
Autonomous Mobile Robot Localization and

Navigation Using Hierarchical Map Representation

Primarily Guided by Vision

Christian Siagian *
∗

Department of Computer Science
University of Southern California

Los Angeles, CA 90089
siagian@usc.edu

Chin Kai Chang *
†

Department of Computer Science
University of Southern California

Los Angeles, CA 90089
chinkaic@usc.edu

Laurent Itti

Department of Computer Science
University of Southern California

Los Angeles, CA 90089
itti@pollux.usc.edu

Abstract

While impressive recent progress has been achieved with autonomous vehicles both indoors
and on streets, autonomous localization and navigation in less constrained and more dynamic
environments, such as outdoor pedestrian and bicycle-friendly sites, remains a challenging
problem. We describe a new approach that utilizes several visual perception modules —
place recognition, landmark recognition, and road lane detection — supplemented by prox-
imity cues from a planar Laser Range Finder for obstacle avoidance. At the core of our
system is a new hybrid topological/grid-occupancy map which integrates the outputs from
all perceptual modules, despite different latencies and timescales. Our approach allows for
real-time performance through a combination of fast but shallow processing modules that
update the map’s state while slower but more discriminating modules are still computing.
We validated our system using a ground vehicle that autonomously traversed several times
three outdoor routes, each 400m or longer, in a university campus. The routes featured dif-
ferent road types, environmental hazards, moving pedestrians, and service vehicles. In total,
the robot logged over 10km of successful recorded experiments, driving within a median of
1.37m laterally of the center of the road, and localizing within 0.97m (median) longitudinally
of its true location along the route.

1 Introduction

The ability to localize or recognize one’s location, and to navigate or move about one’s environment, are
critical building blocks in creating truly autonomous robots. In the past decade, there has been significant
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progress in this aspect of autonomy, particularly indoors (Thrun et al., 1999; Fox et al., 1999; Marder-
Eppstein et al., 2010) and on streets and highways for autonomous cars (Montemerlo et al., 2008; Thrun,
2011). However, despite these successes, ample opportunity remains for substantial progress in less con-
strained pedestrian environments, such as a university campus or an outdoor shopping center. This type
of settings encompasses a major portion of the working environments for human-sized service robots whose
tasks are exemplified in figure 1. One major hurdle is that sensors and techniques which are reliable in other
areas are not as effective here.

Figure 1: Examples of tasks for service robots illustrated from left to right: patrolling alongside law enforce-
ment personnel, searching for target objects, providing information to visitors, and assessing the situations
and conditions of the robot’s area of responsibility.

For one, current indoor localization (Thrun et al., 2000; Fox et al., 1999) and navigation (Minguez and
Montano, 2004; Marder-Eppstein et al., 2010) systems rely primarily on planar proximity sensors such as
the Laser Range Finder (LRF). These proximity sensors exploit the confined nature of indoor space, e.g.,
narrow hallways, to create a unique location signature for localization, as well as to direct the robot heading.
In the open-space outdoors, however, these sensors are less effective because, first, surfaces detected by laser
may not be as structurally simple as indoors (e.g., trees, shrubs), and, second, often the nearest solid surfaces
may be out of the sensor’s range. Thus, it is desirable to find other ways to robustly sense the environment.
Two primary sub-problems in navigation are to estimate the road heading, so that the robot stays on its
route, and to avoid static and dynamic obstacles. Because obstacle avoidance is readily and identically solved
by proximity sensors both indoors and outdoors, road recognition becomes the more pressing navigational
concern.

Another commonly-used group of devices are depth sensors, which produce dense three dimensional proximity
information by exploiting a number of physical properties. However, many of them, e.g., the Swiss-ranger or
Kinect, do not work robustly outdoors, especially in the presence of sunlight. Even for the ones that do, such
as stereo cameras, the system still has to perform the difficult task of extracting the shape and appearance
of the road, possibly without the help of surrounding walls.

The problem of road recognition can now be robustly solved on urban streets and highways because of
distinguishing cues such as clear lane markings and bankings. One key breakthrough of the DARPA Grand
Challenge (Montemerlo et al., 2008) is the introduction of a sensor called the Velodyne (Glennie and Lichti,
2010). It provides combined proximity and appearance information, measured densely in all 360◦, with 120
meter range. The sensor has played a major role in enabling many teams to finish the race. Furthermore, it
has also allowed the Google Car (Thrun, 2011) to travel more than 300,000 miles for many months in the
San Francisco area. However, because of its cost, the Velodyne has not been widely utilized. In addition,
pedestrian roads, which are less regulated and whose delineations are more subtle and varied, pose a different
challenge, one that still has not been generally solved even with a Velodyne.

Another aspect of autonomous cars that does not transfer to human-sized service robots is how localization
is performed. Unlike faster moving cars driving on a highway, which can afford to make Global Positioning
System (GPS) location queries that are far apart, service robots operate on a smaller environment scale and
move at the speed of humans. A GPS reading, with its relatively coarse resolution, would not be able to
localize a robot accurately enough to turn correctly at a typical campus road intersection. Furthermore,
many pedestrian roads have tall trees or buildings alongside them, which denies satellite visibility that the



GPS relies upon.

Given these factors, vision, the primary sense of humans, is an ideal perceptual modality to localize and
navigate in most outdoor places that humans can travel to. In addition, it is also an attractive alternative
because of the affordability and availability of cameras. However, one drawback of these versatile devices is
the associated processing complexity, further exacerbated by the real-time requirements that robotic systems
demand.

In this paper, we present a fully autonomous localization and navigation system for a human-sized service
robot operating in unconstrained pedestrian environments, primarily using monocular vision and comple-
mented by LRF-based obstacle avoidance. Our main contributions are four-fold:

• Using vision algorithms (visual attention, landmark recognition, gist classification, localization, road
finding) to compute localization and navigation cues that are robust in busy outdoor pedestrian
areas;

• Developing a framework for the integration of these cues using a proposed hierarchical hybrid topo-
logical/grid occupancy map representation.

• Exploiting the hierarchical map, along with applying techniques such as forward projection and
tracking, to resolve differences in algorithmic complexity, latency, and throughput, to create an
overall real-time robotics system.

• Testing over more than 10km total traveled distance, with routes 400m or longer, to demonstrate
that the approach indeed is viable and robust even in crowded environments like a university campus.
As far as we know, this is the most extensive evaluation of a service robot localization and navigation
system to date.

The system is described in section 3 and tested in section 4. We then discuss our findings in section 5. First,
we describe related vision localization and navigation research in the next section.

2 Related works

We start with similar full systems that perform both navigation and localization in section 2.1. In addition,
because many research efforts have focused on specific sub-components of our system, we also separately
survey vision localization (section 2.2), road recognition (section 2.3), and path planning (section 2.4). A
large portion of these references directly motivate the implementations of our system components, techniques,
and overall architecture. Furthermore, we also cite references that contrast our approaches to complete the
background literature. These cited works shown that our decisions are well founded by the respective
communities.

2.1 Indoor and Outdoor Mobile Robot Localization and Navigation

In recent years, a few systems have ventured out to pedestrian outdoor environments. Systems such as (Trulls
et al., 2011) and (Montella et al., 2012) do so by solving localization, road heading estimation, and obstacle
avoidance, all by using Laser Range Finders (LRF) only. The key is being able to take advantage of various
detectable and distinguishable environment features within the LRF range. In their testing, these static
cues are obtained from nearby building surfaces, walls, poles, and trees. In the absence of such features, the
technique would have to find other cues to utilize.

Another approach to navigation and localization makes use of visual landmarks through the teach-and-replay
paradigm (Chen and Birchfield, 2006; Chang et al., 2010; Furgale and Barfoot, 2010). The robot is first



manually steered through a specific route in the teaching stage, and is then asked to execute the same
exact route during autonomous operation. Once a few landmarks are detected, the system can synchronize
what it currently sees with the training frames. Localization, like other visual recognition-based systems,
is straightforward because training frames are associated with a specific location. Navigation, on the other
hand, is achieved by moving the robot to align the image coordinates of the seen landmarks to the appropriate
locations in the training images.

The success of the technique depends on being able to quickly and robustly match the input visual features
despite changes in lighting conditions or in dynamic obstacles such as pedestrians. One important concern
is on how to get back to the set route when the robot has to deviate from the set path momentarily, e.g.,
to avoid unexpected obstacles. Indeed, if such deviation was not encountered during training, the robot
will have no memory of what it sees after deviating. Recent improvements by (Cherubini et al., 2012) have
shown promising results in overcoming such difficulty.

