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Abstract—We present a mobile robot navigation system
guided by a novel vision-based road recognition approach. fle
system represents the road as a set of lines extrapolated fro
the detected image contour segments. These lines enable the| j§
robot to maintain its heading by centering the vanishing pont
in its field of view, and to correct the long term drift from
its original lateral position. We integrate odometry and ou
visual road recognition system into a grid-based local map
that estimates the robot pose as well as its surroundings to
generate a movement path. Our road recognition system is abl
to estimate the road center on a standard dataset with 25,076
images to within 11.42 cm (with respect to roads at least 3 m
wide). It outperforms three other state-of-the-art systens. In
addition, we extensively test our navigation system in foubusy
college campus environments using a wheeled robot. Our test
cover more than 5 km of autonomous driving without failure. -
This demonstrates robustness of the proposed approach agait
challenges that include occlusion by pedestrians, non-stdard ~ Fig. 1. Beobot 2.0 performing autonomous navigation in atpostrained

complex road markings and shapes, shadows, and miscellaneo outdoor environment (college campus) and among peoplerdia has to
obstacle objects solve two sub-problems: road heading estimation and destamidance.

Beobot 2.0 estimates the road heading visually, which isenalifficult in

I. INTRODUCTION road markings, surface textures, and shapes. shadows caadipans

Mobile robot navigation is a critical component in creating
truly autonomous systems. In the past decade, there has
been tremendous progress, particularly indoors [1], a$ wdloundaries. Furthermore, because the Velodyne is still pro
as on the street for autonomous cars [2], [3]. Because of tiébitively expensive for mass production, more widespread
confined nature of indoor environments, proximity sensor@nd affordable cameras become an attractive alternative.
such as the Laser Range Finder (LRF) play a large role in One approach to heading estimation is through the use
estimating robot heading. Also, with the introduction oé th of teach-and-replay paradigm [5], [6]. The robot is first
Velodyne [4], which provides dense and extended proximitgnanually steered through a specific route during the tegchin
and appearance information, robust and long-range traviage, and is then required to execute the same exact route
on the road [3] is now possible. However, such is not thduring autonomous operation. The success of the technique
case for autonomous navigation in unconstrained pedestridepends on being able to quickly and robustly match the
environments for applications such as service robots (@bse input visual features despite changes in lighting condgio
figure 1). or in the presence of dynamic obstacles. Another concern

Pedestrian environments pose a different challenge thighnhow to get back to the set route when the robot has to
indoors because they are more open with far fewer sugeviate from it momentarily while avoiding novel obstacles
rounding walls, which drastically reduces the effectivamne (pedestrians), although recent improvements [7] have show
of proximity sensors to direct the robot. At the same timepromising results.
pedestrian roads are much less regulated than the onea driveRoad recognition, on the other hand, not limited to a set
on by cars, which provide well specified markings angath, is designed to readily work on any road without the
requirement of prior manual driving. One approach relies

* equal authorship. . _ o on modeling the road appearance using color histograms

C. Siagian is with the Division of Biology, California Ingite of 8 9. Thi h h di .
Technology, Division of Biology 216-76, Caltech, Pasade@alifornia, [81, [9l IS approach assumes the roa IS contiguous,
91125, USA.si agi an@al t ech. edu reasonably uniform and different than the flanking areak [10

_C.-K. Chang is with Department of Computer Science, Univer|n addition, to ease the recognition process, the technique
sity of Southern California, Hedco Neuroscience Building Room v simplifi h d sh . df h b
3641, 10 Watt Way, Los Angeles, California, 90089-2520, usausually simpli les the road shape (as viewed trom the ro Ot)

chi nkai c@isc. edu as a triangle. These assumptions are oftentimes violated in

L. Itti is with the Faculty of Computer Science, Psychologyd Neu-  cases where there are complex markings, shadows, mixtures
roscience, Univesity of Southern California, Hedco Neaiesce Building f d d ol d . h d (ob
- Room 30A, 3641 Watt Way, Los Angeles, California, 900se@susa.  Of roads and plazas, or pedestrians on the road (observe

itti @oll ux.usc.edu figure 1). Furthermore, they also do not hold when the road



Input Image Road Segment Detection Vanishing Point Voting Extract Road Lines

/21—, ~

Edgemap Calculation VP and Lateral Position Beobot 2.0
Tracking/Forward Projection Refinement Robot Navigation

