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With the recent proliferation of robust but computationally demanding robotic algorithms, there is now a need
for a mobile robot platform equipped with powerful computing facilities. In this paper, we present the design
and implementation of Beobot 2.0, an affordable research-level mobile robot equipped with a cluster of 16 2.2-
GHz processing cores. Beobot 2.0 uses compact Computer on Module (COM) processors with modest power
requirements, thus accommodating various robot design constraints while still satisfying the requirement for
computationally intensive algorithms. We discuss issues involved in utilizing multiple COM Express modules
on a mobile platform, such as interprocessor communication, power consumption, cooling, and protection
from shocks, vibrations, and other environmental hazards such as dust and moisture. We have applied Beobot
2.0 to the following computationally demanding tasks: laser-based robot navigation, scale-invariant feature
transform (SIFT) object recognition, finding objects in a cluttered scene using visual saliency, and vision-based
localization, wherein the robot has to identify landmarks from a large database of images in a timely manner.
For the last task, we tested the localization system in three large-scale outdoor environments, which provide
3,583, 6,006, and 8,823 test frames, respectively. The localization errors for the three environments were 1.26,
2.38, and 4.08 m, respectively. The per-frame processing times were 421.45, 794.31, and 884.74 ms respectively,
representing speedup factors of 2.80, 3.00, and 3.58 when compared to a single dual-core computer performing
localization. C© 2010 Wiley Periodicals, Inc.

1. INTRODUCTION
In the past decade, researchers in the field of mo-
bile robotics have increasingly embraced probabilistic ap-
proaches to solving hard problems such as localization
(Fox, Burgard, Dellaert, & Thrun, 1999; Thrun, Fox, &
Burgard, 1998; Thrun, Fox, Burgard, & Dellaert, 2000), vi-
sion (Heitz, Gould, Saxena, & Koller, 2008; Wu & Nevatia,
2007), and multirobot cooperation (Fox, Burgard, Kruppa,
& Thrun, 2000; Thrun & Liu, 2003). These algorithms are far
more sophisticated and robust than the previous generation
of techniques (Brooks, 1986; Maes & Brooks, 1990; Pomer-
leau, 1993). This is because these contemporary techniques
can simultaneously consider many hypotheses in forms of
multimodal distributions. Because of that, however, they
are also far more computationally demanding. For exam-
ple, a visual recognition task, in which we need to com-
pare the current input image captured by a camera against
a large database of sample images (Bay, Tuytelaars, & Gool,
2006; Lowe, 2004; Mikolajczyk & Schmid, 2005), requires
not only that robust visual features be extracted from the
input image—which already is a computationally demand-
ing task—but also that these features be matched against
those stored in the database—an even more demanding
task when the database is large. As a point of reference,
comparing two 320 × 240 images using scale-invariant fea-
ture transform (SIFT) features (Lowe, 2004) can take 1–2 s
on a typical 3-GHz single-core machine. To be able to run
such algorithms in near real time, we need a mobile robot

equipped with a computing platform significantly more
powerful than a standard laptop or desktop computer.

However, existing indoor and/or outdoor mobile
robot platforms commercially available to the general re-
search community still appear to put little emphasis on
computational power. In fact, many robots, such as the Seg-
way RMP series (Segway, Inc., 2009), have to be separately
furnished with a computer. On the other hand, robots that
come equipped with multiple onboard computers either do
not use the most powerful computers available today [e.g.,
the Seekur (MobileRobots, Inc., 2009), which relies on the
less powerful PC/104 standard] or have fewer computers
(e.g., Carnegie Mellon University Robotics Institute, 2009;
Willow Garage, 2009) than our proposed solution.

Before describing the design and implementation of
our robot, in Section 1.1 we survey the current trends in the
mobile robot market and identify the most desirable fea-
tures in an ideal research robot (aside from our central re-
quirement of powerful computational facilities). Note that
some of the robots discussed below may no longer be avail-
able (or may never have been) to the general public. We in-
clude them nonetheless for completeness of our analysis.

We then describe our main contribution in Section 1.2,
the design and implementation of our proposed platform,
Beobot 2.0, a powerful mobile robot platform equipped
with a cluster of 16 2.2-GHz processing cores. Our robot
uses compact Computer on Module (COM) processors
with modest power requirements, thus accommodating
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various robot design constraints while still satisfying the
requirement for computationally intensive algorithms.

Our complete design specifications, including supplier
and cost information for almost all the materials, are freely
available on the Internet (Siagian, Chang, Voorhies, & Itti,
2009). As the manufacturing, assembly, and machining de-
tails are available online, in this paper we focus on (1) the
design decisions we made, the implementational issues we
faced, and how we resolved them, and (2) experimental
testing of the robot in diverse tasks.

1.1. Current Mobile Robot Platforms

In the current state of robotics, researchers utilize a
variety of mobile robots, from the commercially avail-
able (iRobot Corporation, 2009b; MobileRobots, Inc., 2009;
Willow Garage, 2009) to the custom made (Carnegie
Mellon University Robotics Institute, 2009). These robots
are built for many different environments, such as un-
derwater (iRobot Corporation, 2010; USC Robotics, 2009),
aerial (Finio, Eum, Oland, & Wood, 2009; He, Prentice, &
Roy, 2008), and land (Quigley & Ng, 2007; Salichs, Barber,
Khamis, Malfaz, Gorostiza, et al., 2006). Here we focus on
land robots of a size close to that of an adult human that
can traverse most urban environments, both indoors and
outdoors, and for considerable distances. In addition, it is
versatile enough for research in many subfields such as lo-
calization/navigation, human–robot interaction, and mul-
tirobot cooperation.

Furthermore, we primarily focus on sites that are simi-
lar to a college campus setting, which is mostly paved with
some rough/uneven roads, not terrains that one would
see in combat zones. Nowadays, because there is a con-
certed effort by most governments to make pertinent loca-
tions accessible to the disabled (using wheelchairs), legged
robots [from the small QRIO and AIBO by Sony (Sony
Entertainment Robot Europe, 2009) to the human-sized
Honda Asimo (American Honda Motor Co., Inc., 2009)]
are no longer a must. A wheeled platform would suffice
for the target environments. However, the ability to tra-
verse reasonably sloped terrain (about 10 deg) should also
be expected. Also, some form of weather protection in the
outdoors is essential. Although the robot is not expected
to operate in all kinds of harsh weather (pouring rain,
for example), like Seekur and Seekur jr. by MobileRobots
(MobileRobots, Inc., 2009) and IRobot’s PackBot (iRobot
Corporation, 2009a), it should nevertheless be able to han-
dle most reasonable conditions.

An overall size that is close to that of an adult human
is ideal because the robot would be small enough to go
through narrow building corridors and yet large enough
to travel between buildings in a timely manner. And thus
we exclude small robots such as the Khepara (AAI Canada,
Inc., 2009) or large robotized cars such as the entries to
the DARPA Grand Challenge. Smaller robots such as the
Roomba (iRobot Corporation, 2009b) and Rovio (Evolution

Robotics, Inc., 2009) and slightly larger ones such as the Pi-
oneer (MobileRobots Inc., 2009) are also excluded because
of their lower payload capacity, which limits the amount of
computing that can be carried to a single laptop.

Aside from mobility, a few other important features
contribute to the usability of the robot. They are battery life,
sensors, interfaces, and available software. An ideal bat-
tery system would be one that enables the user to run for a
whole day without having to recharge. The two factors that
matter here are the total charge carried and the amount of
charge required to operate the robot. The latter is dictated
by the total weight of the robot and power consumption of
the computers and devices. These requirements should be
decided first. On that basis, the former can then be adjusted
by selecting the proper battery system (type and quantity).

There are different types of available batteries: NiCd,
NiMH, sealed lead acid (SLA), and lithium based. The
trade-off is that of cost, dimensions, and durability. For
one, SLA batteries are the most economical (in terms of
cost-to-charge ratio), widely available when it comes time
to replace them, and robust as they are easy to maintain
and long lasting. However, SLA batteries have low charge-
to-weight as well as charge-to-volume ratios compared
to, particularly, the lithium-based technologies. Lithium
batteries are lighter and more compact for a compara-
ble amount of charge (National Institute of Standards and
Technology, 2009). However, these types of batteries are
much more expensive and fragile than the very rugged
SLAs. If lithium batteries are not handled carefully, for ex-
ample by not using protective circuits, they can explode.
Although for the size of robot we are considering battery
weight is not as much an issue, note that volume would
still matter in terms of placement.

It is important to have easy access to the battery com-
partment so that we do not have to unscrew or disassemble
components in order to charge the batteries. If the batteries
can be charged rapidly, within an hour or two, an even bet-
ter option would be to be able to do so without having to re-
move them from the robot, instead using a docking station
or a wall plug-in outlet. If rapid recharge is not available, a
feature to hot swap the batteries as in Willow Garage (2009)
to avoid shutting down computers in the switching process
would be convenient.