Another issue arises when the system drifts and becomes out of synchronization with the reference training
image sets. In that case, the system has to reset itself. This has to be done while the robot is stationary
because the landmarks are responsible for both localization and navigation. Our system separates these two
components. When our localization system is temporarily confused about where it is, the robot can still
move forward using road recognition, allowing the localization system to possibly recover later down the
route.

2.2 Vision Localization

The key to a successful vision localization system is to be able to match observed visual landmarks despite
outside interference or visual variability. Since the recent introduction of visual keypoints, such as SIFT
(Lowe, 2004) and SURF (Bay et al., 2006), as well as subsequent techniques such as the visual bag-of-
words (Lazebnik et al., 2006), systems can now robustly perform this critical matching step in many more
environments, including outdoors.

There are now many systems that are capable of accurate coordinate-level localization (Segvic et al., 2009;
Se et al., 2005; Murillo et al., 2007; Royer et al., 2007), as well as Simultaneous Localization And Mapping
(SLAM) (Eade and Drummond, 2008; Angeli et al., 2008; Strasdat et al., 2010). In fact, many systems are
capable of localizing in large scale areas the size of a few city blocks (Cummins and Newman, 2008; Schindler
et al., 2007), as well as across many seasons (Valgren and Lilienthal, 2008). However, many of these systems
have thus far only been tested off-line as the computational complexity can be prohibitive.

An interesting recent effort focuses on a lower-resolution localization task called place recognition (Ulrich
and Nourbakhsh, 2000; Torralba et al., 2003; Pronobis et al., 2006; Fazl-Ersi and Tsotsos, 2012). Here, the
problem is framed as a classification task, to distinguish places in the environment, not the exact coordinate.
Because of the coarser resolution, these systems easily run in real time.

A practical way to exploit the speed of place recognition is by combining it with the accuracy of metric
localization systems. Many systems (Zhang and Kosecka, 2005; Wang et al., 2006; Weiss et al., 2007; Siagian
and Itti, 2009) do so through a coarse-to-fine hierarchical approach, where place recognition primes possible
areas in the map before refining the location hypothesis to a coordinate level.

For completeness, it should be noted that many systems combine vision-based localization with other modal-
ities such as proximity (Pronobis et al., 2010; Newman et al., 2009; Ouerhani et al., 2005), GPS (Agrawal
and Konolige, 2006; Vargas et al., 2007), or visual odometry (Nistér et al., 2006; Tardif et al., 2008). Each
modality provides something that complements vision localization. For example, even though GPS is coarser,
has a lower update frequency, and is less reliable in some places, it provides clean global absolute location
information that can be used to limit the matching process to a smaller geographic area. Note that we
make a distinction between vision localization and visual odometery. The former is a technique that tries to



visually recognize one’s global location, while the latter only visually estimates ones motion. However, if an
initial global location is available, visual odometry can be critical in maintaining localization.

2.3 Road Lane Recognition

A critical task in navigating in pedestrian environments is to recognize and stay on the road. It is important
to distinguish road lane navigation from systems that simply drive through any flat terrain. The former
specifically enforces proper and socially acceptable ways to travel in pedestrian environments, e.g., avoiding
excessive zigzags. In addition, often it is important for the robot to travel in the middle of the road, because
it provides an optimal vantage point to observe signs or landmarks. Also, by trying to recognize roads in
general, instead of performing teach-and-replay, the system is not limited to a set path that has previously
been manually driven. Instead, the system has the freedom to move about its surroundings and explore
unmapped areas.

Aside from using vision, systems have been proposed that use proximity cues from LRF (Hu et al., 2009;
Wurm et al., 2009), stereo cameras (Hrabar and Sukhatme, 2009), and Kinect (Cunha et al., 2011). They
have shown a measure of success in restricted conditions, without the presence of sunlight or where the
surfaces characteristics of the road and its flanking areas are sufficiently dissimilar. Monocular visual cues,
on the other hand, readily encode road information in most environments.

One visual approach relies on modeling the road appearance using color histograms (Rasmussen et al., 2009;
Kuhnl et al., 2011), which assumes that the road is contiguous, uniform, and visually different than the
flanking areas (Santana et al., 2010). In addition, to ease the recognition process, the technique usually
simplifies the road shape, as viewed in the image, as a triangle. These assumptions are oftentimes violated
in cases where there are complex markings, shadows, or pedestrians on the road. Furthermore, they also do
not hold when the road appearance is similar to the flanking areas.

Another way to visually recognize the road direction is by detecting the vanishing point (VP). Most systems
(Kong et al., 2010; Moghamadam et al., 2012; Miksik, 2012) use the consensus direction of local textures
and image edgels (edge pixels) to vote for the most likely VP. However, edgels, because of their limited scope
of support, can lead to an unstable result. Furthermore, many systems also attach a triangle to the VP to
idealize the road shape. Our road recognition module (Siagian et al., 2013a) improves upon these limitations
by detecting the VP using more robust contour segments and not assuming the triangular shape.

2.4 Path Planning

Generally, a path planning system needs a mapping of the surroundings to generate motion commands.
However, a few systems do not explicitly model the nearby obstacles, but simply detect and avoid potentially
hazardous conditions, for example, using optical flow (Coombs et al., 1995; Santos-Victor et al., 1993) or
other visual features (Michels et al., 2005; i Badia et al., 2007; Nakamura and Asada, 1995). A standard
representation allows a system to utilize multiple perceptual modalities and naturally fuse them together.

The mapping is usually in form of a grid occupancy map, whether it be the traditional ground-view two
dimensional (Moravec and Elfes, 1985) map, or more recent three dimensional (Marder-Eppstein et al., 2010)
version. These maps are primarily filled by planar proximity sensors such as the LRF, which can also be
swept to create a three dimensional perception. Another way to create a three dimensional map is by using
the aforementioned Velodyne (Glennie and Lichti, 2010). From our experience, because of the openness of
the outdoors, a well placed planar LRF is sufficient to avoid most obstacles. For more aggressive maneuvers
through narrow openings such as under a table, a three dimensional representation would be needed.

Given an occupancy map, there are two approaches to compute a motor command: directional space control
and velocity space control. In the former, the algorithm selects a command that moves the robot to the



best neighbor location in terms of advancing to the goal, while avoiding obstacles. A class of this is called
the Vector Field Histogram (Borenstein and Koren, 1991; Ulrich and Borenstein, 1998), which combines an
attractive force from the goal with repelling forces from nearby obstacles. However, this technique, as well
as related approaches such as the Nearness-Diagram algorithm (Minguez and Montano, 2004), suffers from
local minima problems because they do not explicitly search for complete paths that eventually arrive at
the goal. On the other hand, shortest path algorithms such as A* (Wilson, 1982) and its derivatives, e.g.,
D*-lite (Koenig and Likhachev, 2002), ensure path completion to the goal.

One difficulty of using grid map is determining the optimal grid size. An overly large size creates a coarse
map that excludes some needed details, for example, in cluttered settings. A grid size that is too small is
also not ideal as it renders the system inefficient because the exponential increase of the search space. One
way to combat such problem is through the use of non-uniform grid size, such as an octree (Wurm et al.,
2010).

Even with an ideal grid size, because of the map discretization, the resulting path may be too rigid and
does not maximally avoid obstacles. This is because the path consists of straight segments that connect the
centers of the visited grid cells. Techniques such as the elastic band approach (Quinlan and Khatib, 1993)
modifies and smooths out the resulting rigid path. Another approach by (Yang and Lavalle, 2004) achieves
the same objective by directly sampling the free space in the map without gridding it altogether.

In order for the robot to behave decisively, it is important to create a path that is consistent over time.
An extension of the shortest path algorithms called the Incremental Heuristic Search (Koenig et al., 2004)
encourages such requirement as well as speeds up the process by incorporating paths from previous time
steps as a prior to guide the subsequent search.

A fundamental problem with directional space control is that it does not deal with kinematic and dynamic
constraints, for example, whether a robot is holonomic. Velocity space control techniques (Fox et al., 1997;
Simmons, 1996; Fiorini and Shiller, 1998) address them directly by modeling factors such as robot geometry,
actuator configuration, and the robot’s current and achievable velocities.

The technique requires a good motion model to compute precise trajectory estimation. This is in contrast
with directional space control which does not take into account how fast the robot will get to a certain spot,
as long as it ends up there. In addition, constructing a full path to the goal is time consuming considering
the number of options in each step.