Fig. 2. Overall visual road recognition system. The alfgnitstarts by creating a Canny edgemap from the input image.sybtem has two ways to
estimate the road, one is using the slower full recogniti@p $the top pipeline), where it performs road segment tietecwhich are used for vanishing
point (VP) voting as well as road line extraction. The secf@attom) is by tracking the previously discovered roaddin€he same tracking mechanism
is also used to project forward new road lines from the toglpip, through the incoming unprocessed frames accuneulatele it is computing. The
road recognition system then outputs the road direction elsas the robot lateral position to the navigation systenthén proceeds to compute a motor
command, to be executed by our robot, Beobot 2.0.

appearance is similar to the flanking areas. and robot speed. We discuss the main findings in section IV.

Another way to recognize the road is by using the van- Il. DESIGN AND IMPLEMENTATIONS
ishing point (VP) in the image. Most systems [11], [12], ! . . .
[13] use the consensus direction of local textures or image WWe first describe the visual road recognition system,
edgels (edge pixels) to vote for the most likely VVP. Howevelj!lustrated in flgure 2, befpre combining its result with eth
edgels, because of their limited scope of support, can le&GNSOTY data in sub-section II-D.

to an unstable result. Furthermore, these systems alsthatta The vision system. first takes the input image and performs
a triangle to the VP to idealize the road shape. Canny edge detection to create an edge map. From here

o ibuti b . | q there are two ways to recognize the road. One is through a
ur contributions start by presenting a novel VP detegy, recognition process (the top pipeline in figure 2), wder

tion algorithm tha_lt uses long ‘ijd robust contour segmentgq system uses detected segments in the edgemap to vote
We s_how that th|s_ approach is more robust tha_n PrevIoYs, the most likely VP and to extract the road lines. This
algorithms that relied on smaller and often noisier edgely,ceqs can take a sizable time, exceeding the input frame
We thgn fﬂe;]"b'Y _r(r;od_el th? roarzd using adgroup of IInEsperiod.The bottom pipeline, on the other hand, is much faste
'?].Stea_ Ig tfe ngl fcrlarllgu arhs api. We demhonstra_\te O%¥ecause it uses the available road lines and tracks them. In
t_'s, ylelds fewer mista es when the road s ape 1S Moo pipelines, the system then utilizes the updated lines t
trivial (e.g., a plaza on a university campus). In additiems, Froduce an estimated road heading and lateral position of

design and |mpl_ement an autonor_n_ous nawganqn framewo ﬁe robot. The latter measures how far the robot has deviated
that fuses the visual road recognition system with odometrfyom the original lateral position, which is important, €.

information to refine the estimated road heading. Take6|ne wants the robot to stay in the middle of the road
together,h we find fthat tr;]ese nve c;]ompongnts proatljuce 4In the system, tracking accomplishes two purposes. One
system that outperforms t estgteo the art. First, we Eeat?s to update previously discovered road lines. The second
to produce more accurate estimates of the road center than, project forward the resulting new road lines through

_three benchmark _algorlthms_ on a standard dataset (250%% incoming unprocessed frames accumulated while the
images). Second, implementing the complete system in re%’cognition process is computing

time on a mobile robot, we demonstrate fully autonomous \y qescribe VP detection in section Il-A. the road line

navigation over more than 5 km of different routes on &5 ction and tracking in section 11-B, and the robot later
busy college campus. We believe that our study is to dajg,qjion derivation and estimation in section II-C.
the largest-scale successful demonstration of an autoa®m

road finding algorithm in a complex campus environment. A. Heading Estimation using Vanishing Point Detection