For a platform to be applicable for a wide range of
robotics and vision research, most commercial robots are
furnished with a variety of sensors and manipulation tools
such as a robot arm and also provide avenues for future
expansion. When selecting a sensor, we look for compact,
light, low-power devices that exhibit high accuracy and
high update rates. Popular sensors such as laser range
finders, sonar rings, cameras, inertial measurement units
(IMU), global positioning systems (GPS), and compasses
should be considered as potential accessories. For a camera
in particular, negligible latency is a must. After a number of
experiments, we found that Firewire (IEEE-1394) cameras
were the best in minimizing delays, more so than Internet
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protocol (IP) or universal serial bus (USB) cameras. In ad-
dition, related features such as pan–tilt–zoom, autofocus,
image stabilization, low-light capability, and wide-angle or
omnidirectional viewing setup are also made available by
various companies.

As for sensor expansion, aside from anticipating the
future extra payload, it is also important to have many ac-
cessible USB ports placed throughout the body of the robot
and USB-to-serial converters for serial devices, as well as
several microcontrollers that can preprocess slower input
signals.

Another important feature is having multiple types
of user interface. For example, USB inputs are useful to
connect a keyboard and monitor to the computers in the
robot to allow for hardware and operating system recon-
figuration. In addition, many robots have reasonably sized
(15–25 cm) full red–green–blue (RGB) liquid crystal display
(LCD) monitors for visualization of the robot’s state during
test runs. Furthermore, wireless network connections for
remote secure shell (SSH) logins give us additional flexibil-
ity to allow for safe and faster algorithm on-site debugging.
At the same time, the robot can use the external connection
to access outside network or Internet resources, which can
be useful in some scenarios. A related feature in this cat-
egory is a standard radio frequency (RF) remote controller
for stopping the robot whenever autonomous driving starts
to fail. Furthermore, most robots (Carnegie Mellon Univer-
sity Robotics Institute, 2009; MobileRobots, Inc., 2009) are
equipped with large kill switches to stop the flow of power
to the motors.

In addition to the hardware-related aspects, robotic
companies also provide software libraries to conveniently
access all the included devices and monitor low-level states
such as battery charge and temperature. Some companies
(MobileRobots, Inc., 2009) provide further value additions
such as mapping and navigation tools and even a full-
blown simulation environment. We list the common soft-
ware offerings in Section 4, where we describe our freely
available toolkit (Itti, 2009).

1.2. Our Approach

Beobot 2.0 is the next iteration of the Beobot system de-
veloped in our lab (Chung, Hirata, Mundhenk, Ng, Peters,
et al., 2002). The original Beobot integrated two full-sized,
dual-CPU motherboards for a total of four 1-GHz proces-
sors. For Beobot 2.0, we use eight dual-core COM systems.
Each COM measures just 125 × 9.5 × 18 mm and nom-
inally consumes only 24 W of power. Nonetheless, with
a 2.2-GHz dual-core processor, a COM has the comput-
ing power equivalent to current dual-core laptop systems.
Despite this state-of-the-art computing platform, we have
managed to keep the overall cost of our research-level,
cluster-based mobile robot to under $25,000 (detailed in Sia-
gian et al., 2009).

One aspect of a COM system to underscore here is the
ease with which its components can be upgraded. Because
the input and output signals are routed through just two
high-density connectors, one need only remove the current
module and replace it with an upgraded one. Thus, as more
and more powerful processors become available, Beobot
2.0’s computer systems can keep pace, making it somewhat
more resistant to the rapid obsolescence that is characteris-
tic of computer systems. The ability to keep pace with pro-
cessor technology is important because robotic algorithms
are expected to continue to evolve and become ever more
complex, thus requiring commensurate levels of comput-
ing power.

Beobot 2.0’s computer system is mounted on an elec-
tric wheelchair base (Figure 1), with an overall size that is
close to that of a human. This allows the robot to navigate
through corridors and sidewalks and creates an embodi-
ment that is ideal for interacting with people. We assume
that the majority of these pertinent locations are wheelchair
accessible, as required by law. We believe that even with
this locomotion limitation, there are still enough physically
reachable locations to perform comprehensive real-world
experiments. Figure 1 shows the finished robot.

The rest of the paper is organized as follows: first, we
describe the electrical system in Section 2 and then the me-
chanical system in Section 3. Section 4 goes into the details
of our software library, highlighting the advantage of im-
plementing a computing cluster in robotics research.

In Section 5 we examine the robot on various impor-
tant operational aspects, the most important of which is
computational speed/throughput, to demonstrate how one
could benefit from such a complex computing cluster ar-
chitecture. We test Beobot 2.0 using three benchmark algo-
rithms. One is the popular SIFT (Lowe, 2004) object recog-
nition. The second is a distributed saliency algorithm (Itti,
Koch, & Niebur, 1998), which models the visual attention
system of primates. The algorithm operates on a very large
image of 4,000 × 4,000 pixels and returns the most salient
parts of the image. The last one is a vision localization sys-
tem by Siagian and Itti (2009) that requires the system to
compare a detected salient landmark input with a large
landmark database obtained from previous visits. All of
these algorithms are part of the Vision Toolkit, available
freely online (Itti, 2009), which also houses Beobot 2.0’s
software control architecture, including obstacle avoidance
(Minguez & Montano, 2004) and lane following (Ackerman
& Itti, 2005). We then summarize our findings (in Section 6)
and what we have learned through the process of building
this robot.

2. ELECTRICAL SYSTEM DESIGN
AND IMPLEMENTATION

Figure 2 presents an overview of the electrical system. On
the right-hand side of the figure, there are two baseboards,
each housing four COM Express modules (explained in
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Figure 1. Various features of Beobot 2.0. Beobot 2.0 utilizes an electric wheelchair platform to carry a high-performance computing
cluster of 16 processor cores, 2.2 GHz each. The robot is equipped with various sensors such as Firewire camera, laser range finder,
sonar array, IMU, compass, and GPS. In addition, panel-mount waterproof USB connectors are available for new sensors, along
with RJ45 Ethernet for wired Internet connection and panel-mount KVM inputs for regular-sized monitor, keyboard, and mouse.
There is also a touchscreen LCD for a convenient user interface. Furthermore, the kill switches at each corner of the robot are
available as a last resort to stop it in emergency situations.

depth below), and implementing signals such as gigabit
Ethernet for the backplane intermodule communication, as
well as others such as SATA (two per module), PCI Express,
USB, and VGA. Beobot 2.0 uses a PCI Express 1394-Firewire
card for a low-latency camera connection. One of the SATA
ports was used for the primary hard drive and the other for
external drives such as CD-ROM (useful for installing op-
erating systems, for example). Giving each module its own
hard drive obviates the need to pass around copies of stored
data, such as large knowledge databases obtained during
training.

There are six USB signal implementations per com-
puter for a total of 48. Some of them are being used for
sensors listed in Table I. Several of the USB connectors
are panel mounted outside the robot for ease of connect-
ing external devices using dust- and waterproof connectors
(Figure 1). In addition, there are also USB connectors inside,
on the baseboards (see Figure 3).

Furthermore, there is an onboard keyboard-video-
mouse (KVM) switch to toggle between each of the eight
computers. The KVM is an eight-to-two switch, eight com-
puters to two display outputs. The display signal outputs
can be either a regular-sized external monitor or to an on-
board 8-in. touchscreen LCD with a full-color video graphic
array (VGA) interface (Figure 1). Note that in practice we
operate all computers from a single node using an SSH lo-
gin session to conveniently run and monitor multiple pro-

Table I. Sensors provided in Beobot 2.0.

Item Company name Reference

Laser range Hokuyo Hokuyo Automatic Co.,
finder Ltd., 2009

IMU MicroStrain MicroStrain, Inc., 2009
Compass PNI PNI Sensor Corporation, 2009
Sonars SensComp SensComp, Inc., 2009

(7 units)
GPS US Global Sat USGlobalSat, Inc., 2009

grams simultaneously. The use of wired interface to the in-
dividual computers is usually limited to hardware, BIOS,
and boot troubleshooting.

The objectives for selecting a computing platform ap-
propriate for the robot are high computing power, compact-
ness, and low energy consumption. To have close to maxi-
mum achievable speed, we concentrate on the X86 architec-
tures rather than far less powerful CPU types such as ARM
or Xscale. Within the X86 family, we select the mobile pro-
cessor version rather than its desktop counterpart for en-
ergy efficiency, still being competitive in computing power.
By the same token, in using the mobile CPU version, the
corresponding embedded systems option can be selected
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Figure 2. Beobot 2.0 electrical system. On the right-hand side of the diagram, there are two baseboards, each housing four COM
express modules and each module with its own SATA hard drive. The backbone intercomputer communication is gigabit Ethernet
that is connected through a switch. For visual interface to individual computers, a KVM is used to connect to either an 8-in. LCD
touchscreen or an external monitor, mouse, and keyboard. In addition, a PCI Express–Firewire interface card is used to connect to
a low-latency camera. The other sensors are connected via the many USB connectors that are panel mounted on top of the robot
as well as on the baseboard. The whole system is powered by a 24-V battery circuit supply (with kill switches for safety purposes)
and is regulated through a set of dedicated Pico-ATX power modules. The same battery circuit also powers the motors as well as
the liquid-cooling system.

for the mobile platform (regular-sized motherboards do not
usually use mobile CPUs), which resolves the size issue.

