3.34 770 1.33 774 1.70 777 3.36 2938 2.39
6 1001 1.55 1122 1.80 1003 3.28 1098 3.38 4224 2.50
7 422 1.09 570 4.01 561 2.45 399 2.80 1952 2.68
8 598 2.52 692 3.11 797 2.21 768 1.68 2855 2.35
9 747 2.14 809 1.66 862 3.54 849 5.04 3267 3.14

Total 6006 2.06 6667 2.29 7018 2.89 6706 3.21 26397 2.63

segments are about 50% longer than the ones in the AnF
experiment, three times that of ACB). Figure 10 represents the
4 lighting conditions tested: late afternoon (trial 1), evening
(2), noon (3), and mid-afternoon (4).

Fig. 10. Lighting Conditions use for Testing at Frederick D.Fagg park (FDF).
Clockwise from top left: late afternoon (trial 1), evening (trial 2), noon (trial
4), and middle of afternoon (trial 3).

Table III shows the results, listing an overall error of 3.46m,
worse than the other two sites. It seems that an increase in
environment size affects the results. However, the more direct
cause is scale. Currently, the system uses the location of where
the matched database salient region is found as a hypothesis
of where the robot currently is. Because the SIFT module can
perform scale-invariant matching (with the scale ratio included
as part of the result), the system limits the matching-scale
threshold to between 2/3 and 3/2. This is not entirely effective
as a scale ratio of 0.8 (the region found is smaller than the
one matched in the database) can translate to a geographical
difference of 5m. This is because, in this environment, far
away buildings are salient and, as the robot moves toward
them, their appearance hardly changes. Thus, although these
are stable localization cues, they are not good for fine-grained
location pin-pointing. We would need closer (< 3m away)
regions.

One encouraging point is that the system seems to be able to
cope with a variety of lighting conditions. The results are better
than the preliminary results [43] because of better lighting
coverage in training despite the fact that training and testing
are done on separate days. In this site, for example, we have
dark (trial 1 and 2) and bright (trials 3 and 4) conditions, even
with long shadows cast on the field (trial 4 scene in figure 10).
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TABLE III
FREDERICKD. FAGG PARK EXPERIMENTAL RESULTS

Trial 1 Trial 2 Trial 3 Trial 4 Total
Segment number error number error number error number error number error

frames (m) frames (m) frames (m) frames (m) frames (m)

1 881 1.44 670 1.98 847 2.88 953 1.41 3351 1.90
2 788 6.57 740 4.92 797 2.30 878 3.99 3203 4.42
3 858 3.45 696 4.12 922 1.49 870 2.14 3346 2.71
4 837 4.54 740 4.28 837 1.97 821 4.59 3235 3.83
5 831 3.42 748 3.78 694 4.69 854 3.03 3127 3.68
6 1680 5.52 1565 3.84 1712 3.24 1672 3.79 6629 4.10
7 1037 3.44 923 2.97 857 3.34 894 3.35 3711 3.28
8 1172 4.94 1211 3.22 1355 2.19 1270 3.36 5008 3.38
9 739 3.03 825 2.73 794 3.67 743 3.75 3101 3.29

Total 8823 4.18 8118 3.54 8815 2.82 8955 3.29 34711 3.46

TABLE IV
MODEL COMPARISONEXPERIMENTAL RESULTS

System
ACB AnF FDF

Trial 1 Trial 2 Trial 3 Trial 4 Trial 1 Trial 2 Trial 3 Trial 4 Trial 1 Trial 2 Trial 3 Trial 4
err. (m) err. (m) err. (m) err. (m) err. (m) err. (m) err. (m) err. (m) err. (m) err. (m) err. (m) err. (m)

gist 7.81 7.37 9.12 6.09 13.09 18.24 20.12 14.28 23.96 26.12 24.46 27.25
SIFT 1.60 1.69 1.92 1.67 2.70 2.99 3.46 3.70 4.58 4.96 3.89 4.73