One way to alleviate this is using a rapidly exploring random tree (RRT) (Kuffner and LaValle, 2000), which
is designed to efficiently search through high-dimensional space. Another way is to compute a full path in
the directional space, then refine an immediate portion in the velocity space (Marder-Eppstein et al., 2010).
The combination allows a system to gain the benefit of both techniques. Our presented system is an example
of such an algorithm.

3 Design and Implementation

The flow of our overall system is illustrated in figure 2. The left side of the image depicts our mobile
platform, Beobot 2.0, with the utilized sensors – a forward-pointing camera, a Laser Range Finder (LRF),
wheel encoders, an IMU – as well as motors to move the robot. Our IMU (MicroStrain, Inc., 2009) is
also equipped with a compass that makes magnetic measurements. It is placed high above the computers
and motors to minimize magnetic distortion induced by the robot. Also note that ferrous obstacles in the
environment may affect the IMU.

The two major sub-systems, localization and navigation, are displayed in the middle of the figure. The
localization system (the top of the column) is described in section 3.1, while the navigation system (bottom)
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Figure 2: Diagram for the overall localization and navigation system. We run our system on a wheelchair-
based robot called the Beobot 2.0. As shown on the sensor column, the system utilizes an IMU, camera, Laser
Range Finder (LRF), and wheel encoders. We use the camera to perform vision localization by integrating
results from salient landmark recognition and place recognition. For navigation we use visual road recognition
for estimating the road heading, and LRF-based grid-occupancy mapping for obstacle avoidance. The system
utilizes a topological map for global location representation and a grid-occupancy map for local surrounding
mapping. The grid map, which is represented by the blue rectangle on the topological map, is connected
with the topological map by the intermediate goal (green dot).

is in section 3.2. Because earlier versions of these sub-systems have been described previously (Siagian and
Itti, 2009; Siagian et al., 2013a), here we provide summary descriptions of their technical details, instead
focusing on information flow, timing, and interactions between sub-systems, which are key to designing a
complete working mobile robot system. Note that both sub-systems utilize the fused odometry.

The rightmost column in the figure is the hierarchical spatial representation of the robot’s environment.
The first level is a global topological map that compactly represents all the needed metric information for
global path planning. The next one is a local grid-occupancy map, which details the robot surroundings.
Mechanically, the local map is connected to the global map through an intermediate goal location that is
registered in both maps (observe figure 2). The task of the navigation system is simply to safely reach the
intermediate goal. The local map, which is robot-centric, is then advanced along the current graph edge in
the global map, to always keep the robot at a fixed location in the local map.

For each sub-system, we describe not only the algorithm and its pertinent components, but also the timescale
of the implementation. By analyzing the timescale, we demonstrate the advantages afforded by the hier-
archical map construction, as well as the mechanisms that are utilized to overcome long latencies of some
components. We then continue to the overall system and examine how it accommodates the different com-
ponent latencies to ensure a timely system execution.

We start the detailed description with the vision localization system.



3.1 Localization System

We summarize the vision localization system, which is inspired by previously published work (Siagian and
Itti, 2009). We focus on the mechanisms that allow it to run in real time: multi-level hierarchical and
multi-perception localization. As illustrated in figure 3, the system is divided into three stages. The first
stage takes an input image and extracts low-level Visual Cortex-like features, consisting of center-surround
color, intensity, and orientation channels. These features are used by two parallel processes to extract the
“gist” and salient points of the scene, two extensively studied human visual capabilities. We define the gist
features as a low-dimensional vector (compared to raw image pixel array) that represents a scene and can be
acquired over very short time frames (Siagian and Itti, 2007). Saliency, on the other hand, is computed as a
measure of interest at every image pixel, to efficiently direct the time-consuming landmark matching process
towards the most likely candidate locations in the image. The gist features and salient regions, along with
fused odometry, are input to the back-end Monte-Carlo localization (Thrun et al., 2000; Fox et al., 1999)
algorithm to estimate the robot’s position.
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Figure 3: Diagram of the vision localization system. The system takes an input image and extracts low-
level features in the color, intensity, and orientation domains. They are further processed to produce gist
features and salient regions. The localization system then uses these features for segment classification and
salient landmark matching (respectively), along with fused odometry, to estimate the robot’s location using
a Monte-Carlo framework.

The topological map, which currently is manually constructed, is represented by a graph G = {V,E}. The
nodes v ∈ V are augmented with metric information specifying their coordinate locations. Accordingly,
the edge cost We for each edge e ∈ E is set to the distance between its respective end-nodes. The system
also defines segments s ⊆ E, each an ordered list of edges, with one edge connected to the next to form a
continuous path. This grouping is motivated by the fact that the views/layouts in a segment are similar
and can be classified using gist features. An example of a segment is the highlighted three-edge segment 2
(thicker and in green) in the map in figure 3.

The term salient region refers to a conspicuous area in an input image depicting an easily detected part of
the environment. An ideal salient region is one that is persistently observed from different points of view
and at different times of the day. In addition, the set of salient regions that portray the same point of
interest is considered jointly, and that set is called a landmark. To recognize a landmark and to associate it
with a location, the system employs a training regimen by manually driving the robot through all the paths
in the environment. The produced database is quite large, about one landmark per meter of path. As a



result, unlike the instantaneous segment classification, the landmark recognition process can take seconds.
However, as opposed to just localizing to the segments, salient landmarks produce coordinate locations.

The localization system takes advantage of the contrasting segment classification and landmark matching
by coarsely but quickly estimating the robot’s segment location in every video frame. It then refines the
estimation to a more accurate metric location when the salient region matching results are available. In
addition, the system also speeds up the database matching process by using contextual information such as
current location belief and segment classification output. It orders the database items to be compared from
the most likely to be positively matched to the least. This helps because the search ends, for efficiency reasons,
after the first match is found. Also, to keep the database match results relevant despite the processing latency,
the system stores the accumulated odometry during the landmark matching process. When the results are
ready, the landmark recognition module adds the longitudinal movement offset before sending the resulting
location to the back-end Monte-Carlo localization.

Within the Monte-Carlo framework, we formulate the location state St as a set of weighted particles St =
{xt,i, wt,i}, i = 1 ... N at time t, with N being the number of particles. Each particle or possible robot
location xt,i = {kt,i, lt,i}, with k being the segment number and l the length traveled along the segment
edges normalized by the segment length (from 0.0 at the start of the segment to 1.0 at the end). Because
the localization formulation is over the graph edges but with exact metric location specification, the search
space is effectively continuous one dimensional. That is, even though the locus of the considered locations
describe a two dimensional geographical space, it is constrained to within the path edges. Thus, a small
and computationally less demanding N = 100 suffices, even in kidnapped robot instances. Also, with this
formulation, we specify a path as the exact location of the end points and a list of edges that connects them.

The system estimates the location belief Bel(St) by recursively updating the posterior p(St|z
t, ut) using

segment estimation z
′

t, landmark matching z
′′

t , and motion measurements ut. In addition, the system invokes
importance resampling whenever more than 75% of the particles collapse to within the robot width of 60cm.
It chooses 95 percent of the total N particles from the existing population by taking into account their
weights wt,i, while randomly generates the remaining 5 percent. The latter is done by randomly choosing
an integer among the segment numbers for kt,i and decimal value between 0.0 and 1.0 for lt,i.

To robustly measure robot motion, we implement a Kalman filter (King, 2008), which fuses the wheel
encoders and IMU. The filter’s state space is the current absolute heading θt and distance traveled dt. Using
these estimated values, we compute the longitudinal distance traveled ut = dt ∗ cos(θt− θψt

), with θψt
being

the absolute road direction estimate, discussed in section 3.2.1 below.

The system then computes the motion model p(St|St−1, ut) by advancing the particles by ut and adding
noise to account for uncertainties such as wheel slippage that can produce large odometry errors. This is
done by drawing a random location from a Gaussian probability density p(xt,i|ut, xt−1,i), where the mean
is the previous location xt−1,i plus the odometry ut, and the standard deviation is 3cm (about 1/6th of a
typical single step). If in the process a particle moves past either end of a segment, we change the segment
number appropriately and normalize the excess distance from the end of the original segment. If the original
segment ends at an intersection with multiple continuing segments, we randomly select one. If no other
segment extends the path, we leave the particle at the end.