In the family of embedded systems, there are two types
of implementations. The first family of systems have the in-
terfaces already implemented, ready to use. An example is
the ITX form-factor family (pico-ITX, nano-ITX, mini-ITX)
(Via, 2009). The drawback is that the provided interfaces
are fixed. They may not be the specific ones that are needed,
and unused connections can be a waste of size as we can-
not customize their location and orientation. In addition, by
using off-the-shelf motherboards, their dimensions have to
be accommodated in the design specifications, which may
also limit the options for the locomotion platform.

In contrast, the second type of embedded systems, the
COM concept, provides specifications for all the interfaces
only through a set of high-density connectors. These spec-
ifications are usually defined by an industry consortium

such as the XTX-standard (XTX Consortium, 2009). The
actual breakout of the individual signals (such as gigabit
Ethernet, USB, PCI Express) from the module connectors to
the outside devices (a hard drive, for example) has to be
done on a custom-made carrier board. By building custom
baseboards, the overall size of the electronics can be con-
trolled by implementing only those signals that we actually
need. In addition, connector placement (as well as type) can
be specified so as to minimize the amount of cabling in the
system.

In the end, we found that a COM module solution best
met our requirements, which we stated at the start of this
section. Within this class, there are three options: ETX (ETX
Industrial Group, 2009), XTX (XTX Consortium, 2009), or
COM Express (COM Express Extension, 2009). These mod-
ules use the most powerful processors, as opposed to the
smaller but less powerful systems such as PC104-based
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Figure 3. Baseboard. The image on the left is a fully assembled baseboard with four COM Express modules. The black plates are
the heat spreaders attached to the processors. There is also an Ethernet and two USB jacks placed on the right-hand side of the
board. The layout on the right is the circuit done in Altium (Altium Limited, 2009) PCB design software.

Qseven (Qseven Standard, 2009). We chose COM Express
because it has an onboard gigabit Ethernet interface on the
module, and it is only slightly larger (12.5-cm length ×
9.5-cm width) than the XTX and ETX module (11.5-cm
length × 9.5-cm width). Gigabit Ethernet is critical because
in a cluster architecture, intercomputer communication can
be just as important as the computing power of individ-
ual nodes. If the communication procedure cannot provide
data fast enough, the individual processors will simply idle
most of the time, waiting for data to arrive. This is espe-
cially true in our case because Beobot 2.0 is designed to
perform heavy-duty, real-time vision computation in which
the real-time video streaming is much more demanding
than sending intermediate results.

We implemented two carrier/baseboards (refer to
Figure 3), each accommodating four COM Express mod-
ules. A total of eight modules is chosen because the com-
puting system fits within the mobile platform and because
this number is expected to suffice for our research needs
based on the findings presented in Section 5.

We used the Kontron COM Express design guide
(Kontron, 2007) [for the Kontron ETX-Express-MC 2.2 GHz
(T7500) COM Express module (Kontron, 2009)] to help
properly design the electronic circuits as well as lay out
the components in the board. We used the electronics
computer-aided design (ECAD) layout software Altium

(Altium Limited, 2009) to plan the physical placement of
all the desired devices and connectors with as little cabling
as possible for a system of eight computers. Altium’s three-
dimensional (3D) visualization proved to be an invaluable
feature as it allowed us to verify that boards and devices
packed close together in the robot would not collide or oth-
erwise interfere with any other components.

The most critical part in successfully implementing
the baseboards was being able to take care of the high-
speed differential-pair signal requirements such as match-
ing length and spacing, as well as minimizing the number
of vias in the baseboard. Altium allows its users to spec-
ify rules for each trace on the board, which tremendously
eases the process of identifying unsatisfied constraints. We
found that the signals are quite robust as long as the stated
requirements are adhered to. In addition, most of these sig-
nals need very few supporting circuits. The most compo-
nents required by a signal is eight, for the USB current lim-
iter (500 mA) circuit. The VGA signal actually specifies that
it needs a filtering circuit with many components, but the
KVM chip furnishes this feature.

To provide clean and fail-safe power given a supply
from the available batteries, a Pico-ATX (Ituner Networks
Corp., 2009) module [see Figure 4(a)] is used to regulate
power to each COM Express for a total of eight. There is
also one extra Pico-ATX powering all the peripheral boards

(a) Pico-ATX (b) KVM board (c) Liberty312 battery and charger
Figure 4. Various power-related components.
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and sensors. There are three peripheral boards: one to con-
trol the cooling system, one to control access to the motors,
and a sensor board that houses all the various built-in sen-
sors. The power to the drive-train motors does not need to
be filtered and, thus, is directly connected from the batter-
ies. Because power supplies have a high rate of failure, go-
ing with multiple power modules provides better granular-
ity in that if one module fails, the remaining seven comput-
ers can still run. Additionally, the lower individual supply
requirement allows for a wider range of products to choose
from than would have been available in a single module
solution.

Table II summarizes the important electrical features:
interprocessor communications, input/output interfaces,
KVM interface, sensors, and power management. These
features are shown to be critical while compiling the list of
available commercial robots as well as from our experience
conducting robotics research.

3. MECHANICAL SYSTEM DESIGN
AND IMPLEMENTATION

The mechanical design of the robot is divided into two
parts: the locomotion platform, which is the dark-colored
robot base in Figure 5 and described in Section 3.1, and the
computing cluster housing, which is the cardinal-colored
structure described in Section 3.2.

Again, note that we created a wiki page (Siagian
et al., 2009) to detail the execution matters such as actual
part drawings (SolidWorks Corp., 2009), part manufactur-
ing through a machine shop, or finding suppliers for the
needed devices listed in the bill of material.

3.1. Locomotion System

For the locomotion platform, we selected a Liberty 312 elec-
trical wheelchair (Major’s Mobisist, 2009) instead of build-
ing one from scratch. Often priced at thousands of dol-
lars, these types of units are easily acquired second hand
through channels such as Craigslist or eBay (ours cost U.S.
$200). The wheelchair is a robustly engineered, stable, safe,
and low-maintenance platform. Most importantly, adher-
ing to the wheelchair form factor allows the robot to tra-
verse most terrain types encountered in modern urban en-
vironments, both indoors and out. This platform can also
carry heavy payloads (113–136 kg), which means the ability
to add many more devices to the robot’s computing cluster.
An important factor to consider is the ability to control the
motors over a wide range of speeds (0–16.09 km/h) with
good resolution in between. The wheelchair platform has
this characteristic as it is designed for fine-grained control,
as opposed to the remote control (RC) car used by the origi-
nal Beobot (Chung et al., 2002), which could be driven only
at maximum speed. Another benefit of the wheelchair is
that it places the computing cluster on top, relatively high
above the ground (about 50 cm) and away from the thick

dust and mud that can accumulate on the street. Note that
the robot’s driving dynamics is taken care of because the
wheelchair is designed to have a person on top, where the
computing system now is placed. This is accomplished by
the wide-spacing configuration of the wheels, enveloping
the payload, to allow for the overall balance of the system
while it is moving reasonably fast. In addition, the heavy
SLA batteries are placed on the bottom to lower the center
of mass.

To control the wheelchair, we designed a motor board
to connect the battery and motors to inputs from the com-
puter for autonomous control as well as to a 2.4-GHz re-
mote controller (RC) for manual driving or overriding. A
dual-output motor-driver named Sabertooth (Dimension
Engineering LLC, 2009) is used to provide up to 25 A to
each motor. In addition, because the motor driver has a
built-in electrical brake system, the mechanical brakes that
stop the motors by pinching the back shafts are taken off.
This then allows the back shafts to be coupled to a pair of
encoders to provide odometry data. As a safety precaution,
Beobot 2.0 is furnished with four kill switches (Figure 1),
one on each corner for the user to immediately stop the
robot in the event of an emergency.

The wheelchair comes with a pair of 12-V, 35-Ah SLA
batteries, connected in series to provide a 24-V supply. They
have a form-factor space of 19.5-cm length × 13.2-cm width
× 15.5-cm height for each battery. An attractive feature of
the wheelchair is the built-in, wall-outlet, easy-plug-in bat-
tery recharging system, shown in Figure 4(c). With this, the
batteries can be conveniently recharged without having to
put them in and take them out of the robot, although the
recharging process does take an average of 10 h.