bio-system 0.93 1.08 0.87 1.06 2.06 2.29 2.89 3.21 4.18 3.54 2.82 3.29

D. Experiment 4: Sub-module Analysis

Table IV shows a comparison of systems that use only
local features (SIFT), only global features (gist features), and
the presented bio-system, which uses both global and local
features. The gist-only system cannot localize to the metric
level because it can only pin-point location to the segment
level and some segments have lengths that are more than 100
feet. The SIFT-only system, on the other hand, is close to
the presented system. However, there is a clear improvement
between the two. In the ACB site, the improvement is 42.53%,
from 1.72m in SIFT-only to 0.98m in our system, (one-sided
t-test t(27930) = −27.3134, p < 0.01), while the AnF site
is 18.65%, from 3.23m to 2.63m (one-sided t-testt(52792) =
−15.5403, p < 0.01), and the FDF site is 23.74% from 4.53m
to 3.46m (one-sided t-testt(69420) = −32.3395, p < 0.01).
On several occasions, the SIFT-only system completely mis-
placed the robot. In our system, whenever the salient region
(SIFT and salient feature vector) matching is incorrect, the
gist observation model is available to correct mistakes. In
contrast, the SIFT-only system can only make a decision
from one recognition module. Additionally, in kidnapped robot
situations (we inserted 4 instances per run for ACB and AnF,
and 5 for FDF, about once every several thousand frames),
the presented system is faster to correctly relocalize because
it receives twice the amount of observations (both global and
local) as the SIFT only system.

The search time for the SIFT-only model is also much
longer than our system. In our system, we use the gist features
(segment estimation) not only as an observation model, but
also as a context information for order of comparison between
input and stored salient regions. That is, we compare the
database salient regions from the most likely segment first.

By the same token, we also use the salient feature vector as
an initial comparison (if the salient feature vector between
reference and test region differs significantly, there is noneed
for SIFT matching). In [48] we showed that the technique cuts
down search time by at least 87%, a speed up of 8.

IV. D ISCUSSIONS ANDCONCLUSION

We introduced new ideas in vision localization which have
proven to be beneficial in our testing. The first is the use
of complementary gist and saliency features, implemented
in parallel using shared raw feature channels (color, inten-
sity, orientation), as study of human visual cortex suggests.
Through the saliency model, the system automatically selects
persistently salient regions as localization cues. Because the
system does not perform whole-scene matching (only regions),
the process is more efficient in the number of SIFT keypoints
compared. Also, the gist features, which come with saliencyat
almost no computation cost, approximate the image layout and
provide segment estimation. The system then performs multi-
level localization by using both as MCL observations. Many
scene-based methods [6]–[8] that are limited to recognizing
places indicate that their results can be used as a filter for
more accurate metric localization using finer yet more volatile
local features. Our system is the implementation of such an
extension.

Currently, segment estimation is used for both localization
and match ordering; we compare input regions with database
landmarks from the most likely segments first. Because robots
are real-time systems, it is a given that the database searchends
after the first match is found; the system does not have time to
consider all positive matches to find the best. Therefore, the
ordering indirectly influences the salient region recognition
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step. This method of utilization of multiple experts, whichis
in the spirit of hierarchical recognition, has been shown [49],
[50] to speed up the database search process.

As for performance benchmark, to the best of our knowl-
edge, we have not seen other systems tested in multiple
outdoor environments localizing to coordinate level. At 2005
ICCV Vision contest [51], teams have to localize from a
database of GPS-coordinates-tagged street-level photographs
of a stretch (1 city block) of urban street. The winner [52]
returns 9/22 answers within 4 meters of the actual location.
Most purely vision-based systems are tested indoors and report
just the recognition rate (whether the current view is correctly
matched with stored images), not the location.

One issue to discuss is the system’s readiness for au-
tonomous localization and navigation. With the current setup,
testing is done uni-directionally: all images are taken from
the same perspective, the middle of the road. In autonomous
control using lane following, a bit of swerving may occur. We
may need to consider training the system on a multidirectional
data set. However, recording from every perspective in the
environment may put the recognition systems, both segment
classification and salient region recognition, past their limits.
A workable compromise would be to have the camera pan left
to right (up to45◦) while the robot is on the road. We can
also add, in each of the stored salient regions, where the road
should be with respect to it, to aid road recognition.
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