For the visual observations, the segment estimator (Siagian and Itti, 2007) uses the gist features to classify
the input scene, and outputs the likelihood z

′

t = { φt,j }, j = 1 ... Nsegment with φt,j being the likelihood
value for segment j at time t. The system then updates the weights wt,i of each particle xt,i to:

p(z
′

t|xt,i) =
φt,kt,i

∑Nsegment

j=1 φt,j
∗ φt,kt,i (1)



Here, the likelihood that particle xt,i observes z
′

t is proportional to its segment location estimation value
φt,kt,i over the total sum (first term) times the value itself (second term). The first term accounts for the
segment relative strength, while the second preserves the ratio with respect to the absolute 1.0 maximum
value.

The landmark matching process, which is illustrated in figure 4, compares incoming salient regions to the
landmark database regions using two sets of signatures: SIFT keypoints (Lowe, 2004) within the region
bounding box, and salient feature vector. The former denotes the shape of the region, while the latter
quantifies its saliency characteristics. We employ a straight-forward SIFT-based recognition system (Lowe,
2004) using the suggested parameters, while the salient feature vector matching is described here.

Figure 4: Matching process of two salient regions using SIFT keypoints (drawn as red disks) and salient
feature vector, which is a set of feature map values taken at the salient point location (yellow disk). The
lines indicate the keypoint correspondences. The fused image is added to show alignment.

A salient feature vector is a set of feature map values (Itti et al., 1998; Itti, 2000) from the color, intensity,
and orientation channels. These values are taken from a 5-by-5 window centered at the salient point location
of a region. In total, there are 1050 features: 7 sub-channels times 6 feature maps times 5 × 5 array. To
compare salient feature vectors of two regions ρ1 and ρ2, we factor in feature similarity sfSim (equation 2)
and salient point location proximity sfProx (equation 3) after aligning the regions (observe the fused image
in figure 4). The former is based on Euclidian-distance in feature space:

sfSim(ρ1, ρ2) = 1−

√

∑Nsf

i=1 (ρ1,i − ρ2,i)2

Nsf
(2)

with Nsf being the feature dimension. For a match to be confirmed, the feature similarity has to be above
.75 out of the maximal 1.0. The location proximity sfProx, on the other hand, is the Euclidian distance in
pixel units (denoted by the function dist), normalized by the image diagonal length η:

sfProx(ρ1, ρ2) = 1−
dist(ρ1, ρ2)

η
(3)

The matching threshold for sfProx is 95% or within 5% of η.

The resulting matches are denoted as z
′′

t = { ot,j }, j = 1 ... Mt with ot,j being the j-th of the total Mt

matched database regions at time t. The system computes the likelihood of simultaneously observing the
matched regions at a given particle location xt,i by updating the weight wt,i = p(z

′′

t |xt,i):

p(z
′′

t |xt,i) =

Mt
∏

j=1

p(ot,j |xt,i) (4)



Because each salient region match observation is independent, the system can multiply each likelihood to
calculate the joint probability. Each p(ot,j |xt,i) is modeled by a Gaussian where the likelihood value is set
to the probability of drawing a length longer than the distance between the particle and the location where
the matched database region is acquired. The standard deviation of the Gaussian is set to 5% of the map
diagonal to reflect increased level of uncertainty for larger environments.

The system then estimates the robot current location using the highest weighted particle.

We illustrate the temporal integration of the localization components with a timeline in figure 5. The local-
ization system, along with other sub-systems, uses a subscribe/publish architecture, where each component is
an independent process. The outputting localization module, which is highlighted at the last row, processes
observations from the components as soon as they are available. This allows the system to not be explicitly
tied to a rigid time step synchrony. However, because odometry and segment estimation come in regular
intervals, the system appears to produce output regularly from the outside perspective.

Camera (30Hz)

10033.33 66.67Time (ms) 0

Fused Odometry (15Hz)

Raw features, gist, saliency (30Hz)

Segment estimation (30Hz)

Landmark matching (.33Hz)

Odometry tracking (.33Hz)

Localization (30Hz)

. . . . . . 3000

Figure 5: Diagram of the localization sub-system timeline. The figure lists all the localization sub-system
components: two sensors, four perceptual processing steps, and a back-end localization estimation. Please
see the text for explanation.

The top section of the figure (the first two rows) lists the utilized sensors: a camera, which runs 30Hz, and
the 15Hz fused odometry. Note that the fused odometry uses a Kalman Filter to combine information from
the 80,000Hz encoders and 50Hz IMU. Even though odometry is reported less frequently, the information
latency is closer to that of the encoders. Furthermore, if we consider the robot speed of under 1m/s, a 15Hz
or 66.67ms period latency only amounts to 7cm localization error.

Below the sensors are the perceptual components. The raw feature extraction, gist, and saliency computa-
tions start after being triggered by the camera output, as indicated by the arrow from the first row. The
module, which is implemented in parallel over multiple processing cores, takes about 25ms (noted by the
length of the solid maroon block). The process then idles until the next image arrives. For each module, we
state its throughput in parentheses, with the output indicated by an arrow that drops down from the right
end of the processing block. Note that there are also a number of arrows that seem to do the same from
the left side of a block. They are actually pass through arrows from their respective original processes. The
first arrow from Fused Odometry, for example, is processed by both Odometry Tracking and Localization.
However, it may look as if Localization takes an input from Odometry Tracking.

Segment classification, which takes less than 1ms to compute, passes its result to landmark matching for
search priming and localization module for location update. The landmark matching process, on the other
hand, takes three seconds on average (.33Hz), despite a multi-threaded landmark search implementation.
However, because odometry tracking keeps track of where the original image is being triggered, the long
latency is accounted for. The final localization module itself outputs results at 30Hz with the input image



and, subsequently, segment estimation being the trigger.

A critical point that enables localization to effectively operate in real time is that each perceptual input
already accounts for its own internal latency. In addition, because the topological map formulation is one
dimensional along the graph edges and needs only 100 particles to localize, the localization computation
itself takes less than 1ms. Thus the system is not burdened by the frequent observation updates, which
allows the location belief to be accurate to the most recent input. Furthermore, the system can still be
expanded with new observations and modalities of any timescale as long as their latencies are accounted for.
Most importantly, the localization system timely mode of operation allows the full system to integrate it
with real-time navigation.

3.2 Navigation System

The components of the navigation system are the visual road recognition (Siagian et al., 2013a) to estimate
the road direction (described in section 3.2.1), grid map construction (section 3.2.2), and path planning to
generate motor commands (section 3.2.3). In the last part of section, we put the whole system together,
integrating both localization and navigation.

The local map represents the robot’s surroundings by using a 64 by 64 grid occupancy map (Moravec and
Elfes, 1985), with each grid cell spanning 15cm by 15cm spatial area for a 9.6m by 9.6m local map extent.
We select 15cm or 1/4 the robot size (our robot is 60cm in length and width) because it is a balance between
sufficiently detailed depiction and being manageable for real-time update.

As shown in figure 2, the robot is displayed as a red rectangle, and is placed at the local map horizontal
center and three quarters down the vertical length to increase front-of-robot coverage. In addition, there is
a layer of grid surrounding the map to represent goal locations that are outside the map. The figure shows
the goal to be straight ahead, which, by convention, is the direction of the road. Thus a large portion of
motion control is trying to minimize the deviation between the robot and road heading.

Given the robot autonomous speed of 0.66m/s average and 0.89m/s maximum, the 7.2m (0.75 x 64 x 15cm)
mapping of the robot front area affords at least 8.1 seconds of forward look-ahead to properly react to
potential static obstacles. On the other hand, dynamic obstacles such as people have to be evaluated with
respect to the local map update rate of 20Hz. Here, using the average human walking speed of 1.4m/s, the
system latency of as much as 100ms translates to 0.14m movement or within one grid size.

3.2.1 Visual Road Recognition

Our visual road recognition system (Siagian et al., 2013a), which is illustrated in figure 6, is a novel vanishing
point (VP) -based algorithm that uses long and robust contour segments, instead of the smaller and often
noisier edgels. In addition, much like the localization system, it also implements a tracking mechanism to
ensure that it runs in real time. The output of the system is the absolute road direction θroad. Note that
the road recognition system does not make use of odometry information.

The system takes the input image and performs Canny edge detection to create an edge map. From here
it has two ways to recognize the road. One (the top pipeline in the image) is through a full but slower
recognition process, which detects segments in the edge map, votes for the most likely VP, and extracts the
road lines that are extended from the VP. On the other hand, the bottom pipeline runs in real-time because
it only tracks the already available road lines to update the VP location. Because the system has both
mechanisms, it balances accuracy and timeliness.