3.2. Computing Cluster Case

The structure surrounding the computing clusters, as
shown in Figure 5, shields the computing cluster from un-
wanted environmental interference such as dust and mud.
The structure is divided into two isolated chambers as illus-
trated in the figure. The back chamber is the watertight area
where the cluster is placed. The front chamber is an open
area, reserved for a liquid-cooling system (further elabo-
rated in Section 3.2.2), which includes a radiator to allow
for maximum air flow. These two cooling subsystems are
connected through Tygon tubing for liquid flow and are
physically held together by a pair of aluminum holders.
The computing cluster, along with the cooling system, itself
is mounted on shock-absorbing standoffs (Section 3.2.1) to
withstand violent collision in the rare event the robot hits
an obstacle.

3.2.1. Vibration Attenuation and Shock
Absorption System

As illustrated in Figure 5, the only connections be-
tween the computing system and the robot base are the
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Figure 5. A SolidWorks (SolidWorks Corp., 2009) model of the robot shown from its side and cut through its center. The bottom
of the image displays the Liberty312 wheelchair base, and above it is the robot body in cardinal color. The robot body is divided
into two chambers by the dust-proof firewall. The back chamber completely seals the computers within from the elements. The
front of the robot, which houses part of the cooling system, is open to allow for heat dissipation. The heat from the computers
is transferred by the liquid in the cooling block, which is attached to the heat spreaders on each module. The liquid then moves
through the radiator, which is cooled by the fans, before going back to the cooling block. In addition, the computing block is shock
mounted on four cylindrical mounts that are used to absorb shocks and vibration.

shock-and-vibration damping standoffs. This makes it eas-
ier to properly evaluate the necessary damping require-
ments. When considering a damping solution, one needs to
take into account the basic relationship between shock and
vibration. That is, the solution has to be rigid enough to not
cause too much vibration on the load but flexible enough
to absorb shocks. Here, the focus is more on shock because,
like regular laptops, the computers should be able to work
despite the vibration that comes from reasonably rough ter-
rains. In addition, the system uses solid-state hard drives
(SSD), which have no moving parts and can withstand far
more shock than their mechanical counterparts.

The natural rubber cylindrical mounts are selected
over other options such as wire–rope isolators, rubber or
silicone pads, and suspension springs because of their com-
pactness. In addition, the height of the standoffs is eas-
ily adjustable by screwing together additional absorbers
according to needs. Furthermore, one can change their
shock absorption property by adding washers between two
mounts if need be.

3.2.2. Cooling System

Because Beobot 2.0 is meant to be used both indoors and
outdoors, we decided against an air-cooling system due to
the possibility of the fans pushing dust into the exposed

electronics inside, although air filters could have kept the
dust out. However, the electronics would have to be placed
in an area where air flow is well controlled, i.e., air must
be drawn in and exhausted out only through the fans. This
would have entailed a push-and-pull fan system and sig-
nificant prototyping and rework of the mechanical system.

Therefore, we settled on a liquid-cooling solution.
Moreover, as water has 30 times the amount of thermal con-
ductivity and four times the amount of heat capacity as air
(Callister, 2003), a liquid-cooling system is more effective in
addition to being cleaner.

The liquid-cooling system, as shown in Figure 5, con-
sists of the following components: cooling block, tubes,
nozzles, radiator, two fans, liquid pump, reservoir, cool-
ing liquid, a flowmeter, and a temperature sensor to moni-
tor the system. Note that the system uses a cooling control
board to provide power for the fans and the pump, as well
as to take data from the flowmeter and temperature sensor.

The heat dissipated by the COM Express modules is
first transferred to the liquid coolant through the proces-
sors’ heat spreaders that are firmly pressed up against
the top and bottom of the cooling block, which contains
the coolant. We recommend using a high-performing, low-
conducting, noncorrosive coolant for a maintenance-free
system. The heat-carrying coolant first goes through the ra-
diator, which has two fans pulling air through the radiator
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surface. These fans are the devices that actively take the
heat out of the system. Note that the radiator (and the fans)
can be placed as far away from the processors as necessary.
The liquid pump is connected to the system to ensure the
flow of the liquid. Finally, a reservoir is included to add
the coolant into the system and to take the air (bubbles)
out of it.

4. SOFTWARE DESIGN

Our ultimate goal is to implement a fully autonomous em-
bodied system with complete visual scene understanding.
To do so, we lay the groundwork for a robot develop-
ment environment (Kramer & Scheutz, 2002) that especially
maximizes the multiple-processor hardware architecture.
In addition it fulfills the primary objective in designing the
software, viz., to be able to integrate and run computation-
ally heavy algorithms as efficiently as possible. The advan-
tage of using COM Express modules as a platform is that
they can be treated as regular desktops. This allows the
use of a Linux operating system in conjunction with C++
rather than some special-purpose environment. Note that,
this way, the user can install any kind of Linux-compatible
software tools that he/she prefers, not just the ones that
we suggest below. Also, although this is not a true real-
time system, it is quite adequate for our needs, with the
control programs running reasonably fast and the robot re-
sponding in real time. In case a user would like to go with
a real-time operating system, several Linux-based options
and extensions are available (Politecnico di Milano, 2010;
QNX Software Systems, 2010; Wind River, 2010; Xenomai,
2010).

To speed up the development of the complex algo-
rithms mentioned above, we use the freely available iLab
Neuromorphic Vision C++ Toolkit (Itti, 2009). The motiva-
tion for the toolkit is to facilitate the recent emergence of
a new discipline, neuromorphic engineering, which chal-
lenges classical approaches to engineering and computer
vision research. These new research efforts are based on al-
gorithms and techniques inspired from and closely repli-
cating the principles of information processing in biolog-
ical nervous systems. Their applicability to engineering
challenges is widespread and includes smart sensors, im-
planted electronic devices, autonomous visually guided
robotics systems, prosthesis systems, and robust human–
computer interfaces. Thus, the development of a neuromor-
phic vision toolkit helps provide a set of basic tools that can
assist newcomers in the field with the development of new
models and systems.

Because of its truly interdisciplinary nature, the toolkit
is developed by researchers in psychology, experimen-
tal and computational neuroscience, artificial intelligence,
electrical engineering, control theory, and signal and im-
age processing. In addition, it aids in integration with other
powerful, freely available software libraries such as Boost
and OpenCV.

The project aims to develop next-generation general vi-
sion algorithms rather than being tied to specific environ-
mental conditions or tasks. To this end, it provides a soft-
ware foundation that can be used for the development of
many neuromorphic models and systems in the form of
a C++ library that includes classes for image acquisition,
preprocessing, visual scene understanding, and embodied
system control.

These systems can be deployed in a single machine or
a distributed computing platform. We use the lightweight
middleware ICE (Internet Communication Engine) via its
C++ library bindings to facilitate intercomputer commu-
nication with a high-level interface that abstracts out low-
level matters such as marshaling data and opening sock-
ets. Sensors/devices, which are connected to a computer
in the distributed system, are encapsulated as independent
services that publish their data. Different systems can grab
just the sensor outputs that they need by subscribing to that
particular service. In addition, such a distributed system is
fault tolerant as nonfunctional services do not bring down
the whole system. We are also working on adding func-
tionality to quickly detect nonresponding hardware and re-
cover from failures by performing an ICE reconnection pro-
tocol, for example.

Another aspect to pay close attention to is the need for
robust debugging tools for distributed systems that are pro-
vided by the toolkit as well as future applications. That is,
we would like to know which modules in the system take
the longest times, which ones send the largest amount of
data, and how all these factors affect the overall system effi-
ciency. Currently, the system has logging facilities for anal-
ysis after a testing run has taken place. What would be ideal
is an online monitoring system.

In terms of hardware support, the toolkit has exten-
sive source code available for interfacing sensors through
different avenues. For example, Beobot 2.0 currently can
connect to different types of cameras: USB, Firewire, or IP.
Other devices that use a serial protocol should also be eas-
ily accommodated. In addition, it is important to note that
the separation of hardware-related and algorithm-related
code comes naturally. This allows the user to test most of
the software in both the robot and our custom simulator
(provided in the toolkit) without too many changes. Fur-
thermore, the same robot cluster computing design is used
for our robot underwater and aerial vehicles. We find that
porting the algorithms to the other robots is done quite
easily.

Table III lists all the vision- and robotic-related soft-
ware capabilities provided by the toolkit.

5. TESTING AND RESULTS

We examine a few aspects of Beobot 2.0. The first is ba-
sic functionality such as power consumption, the cooling
system, and mobility as it pertains to shock absorption.
The power consumption testing shows the typical length
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Table III. The vision toolkit features.