We describe our model in section Il and validate it in The recognition pipeline finds straight segments in the
section 11l using Beobot 2.0 [14] in multiple outdoor envi-edgemap using Hough transform, available in OpenCV [15].
ronments. We test the different components of the systerit filters out segments that are above the manually caliirate
and environmental conditions including shadows, crowdindhorizon line, and near horizontal (usually hover around the



horizon line) and vertical (usually part of objects or build We then use the segments that support the winning VP,

ings). The elimination of vertical lines from consideratio indicated in red in figure 3, to extract lines for fast road

takes out the bias of closeby objects from the road estimatidracking.

process. Horizon line calibration is done by simply denptin ] . .

the line’s pixel coordinate, and can be corrected onlinerwheB- Road Line Extraction and Tracking

the road is not flat using an IMU. Another way to perform We chose a line representation, instead of storing individ-

online adjustment is to run a VP estimation for the whol&al segments, because it is more robust for tracking. The

image intermittently in the background. system first sorts the supporting segments based on their
As illustrated in figure 3, the remaining segments vote folengths. It then fits a line through the longest segment using

candidate vanishing points (VP) on the horizon line, spacddast-squares. The system then adds any of the remaining

20 pixels apart and up to 80 pixels to the left and right ofegments that are close enough (if all the edgels in the

a 320 by 240 image. By considering VP’s outside the fieldegment are within 5 pixels) to the line, always re-estinati

of view, the system can deal with robot angles that are fahe line equation after each addition. Once all the segments

from the road direction, although not near or perpendiculagithin close proximity are incorporated, the step is repdat

to the road. to create more lines using unclaimed segments, processed in
To cast a vote, each segment is extended on a straight-lieegth order. To discard weakly supported lines, the system

to intersect the horizon line. The voting score of segmenhrows away lines that are represented by less than 50 edgels

s for a vanishing pointp (observe figure 3) is the productin the map. We call this condition the support criterion.

of segment lengths| and the inverse proportion of the

proximity of p to the intersection point of the extended ling

with the horizon line, denoted by the functi@intercept in

the equation below:

horizon line
® o ©

o @
horizon support line

]

Fig. 4. Line tracking process. The system tracks a line égudtom the

previous frame (denoted in yellow) in the current edgemagitgying an

optimally fit line (orange) among a set of lines obtained biftisiy the

horizontal coordinate of the previous line’s bottom poibhbtfom of the
image) and horizon support point (intersection point o¢ land the horizon
support line) by +/- 10 pixels with 2 pixel spacing. The fitnés based on
the score in equation 3. The set of candidate shifted panshown in red
on the bottom and on the horizon support line.

|hintercept(s), p|

score(s,p) = (1.0 Yxls| (1)
Note thaty is set tol/8th of image width or40 pixels,
which is the voting influence limit, with any segment farthe

not considered.

Given a line equation from the previous frame, and the
Flg 3. Vanlshlng p0|nt (VP) voting. The VP candidates, aadeéd as disks current edgemap' the System calculates the new equatlon by

on the calibrated horizon line with radii proportional toeith respective turbi the line’s hori t int and d bott
accumulated votes from the detected segments. For clariyfigure only perturbing the lin€'s norizon support point and road bottom

displays segments that supports the winning VP. A segmamintributes ~ point, as illustrated in figure 4. The former is the line's
to a vanishing poinp by the product of its length and distance @fto  jntersection point with a line 20 pixels below the horizon
the intersection point between the horizon line and a linereded froms l lled the hori t i hile the latter i
labeled ashintercept(s). ine (called the horizon support line), while the latter 1s a
onscreen intersection point with either the bottom or tde si

To increase the VP estimation robustness, the syste?r]; the image. The system searches through the surrounding

- . : : spatial area of the two end points to find an optimally fit
multiplies the accumulated scores with the inverse promort line by shifting the horizontal coordinate of each point b
of the proximity to the VP location from the previous time y 9 P y

step. Note that the system replaces values in the second teiﬂn 10 pixels with 2 pixel spacing. The reason for using the

below0.1 with 0.1 to allow a small chance for a substantial lorizon support line is b_ecause we wan_t each new candidate
. . . line, when extended, to intersect the horizon line on theesam
jump in the VP estimate.

side of where it came from. That is, if the candidate line
intersects the bottom of the image on the left side of the VP,
0— P, “Pt71|) @) it should intersect the horizon line on the left as well. We

vpy = argmax » score(s,p)* (1. ' ! -
P XS: find that true road lines almost never do otherwise.