The recognition pipeline uses Hough transform to find straight segments (OpenCV (Bradski, 2001) imple-
mentation) in the edgemap. The process then filters out segments that are above the manually calibrated
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Figure 6: Overall visual road recognition system. The algorithm starts by computing a Canny edgemap from
the input image. The system has two ways to estimate the road. One is using the slower full recognition
step (the top pipeline), where it performs road segment detection. Here, the segments are used to vote for
the vanishing point (VP) as well as to extract road lines. The second (bottom) is by tracking the previously
discovered road lines to update the VP location as well as the robot lateral position. The tracker is also used
to project forward output road lines from the top pipeline, which may fall behind the camera frame rate.
The road recognition system then outputs the VP-based road heading direction as well as lateral position
to the navigation system to generate motor commands.

horizon line, near horizontal (usually hover around the horizon line), and near vertical (usually part of close-
by objects or buildings). The remaining segments vote for candidate VPs on the horizon line, regularly
spaced 1/16th image width apart.

To cast a vote, each segment is extended on a straight-line to intersect the horizon line (observe figure 7).
The voting score of segment s for a vanishing point p is the product of segment length |s| and the inverse
proportion of the proximity of p to the intersection point of the extended line and the horizon line, denoted
by hintercept(s) in the equation below:

score(s, p) = (1.0−
|hintercept(s), p|

µ
) ∗ |s| (5)

with µ set to 1/8th of image width. µ is also the voting influence limit, with any segment farther not
considered. Note that the exact values of the constants in the algorithm do not significantly affect overall
system performance.

To improve the robustness of the current VP estimation (denoted as ψt), the system multiplies the accumu-
lated scores with the inverse proportion of the proximity to the previous VP location ψt−1:

ψt = argmax
p

∑

s

score(s, p) ∗ (1.0−
|p, ψt−1|

µ
) (6)

We then use the segments that support the winning VP, indicated in red in figure 7, to extract lines for
fast road tracking. The system first sorts the supporting segments based on their lengths. It then fits a
line equation through the longest segment using least-squares, and iteratively adds the remaining nearby
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Figure 7: Vanishing point (VP) voting. The VP candidates are illustrated by disks on the calibrated horizon
line, with radii proportional to their respective accumulated votes from the detected segments. For clarity,
the figure only displays segments that support the winning VP. A segment s contributes to a vanishing point
p by the product of its length and distance between p and the intersection point of the horizon line and a
line extended from s, labeled as hintercept(s).

segments (if all edgel in the segment are within five pixels) to the line, always re-estimating the equation
after each addition. Once all segments within close proximity are incorporated, the step is repeated to create
more lines using unclaimed segments, processed in length order. To discard weakly supported lines, the
system throws away lines that are represented by less than 50 edgels in the map.

Given a line equation from the previous frame and the current edge map, the system calculates a new
equation by perturbing the line’s end-points in the image. The first is the road bottom point, which is
the onscreen intersection point with either the bottom or the side of the image. The second is the horizon
support point, which is the line’s intersection point with a line 20 pixels below the horizon line (called the
horizon support line), as illustrated in figure 8.

horizon support line

horizon line

Figure 8: Line tracking process. The system tracks a line equation from the previous frame (denoted in
yellow) in the current edge map by finding an optimally fit line (orange) among a set of lines obtained by
shifting the horizontal coordinate of the previous line’s bottom point (bottom of the image) and horizon
support point (intersection point of line and the horizon support line) by +/- 10 pixels with 2 pixel spacing.
The set of candidate shifted points is shown in red on the bottom and on the horizon support line.

The system tries to fit a new line by shifting the horizontal coordinate of both end-points by +/- 10 pixels
with 2 pixel spacing. The reason for using the horizon support line is because we want each new candidate
line, when extended, to intersect the horizon line on the same side of where it came from. That is, if the
candidate line intersects the bottom of the image on the left side of the VP, it should intersect the horizon
line on the left as well. We find that true road lines almost never do otherwise.



The top pipeline also uses the same tracking mechanism for other purposes. One is to refine the VP estimate
because the voting scheme only selects a location among sparsely spaced hypotheses at the calibrated horizon
line. By using the intersection of road lines instead, the estimate is much more accurate. The second use of
tracking is to help the recognition pipeline catch up to the current frame by projecting the newly discovered
road lines through unprocessed frames accumulated during the recognition computation.

At the end of both pipelines, the system converts the VP pixel location to angle deviation from the road
direction by linear approximation, from 0◦ at the center of the image to 27◦ at the edge (or .16875◦ per pixel).
Here we assume the camera is fitted with a standard 60◦ field-of-view lens. The system then calculates the
absolute road heading by summing the angular deviation with the current IMU reading. By approximating
the road direction in absolute heading, the system does not directly couple the vision-based road recognition
with motion generation. Instead it can use IMU readings to maintain robot heading. This, at times, is
essential when the road is momentarily undetected visually, e.g., when going under a bridge.

To improve the heading estimation robustness, the system, which runs at 30Hz, considers the last 100
absolute headings using a histogram of 72 bins, each covering 5◦. It only updates the road heading estimate
if 75% of the values reside within 3 bins, updating it with the average value within those bins. In addition,
the system also discards heading inputs that are farther than 30◦ from the current estimate, which usually
occurs during obstacle avoidance. The resulting filtered VP-based absolute road direction is called θψt

.

This angle by itself is actually not accurate enough to properly drive a robot. Even though the general
heading is correct, a single degree of bias can slowly drift a robot to one side of the road. To rectify this, the
system locks the robot to its initial lateral position by storing the locations where the road lines intersect
with the bottom of the image and trying to maintain these coordinates.

The system converts the unit-pixel lateral deviation to metric length dev using an empirically calibrated
distance of 9.525mm per pixel. The system then corrects for lateral deviation by adding a small proportional
bias to θψt

.

θroad = θψt
+ atan(δ/long(g)) (7)

with θroad being the final absolute road direction to be sent to the navigation system. The second term,
which is the lateral deviation correction, is the angle created by the observed deviation δ and the current
longitudinal distance from the robot to the goal location long(g), computed using the atan function. Observe
figure 9 for the illustration. The small correction is sufficient because the robot is already going in the right
direction and lateral correction only needs to guard against long-term drift, in the scale of 1m for 30m
traversal.

Figure 10 displays the road recognition system timeline. The canny edge map computations run in 3ms and
precede both the full recognition (third row) and road line tracking pipelines (fourth). The former runs close
to 40ms, with Hough segments lasting for 20ms, VP voting for 3ms, and road line extractions for 15ms. The
line tracking process runs in 5ms, depending on the number of lines being tracked. Usually the system tracks
no more than six road lines at a time.

The final road heading estimation itself is triggered by the IMU output, which reports the current robot
absolute heading. This allows the system to quickly correct deviation between the robot and road heading,
for both straight and curved roads. (Siagian et al., 2013a) has shown that the system is able to follow
curved roads. In the paper, we experimentally tested the system on four paths, one of which (HWY path)
contained curved segments. On average, the system performed only slightly worse (10cm lower) than its
average performance. The key to following this type of road is being able to extract as much of the straight
image segments on the curved path as possible. In this case, these segments point toward a moving vanishing
point, which coincides with the changing direction of the road.
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Figure 9: The conversion of the vanishing point (VP) shift from the center of the image and of the lateral
deviation from the original location to robot lateral position. In the VP shift, each pixel (in this case
120 pixels) away from the center is multiplied by .16875◦, while on lateral deviation, every pixel (in this
case 22.8 pixels) away from the original position equals to 9.525mm. Since the lateral deviation δ is of
low priority, it only needs to be corrected by the time the robot arrives at the top of the local map or in
the goal longitudinal distance long(g), which is 7.2m. The resulting angle computes to atan(δ/long(g)) =
atan(22.8 ∗ .009525/7.2) = 1.73◦.
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10033.33 66.67Time (ms) 0
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Full road recognition (15Hz)
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Road heading estimation (50Hz)
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Figure 10: Diagram of road recognition timeline. The figure lists all the components in the system: camera
and IMU, edgemap computation, the two visual recognition pipelines, and the final road heading estimation.