Features Description Available options

Devices Interface code for various
devices

Embedded systems/microcontrollers, joystick, keyboard,
gyroscope, wii-mote, GPS, IMU (HMR3300, MicroStrain 3DM
GX2), LRF (Hokuyo)

Robots Control code for various
robots

Scorbot robot arm, Evolution Robotics Rovio, Irobot Roomba,
Beobot, Beobot 2.0, BeoSub Submarine, BeoHawk Quadrotor
aerial robots, Gumbot for undergraduate introduction to robotics

Robotics algorithm Modular mobile robotics
algorithm

Localization, laser, and vision navigation (lane following, obstacle
avoidance), SLAM

Distributed
programming tools

Allows programs to
communicate between
computers

CORBA, Beowulf, ICE

Neuromorphic vision
algorithms

Biologically plausible vision
algorithms

Center-surround feature maps, attention/saliency (multithreaded,
fixed point/integer), gist, perceptual grouping, contour
integration, border ownership, focus of expansion, motion

Media Access to various input
media

mpeg, jpeg, cameras (USB, IP, IEEE1394 Firewire), audiovisual

Image processing Various tools to manipulate
images

Drawing, cut/paste, color operations [hue saturation value (HSV),
RGB, etc.], statistical operations, shape transformation,
convolutions, Fourier transform, pyramid builder, linear
algebra/ matrix operation

Machine learning Tools for pattern recognition
training

K-nearest-neighbor, backpropagation neural networks, support
vector machine, genetic algorithm

Object recognition Visual object recognition
modules

SIFT, HMAX

of operation given the amount of capacity of the batteries
and the weight that the motors have to move and the eight
computers that the batteries have to power. Beobot 2.0 has
a power supply of 35 Ah × 24 V capacity from two 12-V
SLA batteries in series. The robot is run with full-load com-
puting by running a vision localization system (Siagian &
Itti, 2009), explained in Section 5.2, while the robot is run
around. In the testing, the cooling system is shown to drain
about 1.8 A of the 24-V supply, whereas the gigabit switch
and other sensors consume about 0.5 A. Each of the eight
computers pulls up to 0.7 A during heavy use, and the mo-
tors pull 2 A when the robot is moving at about 1.61 km/h.
The total comes up to 9.9 A in regular use, which corre-
sponds to about 3.5 h of expected peak computation run-
ning time.

The good news is that Beobot 2.0 has two accessible
power jacks located on its back, in the KVM board, as
shown in Figure 4(b). By plugging in an auxilliary power
source that stops its current flow when it detects another
supply in the system, we can perform hot swapping to tem-
porarily replace the SLA batteries. This prolongs the run-
ning time considerably, given that on-site system debug-
ging occurs quite often. Consequently, the running time be-
comes actual testing time, without debugging time. This,
for the most part, allows users to do research on site for the
whole day and charge all night.

Table IV summarizes the results.

We then go into the usability of the system by re-
porting our experience implementing the nearness diagram
(ND) navigation system (Minguez & Montano, 2004) in Sec-
tion 5.1. Note that this section is included to show that the
robot can move about an environment and is ready for use.
We do not try to optimize the implementation to improve
the performance. On the other hand, in Section 5.2, we de-
scribe our experiment performing three computationally
intensive algorithms: the SIFT (Lowe, 2004) object recogni-
tion system, distributed visual saliency (Itti et al., 1998), and
the robot vision localization system (Siagian & Itti, 2009).
These computational speed/throughput experiments test
the most critical aspect of the project’s objectives. Given the
complexity of having to implement a cluster of processors,
we would like to see a good payoff for all our hard work.

5.1. Navigation Algorithm Implementation

In this section, we test the first algorithm to successfully run
on Beobot 2.0, viz., the ND navigation algorithm (Minguez
& Montano, 2004), which uses a laser range finder to build
a proximity map around the robot and then searches this
map for the navigable region closest to a goal location. A
navigable region is a space or area that is at least as wide as
the robot, thus enabling it to pass through. For example, the
system’s graphical user interface (GUI) display in Figure 6
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Table IV. Beobot2.0 subsystem testings.

Subsystem Tests Results Remarks

Liquid cooling CPUs at full load at room
temperature of 22◦C

Average CPU
temperature of 41◦C

System is virtually maintenance free,
although it consumes 1.8 A for the
liquid pump; CPUs reach critical
overtemperature within 15 min if
liquid-cooling system is turned off

Mobility and shock
absorption

Running the robot
throughout the
campus using RF
controller at 2 m/s

Computers run smoothly
without disconnection
through several
bumps and abrupt
stops whenever the
robot is too close to
nearby pedestrians

We modify the motor controller code to
properly ramp down when going to a
complete stop

Battery consumption Running the robot using
the remote controller
with all computers
running full
computations

Robot runs for 2.25 h
before one CPU shuts
down

Can prolong the testing time
considerably by hot swapping
batteries (there is a jack at the back of
robot) during on-site debugging;
consequently, the running time
becomes actual testing time, without
debugging time, and allows us to do
research on site for the whole day

shows the robot’s surroundings, divided into nine distinct
regions.

The robot follows a series of binary decision rules that
classify all situations into five mutually exclusive cases,
which are summarized in Table V. Each case is associated
with a corresponding movement action.

First, we define a security zone around the robot that
is an area twice the robot’s radius. In the GUI display
(Figure 6), this zone is denoted by the light (yellow) cen-
ter circle. If there are obstacles within the security zone (red
dots within the circle in the figure), there are two cases to
consider: whether there are obstacles on both sides of the
robot or only on one side. In the former case, the robot tries
to bisect this opening; in the latter case, it can move more
freely to the open side. Note that the system considers only
obstacles that are within 60 deg (between the two red lines
in Figure 6) of the robot’s direction of motion (blue line in
the figure).

When there are no obstacles in the security zone, it con-
siders three possible situations. If the goal location is in the
navigable region, just go to it. If the goal location is not in
the navigable region but the region is wide (only one obsta-
cle on one of the sides), maneuver through the wide region,
in the hope that there is a way to go to the goal region in
the following time step. If goal location is not in the naviga-
ble region and the region is narrow (between two obstacles,
one on each side), carefully move forward in the middle of
the region. The overall resulting behavior is that the robot
should continuously center itself between obstacles, while
going to the goal.

To test this algorithm, only two of the available eight
computers are needed. The laser range finder is plugged
into one computer and the motor control board into the
other. Additionally, a RC setup allows the user to change
from autonomous to manual mode at the flick of a switch
in case the robot is about to hit something or has been stuck
in a corner for some time.

During implementation and debugging, a few notable
features speed up the process. First, the 8-in. LCD screen
allows users to observe the system states and action deci-
sions as the robot is moving. Second, the use of a wireless
USB keyboard and touch pad made it fairly easy to issue
new commands while the robot was working. Last, but not
least, taking the time to set up an intuitive GUI paid back
dividends very quickly as it made it much easier to un-
derstand what was going on and how to fix the problems
encountered.

The system is tested indoors, on a 20 × 24 ft empty
area. We then occupy some of the regions with obstacles
and test Beobot 2.0 to see whether it can navigate from one
side of the environment and back. Figure 7 shows a snap-
shot of the environment setup for the experiment. In ad-
dition, some of the obstacle configurations are shown in
Figure 8, with an example odometry trace overlaid on top.

There are nine different obstacle configurations and
robot starting positions in the testing protocol. Each test
was performed 10 times, with the robot’s speed being the
only variable parameter. We vary the speed between ap-
proximately 0.3 and 2.5 m/s. Table VI summarizes the re-
sults of each trial. For the most part, the navigation system
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Table V. ND rules.

Number Situation Description Action

1 Low safety 1 Only one side of obstacles in the
security zone

Turn to the other side while
maintaining the angle to the goal
location

2 Low safety 2 Both side of obstacles in the security
zone

Try to center between both side of
obstacles and maintain the angle to
the goal location

3 High safety goal in region All obstacles are far from the security
zone and goal

Directly drive toward the goal

4 High safety wide in region All obstacles are far from the security
zone but goal is not in this region

Turn half max angle away from closest
obstacles

5 High safety narrow in region All obstacles are far from the security
zone and narrower region in the
goal location

Center both side of closest obstacles

performs very well, with a 72% success rate. Here success
is defined as the robot moving from its starting side of the
environment to the other and back without touching any of
the entities surrounding it.

Figure 6. GUI of the ND navigation system. The system iden-
tifies nine (indexed from 0 to 8, note that 4 and 7 are cut off as
they are drawn outside the frame of the GUI) different regions.
The robot next direction of motion is denoted by the dark line
next to label 5. The two lines next to the dark line delineate the
boundaries of the navigable region. The red line indicates the
directions 60 deg to the left and right of the robot’s next di-
rection. We also display the robot’s translational and rotational
motor command. Both of these numbers range from −1.0 to 1.0
(negative values indicate moving backward and counterclock-
wise rotation, respectively).

Figure 7. Snapshot of the constructed environment for ND
navigation testing.

(a) Env1 (b) Env2 (c) Env3

Figure 8. Various environments for ND navigation testing
with an example path that is taken by Beobot 2.0 using the ND
navigation algorithm.