The highest scoring candidate is calculated by dividing theame vertical coordinate. Observe figure 5 for an illugirati
total number of segment edgels that coincide with the ling/e take the weighted average of the deviation to calculate
equation over total number edgels possible that are belae final estimate.
the horizon line and in the image:

1
o S dev = ———— g fitness(l) *x dewv(l 5
Zs<ml1ne'(l) | | (3) Zl fztness(l) l ( ) ( ) ( )
total Possible(l)

that also passes the support criteria is the new tracked
line. If none exists, the tracked line is assigned a zeroescq
and kept as is. After each track the system assesses
condition of each line. Any newly spawned lines will be
kept for observation for their first seven frames, regaslles
of the fithess score. A line that scores above 0.5 in at leg
five frames is kept and remains active until at least five qf
the last seven scores fall below 0.3 (hysteresis). We lab
the lines that have no scores below 0.3 the past 7 frames|s
healthy. In the event a new road line nearly overlaps with &
tracked line, if their horizon support and road bottom p®int y 4
are within 7 pixels total, we keep the line with the hlgher
fitness score. deviation by averaging the road bottom shifts of all the keat lines

The resulting lines can then be used to refine the VP ljXhlenoted in orange), weighted based on the equation 3 sddnds that

performing a weighted average (based on the fithess scoré@) is the shift from the original line equation (denotedyiilow), when
of the horizon intercept points: the line is first spawned. The estimated lateral differercc¢hée distance
ptp between the orange and yellow stubs in the middle bottom efrttage.

fitness(l) =

horizon line

horizon support line

Fig. 5. Lateral deviation estimation. The system estimdtes lateral

1 _ ) If at the time step a line is first used, the current estimated
meztness(l)*hmtercept(l) (4 lateral deviation is not 0, the resulting difference based
t on it has to be offset by the deviation. When there are
Note that this equation differs than equation 2 in that th@o tracked lines, the system sets the lateral deviation to
latter is a voting process, where the VP candidates are dpaggro and assumes the robot is near its original position.
far apart, while here the VP is computed from road lines ang@/hen a usable set of lines becomes available, the current
can be in any coordinate in the image. lateral location is the new position to maintain. We use
If there are no lines at the current time step, the systeem empirically calibrated bottom of the image single pixel
does not output a vanishing point. The robot will try todistance of 9.525mm to produce a metric lateral deviation.
maintain its heading using other means such as encodersThe road recognition system then feeds the heading and
and IMU, explained in section II-D below. To integratelateral position deviation to the local map navigation egst
the VP-based heading estimation with these sensors, the
system converts the VP pixel location to angle deviatio - Local Map Navigation
from the road heading. Assuming the camera is fitted with Beobot 2.0’'s overall navigation system, as illustrated in
a standard 60 degree field-of-view lens, the conversion figure 6, takes in the visual road recognition output, as well
linearly approximated from 0 degree deviation at the cent&s Laser Range Finder (LRF) and odometry (from IMU and
of the image to 27 degrees at the edge. encoders) values. The LRF is particularly useful for olstac
- o detection and avoidance, while the IMU and wheel encoder
C. Robot Lateral Position Estimation data supplement the visual road finding algorithm in difficul
The estimated VP by itself is not accurate enough toonditions (e.g, sun shining into the camera). The local map
properly drive the robot. Even though the general headingpresents the robot's local surroundings using a 64 by 64
is correct, the robot slowly drifts to one side of the roadgrid occupancy map, where each grid cell spans a 15cm by
which may disturb pedestrians. To rectify this, our systemh5cm spatial area. The robot location in the map is displayed
locks in on the robot’s initial lateral position and tries toas a red rectangle and is located at the horizontal center
maintain it. We decided to do this, instead of estimating thand three quarters down vertically to increase front-dieto
true road center, because, often times, road boundarigs [1doverage. In addition, there is a layer of grid surrounding
[8], [13] cannot be visually ascertained, without addiibn the map to represent goal locations outside of it. The figure
contextual and semantic information. shows the goal to be straight ahead, which, by convention,
When the firsthealthy lines are detected, we set the on-is the direction of the road.
screen road bottom points as the canonical servo points.To standardize the road direction estimation throughout
When the robot moves, each road bottom point movebke system, the back-end navigation module (rightmost col-
to a new position. The lateral deviation is the horizontalimn in figure 6) calculates the absolute IMU road heading
difference between the canonical and new coordinates on thg summing the estimated angular heading deviation from