3.2.2 Constructing the Grid Occupancy Map

The system updates the grid occupancy values using LRF proximity distances that are already appropriately
aligned with respect to the road heading. The grid values are initially set to −1.0 to indicate unknown
occupancy. The grid cells are updated only if they are hit by or in line with the LRF rays. For each ray,
the system draws a line from the robot location to the endpoint. If the laser line goes through a grid cell,
indicating that it is free, the occupancy value is set to 0.0. If the laser line ends on the grid cell, it is set to
1.0. This discrete valued map D is stored and updated at each time step.

To generate a path, the system first blurs map D using the equation below. The resulting map is called a
blurred map B.

B(i, j) = max
−nsize<=di,dj<=nsize

D(i + di, j + dj) ∗ (1−

√

d2i + d2j
√

(nsize + 1)2 + (nsize + 1)2
) (8)



Here the value B(i, j) is the maximum of the weighted occupancy values within an nsize = 4 neighborhood,
where each neighbor’s discrete value D(i+di, j+dj) is inversely weighted by its distance to (i, j). By setting
the influence neighborhood to 4 or a full robot width, the repelling force of the obstacle starts to influence
the robot half of its length away from its surface. Note that in the calculation of B(i, j), D(i, j) is included in
the neighborhood with the distance weight of 1.0, while the weight terms for the farthest neighbors evaluate
0.2. In addition, the blurring is not applied to cells with unknown occupancy status, to keep their influence
to a minimum. After blurring, these cells are given a conservative value of 0.99 to allow the path planning
algorithm to go through them if all other options have been exhausted.

As the robot moves longitudinally toward the goal, the grid values are shifted down one row at a time,
keeping the robot location as is. This means that the local map is robot-centric in denoting the location, but
allocentric in heading direction, aligning with the road. The robot movement estimation, which is computed
using the fused odometry, is sufficiently accurate for grid shifting purposes. Here perfect occupancy alignment
is not critical because the robot quickly passes through the local environment and discards any briefly
accumulated errors. Unlike in Simultaneous Localization and Mapping (SLAM) formulations, the system
does not intend to create a complete global map, which requires reasoning about motion uncertainties.
Even when the system encounters an occasional large odometry error, it can quickly recover from grid map
misalignment because the occupancy values of every grid visible by the LRF is updated in each frame. This
way the misalignment only affects the grids that are in the local map and in robot’s current blind spot.
This is fine because the robot always turns to where it is moving to, thus exposing as well as correcting the
erroneous blind spots.

Observe figure 11 for an illustration of the grid occupancy process. It also includes a path biasing step,
described in the next section.

Figure 11: Three stages of the grid occupancy map. The first, leftmost, image is the discrete map D of
all the discovered occupancy values, with the white color being unoccupied, black fully occupied, and cyan
unknown. The second map is the blurred map B, while the last occupancy map F is biased by most recently
produced path to encourage temporal path consistency. Also notice that the unknown grid cells, such as the
ones below the robot, do not extend their influence out in both the blurred and biased map.

The grid construction timeline is shown in figure 12. The process, because the map uses a relatively coarse
15cm by 15cm resolution, has a low computational requirement of less than 1ms, and outputs results at
20Hz, after receiving each LRF readings. The path planning step, on the other hand, takes substantially
longer.

3.2.3 Path Generation

The system first applies A* search to the local map to create a coarse path trajectory to the goal. For
each grid cell, the search process creates eight directed edges to the surrounding nodes. The edge weight
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Figure 12: Diagram of grid map construction timeline. The figure lists all the components: the three utilized
sensors, the road heading estimation, and the grid map construction process.

is computed by adding the edge length and F (i, j) value of the destination cell, which is the sum of the
destination B(i, j) and a bias term to encourage path consistency. The bias term is calculated by adding
the proximity of the destination cell to the corresponding closest point in the previous A* path, divided by
the local map unit pixel diagonal length λ.

F (i, j) = B(i, j) + min
k=1 to npath

√

(Pk,i − i)2 + (Pk,j − j)2

λ
(9)

Here the previous path P is defined as k ordered and connected points Pk, with Pk,i and Pk,j referring to
the i and j coordinate locations of the path point. To save time, the algorithm does not add edges to cells
going into fully-occupied nodes D(i, j) = 1.0. Consequently, to include all non-fully occupied cells, all F (i, j)
values are capped at .99 for nodes D(i, j) 6= 1.0. In addition, the system zeroes out the bias if distance to
the closest obstacle is less than 2 unit pixels, to allow for flexibility of finding an optimum nearby path.

We find that adding a bias and generating a path on every frame, which is computed efficiently because
the coarse 15cm grid size, is more practical for encouraging temporal smoothness. The more burdensome
alternative would be to advance and modify an old path when ever there are changes to the local map. Here,
generating new paths allows for the fastest possible reaction to new changes without a need to explicitly
detect them.

There are times when A* cannot return a path to the goal, usually because the robot is moving into a dead-
end and the goal is on the other side of the wall. In this case the system creates a straight forward path, to
keep the robot moving ahead until it is directly in front of a wall, within two robot lengths. This ensures that
there is no way to the goal, and not because of inaccuracies in the local map construction, especially using
far away LRF values. In cases where the robot is truly stuck, the system invokes an exploratory procedure
by spinning the robot 360◦. In the future, we plan to implement a more robust procedure such as moving
backwards as well as considering pertinent contextual information.

To allow for maximum obstacle avoidance and to smooth out the discrete path, the system applies a modified
elastic band algorithm (Quinlan and Khatib, 1993) using the current LRF laser scans as individual obstacles.
Each path point undergoes an iterative process for tmax = 20, where at each time step the point is moved by
an attractive force A to straighten the path, and a repulsive force R to repel it perpendicular to the closest
obstacle. The attractive force is defined as:

At+1,k =
Pt,k+1 + Pt,k−1

2
− Pt,k (10)



On the other hand, the repulsive force R uses a vector Ct,k = Pt,k − closestObs(Pt,k), which extends from
the closest obstacle closestObs(Pt,k) of path point Pt,k to that point. The force can then be defined as:

Rt+1,k =
Ct,k
|Ct,k|

∗
m− |Ct,k|

|Ct,k|
(11)

Here the first term normalizes the vector Ct,k, while the second term creates an exponential magnitude
weight, where the closer the obstacle the larger the repulsive force. Note that, when identifying the closest
obstacle points, the system models the robot body more accurately as a square. Here the maximum obstacle
distance m = 5 limits the obstacle consideration to within 5 grid units of the robot, otherwise Rt+1,k = 0.

Equation 12 below combines the two factors:

Pt+1,k = Pt,k +Wt ∗ (
1

3
∗At+1,k +

2

3
∗Rt+1,k) (12)

The weightWt decays overtime, becoming linearly weaker 5% at a time from .2 to .01, orWt = .2∗(1.0− t
tmax

).

To compute the motor command using the smoothed path, the system takes the path’s first step and
applies the Dynamic Window Approach (DWA) (Fox et al., 1997). It not only calculates the deviation
between the current robot heading and the heading of the initial path step, but also takes into account
the robot dynamics. This is done by only considering commands within the allowable velocity space based
on the estimated velocity calculated from the previous command, its execution delay, and motor and body
dynamics. Furthermore, the approach then accurately simulates each resulting arc trajectory of the allowable
commands (translational and rotational velocity), modeling the robot shape to test whether any part of the
robot would hit an obstacle. In the end, the system selects a motor command that is expected to best achieve
the target heading and velocity, while staying clear of the obstacles. Figure 13 illustrates the three stages of
the motion generation.

Note that even though the displayed DWA trajectory deviates from the smoothed path, this is only for one
step. When the next time step is executed, the front of the robot is expected to be in the dotted location. At
that point, the system is going to recompute the path again. After all the steps are computed and executed,
the actual robot trajectory usually ends up similar to the smoothed path.

The path planning timeline, which integrates the sub-systems in our presented system, can be viewed in
figure 14. The path planning sub-system creates the occupancy grid map and computes A* in 5ms, path
smoothing step (elastic band algorithm) in 1.8ms, DWA step in 5ms, which totals to about 12ms. The
output path itself is triggered by the grid-occupancy map output, which is triggered by the LRF output.

While other modules influence the robot motion in almost every time step, localization updates the inter-
mediate goal in the local map quite infrequently. For the most part, the goal location is placed in the
canonical straight ahead position (observe figure 13). There are, however, a few occurrences where the goal
is moved, such as during a turn procedure, or when the goal is within the local map dimensions. For turns,
the localization system sends a command to the local map to initiate a turn. It specifies the turn angle as
the angle created by the involved incoming and outgoing edges in the map.