Of the total of 90 trials, 25 resulted in failures of some
sort. Although this might seem excessive, it should be
pointed out that the majority of the these collisions were of
the type in which Beobot 2.0 only scraped an obstacle. This
occurs whenever the robot has to turn sharply to avoid an
obstacle, which causes its rear to scrape the obstacle. This is
a minor problem that can be easily rectified by some simple
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Table VI. Beobot 2.0 ND navigation testing.

End result Occurrence Percentage

Success 65 72.22
Scraping the obstacles 16 17.78
Stuck in corner or circles 7 7.78
Squarely hit an obstacle 2 2.22

control fix; e.g., when a turn is judged to be sharp, first back
up a little.

There were two occasions when Beobot actually hit
an obstacle head-on. This happened when the robot was
running at its maximum speed. Under this circumstance,
the latency of the system (the laser range finder through-
put is 25 ms or 40 Hz, and processing is approximately the
same duration as well) is simply too large to allow a timely
reaction.

Finally, there were seven occasions when the robot be-
came stuck in a corner or kept spinning in place because it
kept alternating between left and right. The solution to this
problem requires going beyond the simple reactive nature
of the navigation system and figuring out what is globally
optimal by integrating knowledge from localization or si-
multaneous localization and mapping (SLAM) algorithms.

5.2. Computational Capabilities

In this section, we characterize the computing platform by
running three computationally intensive vision algorithms:
SIFT (Lowe, 2004) object recognition system, the distributed
visual saliency algorithm (Itti et al., 1998), and the biolog-
ically inspired robot vision localization algorithm (Siagian
& Itti, 2009). These algorithms have a common character-
istic in that their most time-consuming portions can be
parallelized, whether it be distributing the feature extrac-
tion process (Section 5.2.2) or comparing those features to a
large database (Sections 5.2.1 and 5.2.3). These parallel com-
putations are then assigned to worker processes allocated
at different computers in Beobot 2.0’s cluster. Thus, we can
fully test the computation and communication capabilities
of the system.

5.2.1. SIFT Object Recognition System Test

As a first step in demonstrating the utility of our system
in performing computationally intensive vision tasks, we
implemented a simple keypoint matching system that is
a very common component and performance bottleneck
in many vision-based robotic systems (Se, Lowe, & Little,
2005; Valgren & Lilienthal, 2008). This task consists of de-
tecting various interest points in an input image, comput-
ing a feature descriptor to represent each such point, and
then searching a database of previously computed descrip-

tors to determine whether any of the interest points in
the current image have been previously observed. Once
matches between newly observed and stored keypoints are
found, the robot has a rough estimate of its surroundings
and further processing such as recognizing its location or
manipulating an object in front of it can commence.

Generally, the main speed bottleneck in this type of
system is the matching between newly observed keypoints
with the potentially very large database of previously
observed keypoints. In the naive case this operation is
O(MN ), where M is the number of newly observed key-
points and N is the number of keypoints in the database.
However, this time can be cut to O(M log N ) if the database
of keypoints is stored as a KD-tree.

To test the efficacy of our cluster in speeding up such
a task, we built a matching system in which a master node
(called SIFT master) computes SIFT keypoints (Lowe, 2004)
on an input image and then distributes these keypoints to a
number of worker nodes (SIFT worker) for matching. Each
of these workers is a separate process on the cluster located
on either the same or a different machine as the master.
Each worker contains a full copy of the database, stored
as a KD-tree. Upon receiving a set of keypoints (different
sets for each worker) from the master, a worker node com-
pares each of them against its database and returns a set of
unique IDs to the master representing the closest database
match for each keypoint. Table VII describes the different
types of modules in the system, and Figure 9 illustrates the
flow of operation.

The database used for the experiment is composed of
905,968 SIFT keypoints obtained from HD footage (1,920 ×
1,080 pixels) taken from an outdoor environment traversed
by our robot. Each keypoint has 128 dimensions and eight
bits per dimension. We vary the number of workers used
to perform the keypoint matching from 1 to a maximum

Table VII. Beobot 2.0 SIFT object recognition time breakdown.

Operation Description Computation time

Input SIFT
keypoint
extraction

Extract SIFT
keypoints from
the input
image; done by
the master
process

About 18 s

SIFT database
matching

Match the input
keypoints with
the SIFT
keypoints and
return the
results; done by
the worker
processes

16.25–353.22 s,
depending on
the number of
workers
utilized
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SIFT

SIFT

SIFT

SIFT

Figure 9. Flow of the distributed SIFT database matching al-
gorithm denoted in increasing alphabetical order and referred
below in parenthesis. First the camera passes in the high-
definition (1,920 × 1,080 pixel) frame to the SIFT master mod-
ule (A). This module takes about 18 s to extract the SIFT key-
points from the input image before sending them to the SIFT
worker processes utilized (denoted as Bi , i being the total num-
ber of workers). Depending on the number of workers, each
takes between 16.25 and 353.22 s to return a match to the SIFT
Master (Ci ).

Table VIII. Beobot 2.0 SIFT database matching algorithm test-
ing results.

Number of Processing Standard
workers time (s/frame) deviation (ms/frame)

1 353.2194 57.8369
2 193.6876 58.1703
3 130.8932 39.6815
4 95.5375 27.8618
5 95.3156 34.4357
6 57.5809 12.2352
7 47.1917 10.6182
8 40.2749 9.9586
9 37.2474 8.3234

10 29.8436 6.6259
11 37.7632 15.9283
12 18.9525 6.2032
13 20.9672 6.1088
14 25.3063 6.8077
15 16.2541 5.7455

of 15 (because a total of 16 cores are available). Figure 10
illustrates the allocations of the modules. Table VIII and
Figure 11 record the time required to process each frame,
plotted against the number of workers.

Table VIII shows a total decrease of 21.73 times (from
353.22 to 16.25 s) in per frame processing time between
1 and 15 workers. Here, that the improvement goes beyond
15-folds is, we believe, because of memory paging issues
that arise when dealing with the large messages necessary
when using a small number of nodes.

Figure 11 also shows that while diminishing returns
are achieved after 11 nodes, there is still a significant per-

formance improvement by the utilization of parallel work-
ers in the cluster. Although not all algorithms are as easily
parallelized as this example, this experiment shows that a
very common visual localization front end can indeed be
parallelized and the benefits for doing so are significant.

5.2.2. Distributed Visual Saliency Algorithm Test

One of the capabilities that is important in a robot is ob-
ject collection. Here, a key task to perform is object recog-
nition, usually from an image. There are times when the
object may be small, or placed in a cluttered environment.
This is when an algorithm such as the saliency model (Itti
et al., 1998) can be quite useful. The term saliency is defined
as a measure of conspicuity in an image, and by estimating
this characteristic for every pixel in the image, parts of it
that readily attract the viewer’s attention can be detected.
Thus, instead of blindly performing an exhaustive search
throughout the input image, the saliency model can direct
the robot to the most promising regions first. We can then
equip the robot with a high-resolution camera to capture
all the details of its surroundings. Furthermore, because of
Beobot 2.0’s powerful computing platform, saliency pro-
cessing in such a large image in a timely manner becomes
feasible.

To compute the salience of an image, the algorithm
(Itti et al., 1998) first computes various raw visual cor-
tex features that depict visual cues such as color, in-
tensity, orientation (edges/corners), and flicker (temporal
change in intensity). Here we have multiple subchannels
for each domain: 2 color opponencies (red–green and blue–
yellow center-surround computation), 1 intensity oppo-
nency (dark–bright), 12 orientation angles (increments of
15 deg), and 1 for flicker. That is a total of 16 subchannels,
each producing a conspicuity map, which are then com-
bined to create a single saliency map.

Because the computations in each subchannel are inde-
pendent, they can be easily distributed. And so we use the
algorithm to show how having many cores in a robot can
alleviate such a large computational demand. For the ex-
periment, we set up 1 master process and 1–15 worker pro-
cesses to calculate the saliency of images of 4,000 × 4,000
pixels in size, for 100 frames. The master process takes ap-
proximately 100 ms to preprocess the input image before
sending the jobs to the workers. The jobs themselves take
up to 100 ms to finish for the color, intensity, and flicker
subchannels and up to 300 ms for the 12 orientation sub-
channels. Finally, the conspicuity map recombination takes
less than 10 ms. Table IX summarizes the running times of
individual parts of the system, and Figure 12 illustrates the
flow of the algorithm. In addition, Figure 13 shows the ac-
tual allocations of all the processes at which computer the
modules are run.