vp =
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Fig. 6. Beobot 2.0 autonomous navigation system. The systéizes sensors such as IMU and encoders to estimate ralmhetry, LRF to create a
grid occupancy map, and camera to recognize the road. Thaeriafion is then fused to create the robot’s local surraumdnap, which estimates the
road and robot heading, and the surrounding obstacles.afh e goal the system computes a path using the A*, defdrmsimally avoid obstacles
using the elastic band algorithm, and generates motion @mdrthat account for robot shape and dynamics using DynanmdaW Approach (DWA).

b

Beobot 2.0

visual road recognition and the current IMU reading. In the The module then applies A* search to the map to find a
event IMU readings are not available, the heading valugsath to the goal. For each grid, the search process creates
become relative to the initial heading recorded by the wheeight directed edges to the surrounding nodes weighted by
encoders. To make the estimation more robust, the modutee length of the edge plus the occupancy likelihood of the
considers the last 100 absolute headings in a histograsestination grid. To encourage path consistency, we bis th
of 72 bins, each covering 5 degrees. It updates the roagkight by adding the proximity of the destination grid to the
heading estimate if 75% of the values reside within 3 binslosest point in the previous A* path divided by the map
by averaging the values within those bins. In addition,sbal diagonal. If the distance is less than 2 pixels we zero out the
discards heading inputs that are farther than 30 degress frdias to allow for flexibility of finding a nearby optimum path.
the current estimate, which usually occur during obstacl® smooth out the path and allow for maximum avoidance
avoidance by an adjacent or perpendicular road in the fiefdom the obstacle we apply the elastic band algorithm [16].
of view. To compute the motor command from the deformed path,
By approximating the road direction in absolute IMUthe module utilizes the Dynamic Window Approach (DWA)
heading, the module does not directly couple vision-basgd7]. It not only calculates the deviation between the cutrre
road recognition with motion generation. Instead it cam alsrobot heading and the heading of the path’s first step, but
use IMU readings to compute the robot's heading either ialso takes into account the dynamics of the robot by only
between recognition outputs or when the road is undetextaldonsidering commands within the allowable space set by
visually. the previous command. Furthermore the approach then accu-
To correct for lateral position deviation, the module addsgately simulates each resulting arc trajectory of the adlole
a small proportional bias to the heading which is calculatedommands, modeling the robot shape to test whether any part
using the deviation over the longitudinal distance to goal: of the robot hits or come close to hitting an obstacle.

ang = angrovor + atan(dev/long(goal))  (6) lIl. TESTING AND RESULTS

This is done because lateral correction is not an urgentWe carry out three different testing procedures. In section
priority and at times more accurate approximation can onlil-A, we test the performance of the vision road recogmitio
be achieved if deviation is sufficiently large. sub-system against other road recognition systems [8], [11

The grid occupancy map itself is filled by the LRF on thg13] on a standard dataset [13]. We then demonstrate in
robot. In this setup, unlike a Simultaneous Localizatiod ansection IlI-B how each perceptual input that contributes to
Mapping (SLAM) formulation, the odometry uncertainty isthe navigation system (wheel encoders, IMU, VP detection,
not modeled. It is not critical to do so because the robdateral deviation estimation) affects performance. Intisec
quickly passes through the local environment and discardld-C, we evaluate the full system in real-time on a wheeled
any briefly accumulated errors. robot operating under challenging conditions (variabladro