The navigation system then moves the goal to the appropriate location, triggering a path generation that
forces the robot to turn immediately. The system then lets the robot move until its angle is aligned to the
goal direction, usually in less than two seconds. When the turn is completed, the local map is rotated so
that the goal location is at the canonical straight-forward position, and the robot can proceed in a normal
fashion.



Figure 13: The three stages of the path trajectory and motion command generation. The figure displays
both the full local map on the left and a zoomed part within the red rectangle on the right for a clearer
picture. The system first runs A* to generate a rigid path shown in green in both images. The system
then deforms the rigid path (in blue) to optimally and smoothly avoid obstacles. Finally, the system uses
Dynamic Window Approach (DWA) to generate the actual command, one that accounts for the current
robot dynamics. That resulting command is modeled accurately as a curve in orange. In addition, the figure
also displays the predicted location of the robot, noted by the red disk.
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Figure 14: Diagram of full system timeline. The final motor command to be executed by the robot (bottom
row) is generated by the path planning sub-system. It utilizes all the previously described sub-system, with
grid map construction being the trigger.

The framework has the flexibility to allow the robot to still perform robustly despite not using some of
the sub-systems. In the absence of the localization system, the robot can keep itself on the road. If the
road recognition is also absent, the robot then simply tries to move in the direction of its heading when the
system is turned on, while also avoiding obstacles. In addition, in the case where any of the sensors (camera,
LRF, and IMU) is broken, it is easy to set up the corresponding sub-systems (localization, road heading
estimation, grid map construction, respectively) to trigger on other events, such as fused odometry.



Table 1: Experiment Sites Information
Site Route Pedestrian Weather/lighting Speed Total Total Total Obstable

Length Density Condition (m/s) Training Testing Time Avoidance

(m) (Person/m) Frames Frames (s) Time (s)

Library 511.25
.19 4 - 6pm, partial sun .61 16621 13825 838.35 29.99

.97 12 - 2pm, sunny .44 16688 34979 1165.88 73.13

Professional 615.48
.06 4 - 6pm, cloudy .73 21488 20000 840.79 0.00

.36 12 - 2pm, sunny .89 9702 20773 692.37 46.10

Athletic 401.16
.04 4 - 6pm, clear sky .77 19022 11017 522.21 13.67

.43 11am - 6pm, sunny .68 9102 17499 583.24 27.10

4 Testing and Results

We rigorously test the system using our robot, Beobot 2.0 (Siagian et al., 2011), pictured in figure 2, at
the University of Southern California campus (USC) in Los Angeles. We construct three routes of 511.25m,
615.48m, and 401.16m in length (paths shown in figure 15 in red, blue, and green, respectively) through many
parts of the campus. The goal is to cross the finish line at the end of the route, wherever the robot is laterally
on the road. In the figure, we also include paths in black, which are roads that have been traversed during
system development but are not used in the documented experiment. They show the extent of the network
of roads that we have used during testing. In addition, some of these paths are currently too dangerous
for the robot to traverse. One is the leftmost portion of the network. This is a narrow sidewalk with steep
boundary cliff and people walking behind and toward the robot. Currently, the situation forces the robot
either to quickly get off the sidewalk or be stuck thinking that the road is a dead end.

Beobot 2.0 logged over 3 hours 17 minutes or 10.11km of recorded experiment conducted within a three
month winter period (December - February). The average robot speed during autonomous driving is 0.66m/s
(about half the average walking speed of people), with a maximum of 0.89m/s. The difference is caused by
a dropping battery charge as the experiment wears on. A video summary can be found in (Siagian et al.,
2013b), while a snapshot is displayed in figure 16.

For the experiments, as seen in figure 2, we use a subset of Beobot 2.0’s sensors: a front-facing monocular
camera and LRF (117cm and 60cm above the ground, respectively), as well as wheel encoders and IMU.
The camera outputs 320×240-pixel images, which are kept at the same dimension by the road recognition
module, but scaled to 160×120 for vision localization. We did not apply camera calibration or lens distortion
correction, which may help in salient region matching.

Beobot 2.0 has a sixteen-core 2.6 GHz distributed computing platform, which we take full advantage of
by employing a subscribe/publish architecture to manage all functionalities, from sensor data acquisition,
localization, navigation, to actuation. In addition, the setup simplifies the expansion process if we want to
add capabilities such as object recognition and human robot interaction. All the code is available in the
INVT toolkit page at (Itti, 2012).

We selected routes that make up a fairly complete representation of the different environments at USC.
They are also picked to vary the localization and navigation challenges and conditions, which are listed in
table 1. Each route consists of four segments. Between them are intersections that force the system to make
decisions of which road to take. Scenes from each route are displayed on separate rows in figure 17. The first
route is called the libraries route (LIBR) because the path goes through a cluster of libraries at the heart
of the campus. This route includes roads with some of the densest crowds. The second route at the south
part of USC goes through the professional schools (PROF) neighborhood, where there are more trees. The
third route, going towards the north part of campus, is called the athletic (ATHL) route, which rounds out
the variety of scenes in the experiments.



Figure 15: Map of the experiment routes at the University of Southern California. They are the libraries
(LIBR) route, indicated in red, the professional schools (PROF) route in blue, and the athletic complex
(ATHL) route in green. The remaining routes in black are not used in the documented experiment but have
been traversed during system development.

There are parts of the full system that have been previously published. (Siagian and Itti, 2009) shows that
the vision localization system can maintain comparable results on a number of lighting conditions at different
times of the day, from the brightest (noon time) to the darkest (early evening), and in real time (Siagian
et al., 2011). (Siagian et al., 2013a) has also demonstrated that the visual road recognition system performs
better than the state of the art (Rasmussen et al., 2009; Kong et al., 2010; Chang et al., 2012) on a standard
(offline) dataset (Chang et al., 2012).

In this paper, because the full system connects the navigation and localization modules, we examine the
effect of one module upon the other. In addition, since both modules have been shown to be robust in the
presence of various lighting conditions, we focus on the effect of crowding on our system. That is, we test
the system on two conditions: low and high crowd; the former during off-peak hours, while the latter during
peak hours, with many pedestrians on the road. (Siagian et al., 2013a) has shown that the road recognition
system is affected by crowding more so than lighting. Here, we complete the analysis by rigorously testing
the whole system.

We carry out a number of testing procedures, measuring different metrics. In section 4.1, we focus on the
localization system, while section 4.2 is on navigation. In the former, we isolate the localization problem



Figure 16: A snapshot of the system test-run. Top-left (main) image displays the robot moving towards the
goal. Below is the road recognition system which identifies the road heading (indicated by the green disk)
and the lateral position of the robot (blue stub on the bottom of the image). To the right are three salient
landmark matches as well as the segment estimation histogram below. The top-right of the figure shows
the global topological map of the campus, with the current robot location indicated by a red square, and
the goal by a blue star. It also draws the current segment in pink, matching the segment estimation output
underneath landmark matching. Finally, the right bottom of the figure displays the local grid occupancy
map, which shows a robot path to avoid an approaching pedestrian.

Figure 17: Examples of scenes from the libraries (LIBR), professional schools (PROF), and athletic complex
(ATHL) route, each displayed in its respective row. The figure also depicts various challenges that the robot
encountered, such as pedestrians, service vehicles, and shadows. These images are adjusted to remove the
bluish tint in the original images for better display.



by comparing its performance when the robot is manually driven versus fully autonomous. In addition, we
systematically manual drive the robot on a straight-line at different offsets from the center of the road to
gauge how navigation error affects localization results. We also isolate localization results at the junctions.
Junction is a critical part of a route because it is where a robot has to make a turn. In the navigation section,
we evaluate how well the navigation system maintains the robot’s lateral position throughout traversal, and
how it is affected by obstacle avoidance.

Altogether, we evaluate the system using twelve full path traversals, four for each route, for all combinations
of conditions: autonomous mode in low crowd, manual driving in low crowd, autonomous mode in high
crowd, and manual driving in high crowd. In addition, we also add four 180m manual runs to test the
effect of lateral shift on localization results. Although there are many more environments that we can test
the robot in, these selected sites encompass a large part of the challenges that outdoor autonomous mobile
systems face today. We believe there are many lessons that can be gained from testing the robot at these
challenging sites and under the proposed conditions.