The results that we obtained from this experiment can
be viewed in Table X and are graphed in Figure 14. As we
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Figure 10. Allocation of the different programs of the distributed SIFT database matching algorithm in Beobot 2.0. The SIFT
master module is run on one of the cores in computer COM E1, and the various SIFT worker modules are allocated throughout
the cluster.
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Figure 11. Results for SIFT database matching testing on Beobot 2.0.

can see, the processing time drops as we continue to add
workers to the system. Quantitatively, the processing time
reduction comes reasonably close to the expected value, at
least early on. For example, if using one worker, the pro-
cessing time is 3,456.50 ms, then using two workers should
take half the time, 1,728.25 ms, which is comparable to the
actual time of 1,787.69 ms. This is usually the case for a
straightforward distributed processing in which there are
no dependencies between the processes.

Another point of comparison is that we would like to
gauge the improvement using the full cluster with what
would be equivalent to a standard quad core system.
Thus, we compare the usage of 3 worker nodes against all

15 nodes. We see a slight drop in improvement to 3.55
(from 1,249.68 to 352.26 ms). This slowdown is primarily
attributed to network congestion, as we are shuffling large
images around. Furthermore, if we compare the running
time of 1 worker (3,456.5 ms) with 10 times the running
time of 10 workers (478.33 ms × 10 = 4,783.3 ms), there
seems to be a lot of added time. And so, as we add more
and more workers, we expect to eventually hit a point of
diminishing returns. A lesson to be taken here is that we
should consider not only how to divide the task and prop-
erly balance job allocation but also how large the data set
(or the total communication cost) is that needs to be dis-
tributed for each assigned job.
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Figure 12. Flow of the distributed saliency algorithm denoted
in increasing alphabetical order and referred below in paren-
thesis. First the camera passes in the high-resolution 4,000 ×
4,000 pixel image to the SalMaster module (A). SalMaster pre-
processes the image, which takes 100 ms, before sending out
the image to various subchannel SaliencyWorker processes
(denoted as Bi , i being the total number of workers). The color,
intensity, and flicker subchannels take up to 100 ms, and the
orientation subchannels take up to 300 ms. These results are
then recombined by SalMaster (Ci ), and this takes less than
10 ms.

5.2.3. Biologically Inspired Robot Vision
Localization Algorithm Test

For the third computational test, we utilized the vision
localization algorithm by Siagian and Itti (2009). It relies
on matching localization cues from an input image with
a large salient landmark database obtained from previous
training runs to capture the scenes from the target environ-
ment under different lighting conditions.

The algorithm first computes the same raw visual cor-
tex features that are utilized by the saliency algorithm (Itti
et al., 1998). It then uses these raw features to extract gist in-
formation (Siagian & Itti, 2007), which approximates holis-
tic aspects and the general layout of an image, to coarsely
locate the robot in a general vicinity. In the next step, the

Table IX. Beobot 2.0 distributed saliency algorithm time
breakdown.

Computation
Module Description time (ms)

Input image
preprocessing

Computes
luminance and
red–green and
blue–yellow
color
opponency
maps to be sent
to the worker
processes; done
by the master
process

100

Conspicuity map
generation

Performs center-
surround
operations in
multiple scales
to produce a
conspicuity
map for each
subchannel

300–3,900;
depends on the
number of
workers
utilized

Saliency map
generation

Combines all the
conspicuity
maps returned
by the workers
to a single
saliency map;
done by the
master process

10

system then uses the same raw features to isolate the most
salient regions in the image and compare them with the
salient regions stored in the landmark database to refine
its whereabouts to a metric accuracy. The actual matching

Figure 13. Allocation of the different programs of the distributed saliency algorithm in Beobot 2.0. The saliency master module is
run on one of the cores in computer COM E1, and the various saliency worker modules are allocated throughout the cluster.
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Table X. Beobot 2.0 visual saliency algorithm testing results.

Number of Processing Standard
workers time (ms/frame) deviation (ms/frame)

1 3,456.50 108.904
2 1,787.69 491.056
3 1,249.68 528.787
4 979.14 374.978
5 733.85 359.345
6 629.24 387.554
7 571.79 429.028
8 526.77 288.188
9 498.49 441.441

10 478.33 482.481
11 452.13 290.235
12 436.75 253.642
13 375.59 299.921
14 362.72 195.126
15 352.26 332.128

between two regions itself is done using SIFT features
(Lowe, 2004). Of the different parts of the algorithm, the
salient region recognition process takes the longest time.
However, the computations performed by this module are
parallelizeable by dispatching workers to compare particu-
lar parts of the database. Aside from the parallel searches,
there are two other processes whose jobs are to extract gist
and saliency features from the input image and a master

process that assigns jobs and collects results from all land-
mark database search worker processes.

The gist and saliency extraction process, which oper-
ates on 160 × 120 size images, takes 30–40 ms to complete
per frame and has to be run first. The images are placed
in the computer that is connected to the camera. For this
experiment, however, we are running off of previously col-
lected data, without running the motors. Note that because
the information being passed around consists of a few small
salient regions (about five regions of 40 × 30 pixels, on av-
erage), only a small amount of time (4–5 ms) is spent on
data transfer (using the ICE protocol) through the gigabit
Ethernet network.

We then run the master search process, which takes
about 50–150 ms (depending on the number of landmarks
in the database) to create a priority queue for ordering land-
mark comparisons from most to least likely using saliency,
gist, and temporal cues. For example, in the gist-based pri-
oritization, if the gist features of the input image suggest
that the robot location is more likely to be in a certain vicin-
ity, we compare the incoming salient region with the stored
regions found near that place. This prioritization improves
the system speed because we are trying to find only a first
match, which halts the search once it is found, and not the
best match, which requires an exhaustive search through
the entire database.

After these two processes are done, we can then dis-
patch the landmark search processes in parallel. For testing
purposes, we use one, two, four, and eight computers to
examine the increase in overall system speed. Noting that
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Figure 14. Results for saliency algorithm testing on Beobot 2.0.
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Table XI. Beobot 2.0 localization system time breakdown.

Module Description Computation time

Gist and saliency Computes various raw visual cortex features
(color, intensity, and orientation) from the
input image for gist and saliency feature
extraction

30–40 ms

Localization master Creates a priority job queue (to be sent to the
workers) for ordering landmark database
comparisons from most to least likely using
saliency, gist and temporal cues; it also
collects the search results from all search
workers

50–150 ms; depends on the size of the database

Localization worker Compares the incoming salient region with the
stored regions based on the prioritization
order; the search halts once the first positive
match is found

300–3000 ms; depends on the size of the
database and the number of workers utilized

there are two cores in each computer, we dispatch 2, 4, 8,
and 16 landmark database worker processes, respectively.
The localization master then collects the match results to
deduce the robot’s most likely location given the visual ev-
idence. This final step takes less than 5 ms.

Table XI summarizes the various processes, Figure 15
shows the program allocation, and Figure 16 illustrates the
flow of the algorithm.

We test the system on the same data set as that used
in Siagian & Itti (2009), which depicts a variety of visually
challenging outdoor environments from a building com-
plex (ACB) to parks full of trees (AnFpark) to an open area
(FDFpark). The database information for each site in their
respective rows, can be found in Table XII, and the images
can be viewed in Figure 17. The table shows the number of
training sessions, each of which depicts a different lighting

condition in the outdoor environments. This is one of the
reasons why the database is so large. The table also intro-
duces the term salient region (Siagian & Itti, 2009), denoted
as SRegs, which is different from a landmark. A landmark is
a real entity that can be used as a localization cue, whereas a
salient region is evidence obtained at a specific time. Thus
there are, on average, about 20 salient regions to depict a
landmark to cover different environmental conditions.

The results are shown in Table XIII. Here, we examine
the processing time per frame, the localization error, and
salient regions found per frame. As we can see from the
table, for each site there is always a decrease in process-
ing time per frame as we increase the number of comput-
ers. At the same time, generally, there is an increase in ac-
curacy in two of the three sites as the number of comput-
ers is increased. The reason for this is that the localization

Figure 15. Allocation of the different programs of the localization system in Beobot 2.0. The gist and saliency extraction (GistSal)
and localization master modules are allocated computer COM E1, and the various localization worker modules are assigned to
cores throughout the cluster. Note that there are also two worker modules in COM E1. This is because they run only when GistSal
and localization master modules do not, and vice versa.
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Table XII. Beobot 2.0 vision localization system testing.

Number of Number of Number of Number of Number of
Environment training sessions testing frames lmk S. Regs S. Reg/Lmk

ACB 9 3,583 1,501 19.79 29,710
AnFpark 10 6,006 4,664 17.69 82,502
FDFpark 11 8,823 4,808 18.86 90,660

Table XIII. Beobot 2.0 vision localization system testing results.