Bookstore (BKS) B Fredeick D. Fagg Park (DF)

Fig. 7. Example images from the four testing sites, each d€hvhccentuate different road characteristics. The roderéderick D. Fagg park (FDF) is
uniform with well defined red boundaries. The road in fronttleé Bookstore (BKS) has many complex markings, while Hefiriday (HWY) is more
uniform, but curved. The road in front of the Leavey LibrabjE@), on the other hand, is not explicitly delineated, andvigler than the rest. For each
site we display the road in various conditions: ideal, shadh and crowded.

appearance, the existence of shadows, robot speed, and  Mourvodel MChang, etll1s] MRasmussen, etal. [8]  [llKong, etal. [11]
crowding). Ea

For this full test, we select four key road types tha *
encompass different visual challenges, described in figur

7. We test using Beobot 2.0 (pictured in figure 6), which i
equipped with a camera and an LRF in front, 117cm an e
60cm above the ground, respectively, as well as encoders
and IMU to calculate odometry. Beobot 2.0 computes th

QError (cm

canny edgemap in 3ms, hough segments in 20ms, VP votin Equa
in 1ms, line extractions in 5ms, and line tracking in 3ms 01 K a “('g":';u;‘

average.
A. Road Recognition System Comparison HNB AnF Equad SsL

We first test the system accuracy in recognizing road _ _ ,
System comparison bar chart with example images effdlr

center usmg an |mage dataset of robot naV|gat|0n runs l%}gnronments The bar graphs illustrate the performanaipflgorithm as
[13]. For our system, we provide the initial road centeivell as [11], [8], [13] in estimating the road center. Pemfiance is measured

location of each run as an offset to convert the relativedte DY the difference between the ground truth and estimatedi ceater in cm.
T WO Stars Indicates statistical signiticance p-valuep . an ree
deviation to the absolute road center Two st dicates statistical signif p-valuepot 0.01 and th

- ) starsp < 0.005.
The dataset consists of four sites — HNB, AnF, Equad,

SSL — with example images shown in figure 8. The dataset
provides manually annotated left and right road boundariegP estimate is incorrect, the road center usually falls on a
which are averaged to calculate the road center. We compagg;dom point in the image.
the result with road recognition outputs to measure thererro |n some instances, such as in over-saturated or blurry
in pixel unit, which is equivalent to one centimeter with theimages, there may not be clear lines in the image because
dataset camera setup. the detected segments are not sufficiently aligned to form
We compare our system with another VP based systesven one line. In these cases, our system only provides
[11], a color histogram contrast system [8], and one thai vanishing point from the segment VP voting instead of
combines both aproaches [13]. Note that all three idealizgroducing erroneous road shape when there is none visually.
the road using a triangular shape template. Figure 8 display
the results. B. Individual Part Contribution Testing
Our system produces a better road center estimate on allWe assess the contribution of the different perceptual
environments, on average, within 11.42cm of the grounihputs in the navigation system by systematically adding
truth. It is generally more robust in instances where thel roaeach of them, from the simplest to the most computationally
shape are not triangular or when there is only one visibleomplex. We first rely on encoder-only odometry, then IMU
road boundary, when the robot swerves away from the roathd encoder-fused odometry, then adding VP, and finally
center, as shown in the second sample image in figure 8.adding lateral position estimation. We start the robot ia th
In addition, the system also benefits from the decouplingniddle of the road and measure its lateral deviation as it
of VP and road center estimation by directly and separatehavigates through the road. We measure the ground truth by
computing them from the tracked road lines. In other systemmanually recording the robot location at certain intervad a
[11], [13], road center is estimated by extending a pair ahterpolating the positions in between. Testing is done five
road boundaries (left and right side) from the VP. If theimes for each setup to obtain an average performance. If at
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Fig. 9. Example trajectory of autonomous navigation usiagous components of the presented visual road recogrstystem. Here Beobot 2.0 has
to traverse through a 75m route on a 6.09m wide road, runnimg feft to right. The encoder only odometry trajectory isded in green, while the
encoder and IMU odometry is red, IMU and VP magenta, and thesystem with IMU, VP and lateral position estimation blihe dashed line is the
center of the road and the figure only shows one side of the road

TABLE | TABLE Il
PARTS CONTRIBUTION EXPERIMENT EXPERIMENT SITES INFORMATION
| | Length] Avg | Max. | Stdev.| | | BKS| FDF| HWY | LEA
Encoders 34.68m | 1.47m | 2.70m | 0.73m Route Length|| 100.0m | 75.0m | 70.0m | 50.0m
Encoders + IMU (I0)|| 75.00m | 1.30m | 2.26m | 0.52m Road Width 7.92m | 6.09m | 5.20m | 8.00m
10 + VP 75.00m | 1.31m | 2.77m| 0.93m
10 + VP + Lat. Pos. || 75.00m | 0.20m | 0.70m | 0.14m

rather than solely on a far-away point such as the VP.

any time the robot is in danger of falling off the road, weC: Environment and Robot Condition Testing
stop it and only record the results up to that point. We systematically test the autonomous navigation system

We test the system on site FDF, where the 75 meten different days, at different times of the day, and in four
long road is uniform gray in color with sizable red-coloredselected outdoor sites on the USC campus: Bookstore (BKS),
shoulders, seen in the first set of images in figure 7. Therederick D. Fagg Park (FDF), Hellman Way (HWY), and
full road width, including the shoulder, is 6.09m. Also,Leavey Library (LEA). These sites encompass different road
in this experiment as well as the next, we do not turmppearance characteristics that are explained in figura 7. |
on the LRF for obstacle avoidance so that the robot caaddition, their respective route length and road width are
keep moving straight. However, the people around the robavailable in table II.
can still occlude its view. Table | reports the experimental We first run the robot in an ideal condition: no crowd,
results: average length traveled, average deviation fiwen tno shadows, and ideal speed 0.5m/s (equivalent to slow
road center, as well as the deviation’s maximum value angalking). For an even lighting with no shadow, we run the
standard deviation. robot between 5 and 7pm where the sun is about to set,

As we can see, encoders by themselves perform the worathereas, to obtain shadow patterns, the robot is run in the
only able to complete an average of 34.68 m of the totalfternoon. For a faster speed, the robot is run at 1.0m/s,
road length. To make a robot run straight through a roaghich is very close to regular walking speed. We display
using blind encoder odometry, the floor has to be perfectihe average deviation from the road center in a series of
level, which is almost never the case. As for the IMU andbar graphs in figure 10, with the different conditions laldele
encoder infused navigation, the robot has to be aimed almagtpropriately.
perfectly to stay centered. Otherwise, as we observe theThe results between the sites for the ideal testing cases
typical trajectory in figure 9, the robot deviates from theare similar, between 0.12m and 0.29m, with an average of
center of the road on a straight line. In addition, there ar@.21m lateral deviation error. The HWY site is slightly more
some places where ambient IMU interference is quite strondifficult because the roads are curved. However, we find that,
particularly indoors, near buildings, or if there are stames even on a curved road, the system can still utilize the ditaig
underneath the road. portions of the road boundaries to direct itself.

The VP-only navigation system eventually also gets off- In addition, the system appears to be able to cope with
course because our VP estimation is not accurate to the pixbe crowded and shadow conditions, on average, measuring
value. Thus, although it allows the robot to maintain a fairl 0.37m and 0.32m, respectively. There are different types
specific heading, there is usually a slight bias that slowlpf shadows, which are displayed in figure 7. One that is
drifts the robot to one side of the road. The full systemwithout sharp straight edges such as the ones underneath
with a far better 0.20m average error, is able to stay in theushes (observe the second example of FDF site), while the
middle of the road because the lateral deviation estimatother has sharp edges, usually shadows of buildings or tree
locks the robot on the spacings of the lines in front of itfrunks (first BKS and forth LEA example). The latter has
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