ACB AnF FDF

Number of S. Reg S. Reg S. Reg
computers Time Err (m) found/frame Time Err (m) found/frame Time Err (m) found/frame

1 1,181.60 2.21 2.34/4.89 2,387.87 2.27 2.73/4.98 3,164.96 4.30 2.51/4.78
2 711.93 1.70 2.38/4.89 1,495.23 2.31 2.76/4.98 1,909.01 4.36 2.51/4.78
4 499.18 1.13 2.48/4.89 1,000.66 2.36 2.81/4.98 1,201.90 4.04 2.55/4.78
8 421.45 1.26 2.57/4.89 794.31 2.38 2.94/4.98 884.74 4.08 2.60/4.78

Figure 16. Flow of the localization system denoted in increas-
ing alphabetical order and referred below in parenthesis. First
the camera passes in a 160 × 120 pixel image to the gist and
saliency extraction module (A), which takes 30–40 ms, before
sending out the localization master module (B). This mod-
ule then allocates search commands/jobs in a form of pri-
ority queue to be sent to a number of localization workers
(Ci , i being the total number of workers) to perform the
landmark database matching. A search command job speci-
fies which input salient region is to be compared to which
database entry. This takes 50–150 ms, depending on the size
of the database. The results are then sent back to the localiza-
tion master (Di ) to make the determination of the robot location
given the visual matches. The last steps takes less than 10 ms.

algorithm itself behaves differently as more and more re-
sources are provided, in that it tries to optimize between
the speed of computation and the accuracy of the results.
Consequently, the running time analysis is not as straight-
forward. That is, we cannot just look at the nonlinearity
of the relationship between the number of computers and
processing time, stating doubling the number of computers
does not halve the processing time, and say that the algo-
rithm does not take advantage of the available computing
efficiently.

As we explained earlier, the Siagian and Itti (2009) lo-
calization system orders the database landmarks from the
most to the least likely to be matched. This is done by using
other contextual cues (such as gist features, salient feature
vectors, and temporal information) that can be computed
much quicker than in the actual database matching process.
The effect of this step is that it gives robot systems with lim-
ited computing resources the best possible chance to match
the incoming salient regions. In addition, there is also an
early-exit strategy that halts the search if the following con-
ditions are met:

• Three regions are matched.
• Two regions are matched and 5% of the queue has been

processed since the last match.
• One region is matched and 10% of the queue has been

processed since the last match.
• No regions are matched and 30% of the queue has been

processed.

This policy is designed to minimize the amount of unnec-
essary work when it is obvious that a subsequent match is
very unlikely to be found. However, together with the in-
crease in the number of workers, this policy actually creates
a slightly different behavior.

First, there is a difference between the number of jobs
processed by a one-worker setup compared to a multiple-
worker setup. In the former setup, the localizer master pro-
cess assigns a job, waits until the worker is done, and then
checks whether any of the early-exit conditions are met
before assigning another job. In the multiple-worker case,
the master assigns many jobs at the same time and much
more frequently. This increases the possibility of a match,
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Figure 17. Examples of images in the ACB (first row), AnFpark (second row), and FDFpark (third row).

as demonstrated by the increase in the number of salient
regions found in Table XIII. In turn, this slows the run-
ning time by prolonging the search process by 5%, 10%, or
even 15% (in a compound case) of the queue, depending on
which early-exit conditions are invalidated.

On the other hand, however, the higher number of
matches found can also increase the accuracy of the system,
but not always. As we can see in Table XIII, there is a small
but visible adverse effect of letting the search go too long
(most clearly in the AnF site). This is because the longer the
search process, the more likely that a false-positive is dis-
covered as the jobs lower in the priority queue are in lesser
agreement with other contextual information. Furthermore,
this is also reflected by the fact that a lot of the salient re-
gions are found early in the search as the numbers do not
increase significantly as we add more computers. For ex-
ample, in the ACB site, compare the salient region found
using one computer (2.34) with using eight (2.57).

From the table, we estimate that, for these environ-
ments, four computers appears to be the optimum number.
Note that the localization system does not have to be real
time, but being able to come up with a solution within sec-
onds, as opposed to a minute, is essential because longer
durations would require the robot to stop its motor and
stay in place. This is what we are able to do with Beobot
2.0. In the full setup, the localization system is going to
be run in conjunction with a salient region tracking mech-
anism, which keeps track of the regions while it is being
compared with the database while still allowing the robot
to move freely as long as the region is still in the field of
view. If we use just four of the computers for localization,
the others can be used for navigational tasks such as lane
finding, obstacle avoidance, and intersection recognition,
thus making the overall mobile robotic system real time.
Currently, we have a preliminary result of a system that
localizes and navigates autonomously in both indoor and
outdoor environments, reported in Chang, Siagian, and Itti
(2010).

6. DISCUSSION AND CONCLUSIONS

In this paper, we have described the design and imple-
mentation of an affordable research-level mobile robot plat-
form equipped with a computing cluster containing eight
dual-core processors for a total of 16 2.2-GHz CPUs. With
such a powerful platform, we can create highly capable
robotic applications that integrate many complex algo-
rithms, use many different advanced libraries, and utilize
large databases to recall information. In addition, by using
the COM Express form-factor industry standard, the robot
is able to stave off obsolescence for a longer period due to
the ability to switch COM modules and upgrade to the lat-
est processor and computer technology.

Furthermore, by implementing our own robot, we
have demonstrated a cost-effective way to build such a
computationally powerful robot. For more information on
the cost breakdown, please refer to Siagian et al. (2009). The
trade-off, of course, is in development time and effort. In
our lab, we have had two people working full time on this
project, with a few others helping out here and there. The
total design and implementation time has been 18 months
from conception to realization. We have had to think about
many issues, no matter how small or seemingly trivial, in
order to ensure that no major flaws are introduced into
the design that can become showstoppers down the road.
However, given that we now have the final design (Siagian
et al., 2009), the implementation of a second robot ought
to be relatively straightforward and much quicker, on the
order of 2–3 months.

One might wonder why we would go to such as ex-
traordinary effort to build such a complex hardware system
when there may well be an easier alternative. For exam-
ple, why not simply stack eight laptops on a mobile plat-
form connected with Ethernet cables? We believe that with
such an approach, it would be hard to isolate the comput-
ers from the elements. Cooling, for instance, would have to
be done in two steps. First, the internal laptop fans would
blow hot air out to a waterproof inner compartment of the
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robot body. Then, we would need another set of fans, fit-
ted with filters to drive the air in and out of the robot
body. Furthermore, we would still have to create space to
place all the other devices (for example, sensors and mo-
tor driver), along with power connections that also have to
supply the main computers. The resulting shear numbers
of cables would easily make the system unwieldy and un-
appealing.

In our custom design, however, wires and cabling,
which are often a source of connection failures, have been
kept to a minimum thanks to the printed circuit board
(PCB) design directives. Additionally, the liquid-cooling
system is well sealed and runs smoothly every time we run
the robot. In terms of maintenance, we use the robot ev-
ery day and have found it to be quite trouble free. The wall
plug-in battery charging system, for one, makes it conve-
nient to charge the robot at night before going home. Fi-
nally, we would like to add that, although in this paper we
are presenting a terrestrial system, the same technology has
been applied to an underwater robot (USC Robotics, 2009),
where dimensions and weights become critical factors and
modifying COTS (commercial off the shelf) systems may
not be feasible.

Nonetheless, with the benefit of hindsight, there are
some things we would have liked to improve upon. One
is easier access to various electronic components inside the
robot body. For example, four of the COM Express mod-
ules are placed underneath the cooling block structure, and
taking them out for repair can be somewhat difficult. This is
the price we pay for designing such a highly integrated sys-
tem. Another problem is managing many computers. In an
application that requires all eight of Beobot 2.0’s comput-
ers, we have to compile and run many programs in parallel
with certain ordering constraints. In addition, we also have
to properly allocate where each program should be run on
which computers, so that there are no computers that are
idling while others are overloaded. Although these issues
cannot always be avoided, some forethought and automa-
tion via appropriate scripting can help. Frameworks such
as MOSIX or the Scyld Beowulf system are available to aid
this process, which is to be tested in the future on our robot.

In the end, we believe that our primary contribution is
that Beobot 2.0 allows for a class of computationally inten-
sive algorithms that may need to access large-sized knowl-
edge databases, operating in large-scale outdoor environ-
ments, something that previously may not have been feasi-
ble on commercially available robots. In addition, it also en-
ables researchers to create systems that run several of these
complex modules simultaneously, which is exactly what we
are currently working on in our lab. That is, we would like
to run the localization system (Siagian & Itti, 2009), vision-
based obstacle avoidance, and lane following (Ackerman
& Itti, 2005) together. We also are planning to add com-
ponents such as SLAM and human/robot interaction. The
long-term goal is to make available plenty of predefined

robotic components that can be reused to speed up future
project developments.

Subsequently, the problem that we foresee is manag-
ing these diverse capabilities. We have to make sure that
there are enough resources to work with and give prior-
ity to the most important and reliable subsystems in solv-
ing the task at hand as well as identifying dangers that
threaten the livelihood of the robot. We hope that through
our contribution of implementing an economical but pow-
erful robot platform, we can start to see more of the type of
complete systems that are needed to thrive in a real-world
environment.
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