4.1 Localization Testing

We measure the localization system accuracy by comparing its output with manually obtained ground
truth. We decided to use this metric because the system never completely failed to localize, and evaluating
displacement error can provide a better understanding of how it performed. The error measured here is in the
longitudinal direction, along the graph edges of the topological map. We record the ground truth by sending
signals to the system, indicating the true current robot location. The signals are sent at specific parts of the
path and are spaced appropriately (as small as 3 meters) to accurately record the robot’s location throughout
the experiment. Assuming the robot is running at approximately constant speed, we use interpolation to
fill in the ground truth between signal points. Note that these signals are only processed after testing and
are not used during run-time. For our experiments, we manually initialized the system with the starting
location. In (Siagian and Itti, 2009) we have shown that the system can re-localize from kidnapped robot as
well as random initialization. Here we decided not to do so because the system currently does not converge
to the true location in reasonable amount of time with 100% certainty.

To create a landmark database and a segment classifier, we run the robot manually through the routes to
take images for our training procedure (Siagian and Itti, 2008b). We have systematically shown in (Siagian
and Itti, 2009) for the localization system and (Siagian and Itti, 2007) for the segment classifier that training
at different times with three hours intervals endows our system with lighting invariance. In those papers,
we test the system from 9 am to late afternoon, after performing multiple the prescribed training runs. We
found that the segment classification errors are within 5 percent of the average, while the localization errors
are within 60 cm, regardless of lighting condition. Thus, here, we test the system at different times of day,
but only with the training and testing taken in similar lighting for each site. Table 1 lists the number of
training and testing images involved.

The localization boxplots can be viewed in figure 18 for all three sites as well as the total, in both crowding
condition and driving mode. We also show in figure 19 an example run from the PROF route under low
crowd condition for more detailed observation. To reduce the effect of dependence in the samples we average
the errors every 30 samples or within 1 second (localization output is 30Hz) before creating the box plots.
In addition, because our result distributions are not gaussian, we use non-parametric statistical significance
tests. Because of this, we do not test for interaction between effects, e.g. whether crowd level causes greater
error for autonomous navigation than for manual driving.

The results show that the system is able to satisfactorily localize within 0.97 meters (median) of the true
location while driving autonomously and reaching goals of more than four hundred meters away. The
farthest localization disparity is 7.15m, which happens in the middle of a long segment, allowing the system
to recover. The main source of error, which is prevalent throughout all conditions, can be attributed to the
less exact nature of the salient region matching step. To speed up the process, the system uses small salient
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Figure 18: Box plot of metric localization error from different routes, for both manual and autonomous
navigation, and in both low and high crowd conditions. In addition, the figure also reports the total
performance accuracies for each condition. The figure shows that the overall autonomous mode error median
is 0.97m, while medians of the various conditions remain low, from .75 to 1.5. Each box plot notes the
median (the thicker middle line), the first and third quartile, and the end whiskers, which are either the
minima/maxima or 1.5 * IQR (inter-quartile range). The stars above the lines joining various box plots note
the statistical significance with one star indicates p < 0.05, two stars p < 0.01, and three stars p < 0.005.

regions of about one third the downscaled 160 by 120 input image. For landmarks that are near the robot,
the small size regions are sufficient to pinpoint locations with high accuracy. In fact, whenever the system
observed nearby landmarks, the localization error tends to decrease. However, when the landmarks are far
away from the robot, they can appear identical from a large range of viewing distances. Because of the low
discrimination power, often times, the system cannot quickly correct a sizeable steady-state error.

The main problem is that there is no way of knowing which landmarks are far from the robot as the system
only records the robot location when viewing them. A possible labor-intensive solution without incorporating
long range 3D sensors would be to annotate the estimated distances of the landmarks to the robot. This
way, the system would know that landmarks in the form of the top of buildings are hundreds of meters away
and would not be as discriminating as signs on top of a nearby door.

In terms of the effect of routes on system performance, the data shows that it is statistically significant
(Friedman test, p < 0.005). As shown in the figure, the Athletic (ATHL) route generally produces lower
error distributions than that of the libraries (LIBR) and professional school (PROF). We found that the
disparity comes from a sustained spike in error, which often occurs when the robot is driving on a long
segment and which the system continually utilizes far away silhouettes at the end of the road as a landmark.
An example is taken from the last segment of PROF route, where the system sustains errors above 3m for
more than 50m (observe figure 19). As the robot is moving through a corridor (shown in figure 20), the light
at the end makes that part of the image very salient, rendering other parts less conspicuous by comparison.

As for the difference between low and high crowd conditions, the difference is statistically significant (Fried-
man test, p < 0.005) but with near equal medians (0.98m low crowd vs. 0.96 high crowd). Most times,
the localization system is able to identify enough landmarks among the pedestrians just as well as when the
crowd is much sparser because our training procedure rejects moving objects as possible landmarks during



0 50 100 150 200 250 300 350 400
50

100

150

200

250

300

350

400

450

500450

0m 3.5m

Start

Finish

Figure 19: Detailed diagram of localization error while the robot autonomously navigates the professional
schools (PROF) route during low crowd condition. The error is indicated by a gradation of red color, with
the darker hue being higher error.

Figure 20: Landmark recognition in a building corridor at the last segment of PROF route. The opening
at the end is the only salient landmark that is consistently recognized at different distances, with minimally
observed changes throughout the traversal.

training (Siagian and Itti, 2008b). However, there are times when pedestrians do affect the system, par-
ticularly when they occlude the landmarks that are at ground level. These landmarks tend to be the ones
that are closer to the robot. When this happens, the robot has to rely on landmarks that are higher above
pedestrians. They are likely to be farther away, thus reducing the accuracy of the localization system.

In addition, we also observe a statistically significant localization performance differences between au-
tonomous and manual-drive navigation (Friedman test, p < 0.005) with the autonomous drive median
of 0.96m being lower than that of manual driving (1.00m). This is quite surprising given that in autonomous



drive the robot can veer in and out of the middle of the road due to the granularity of the road heading
perception. That is, it takes substantial deviation from the road center for the system to react to the error.
Furthermore, it can also be attributed to robot response delay, uneven ground surfaces, and motors not
having equal efficiency, biasing the robot to drift to one side. In manual drive, on the other hand, the robot
moves steadily in the middle of the road, which is the same vantage point as during training.

When the robot is not moving at the center of the road, there are fewer landmarks that are matched with
the ones stored in the database, which lowers the system accuracy. We demonstrate this point by manually
driving the robot at different lateral positions, 0m, 1.33m, 2.33m, 3.33m away from the road center at the
first segment of LIBR route. We selected this segment because it has sections with many nearby salient
landmarks as well as sections that primarily use a far away silhouette at the end of the segment.
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Figure 21: The localization error box plot for lateral deviation of 0m, 1.33m, 2.33m, and 3.33m from the
center of the road. All the error differences compared to that of driving in the middle of the road are
statistically significant based on Wilcoxon rank sum test (p = 1.093 ∗ 10−7 vs. 1.33m, p = 0.015 vs. 2.33m,
and p = 2.476 ∗ 10−5 vs. 3.33m).

As we can see in figure 21, there are statistically significant differences in performance between 0m lateral
position and the others, with the system becoming increasingly less accurate as it moves away from the
center. The good news is, even at a deviation of 3.33m, the localization system still does not completely
misplace the robot. This leads us to believe that, as long as the robot does not permanently travel far away
from the center of the road, instead moving in and out of the center, the system can match the localization
performance of the manual driving.

Another aspect of the testing that we observe closely is during obstacle avoidance. In total, in our data, there
are 25 trajectory-changing obstacles that affect the robot’s heading. This definition differentiates a select
few from many other nearby pedestrians seen in the camera but not close enough to warrant avoidance. A
majority of them only results in slight deflections in the robot’s trajectory, and not a clearly visible maneuver.
Refer to table 1 for the accumulated times that the robot spent avoiding obstacles, listed on the last column.

As shown in figure 22, we observe statistically significant performance differences between low and high crowd
conditions during obstacle avoidance maneuvers (Friedman Test, p < 0.005), low and high crowd conditions
during non-obstacle avoidance traversals (Friedman Test, p < 0.005), as well as between obstacle and non-
obstacle avoidance traversals for both crowd levels combined (Friedman Test, p < 0.005). It should be
pointed out that the median difference for the last comparison is only 1cm, 0.95m during obstacle avoidance
versus 0.96m during non-obstacle avoidance. This stability, which is also shown by the respective distribution
shapes, demonstrates that the localization system can endure these significant but short perturbations. At
times we see that an avoidance maneuver actually allows the robot to go back to the center of the road,
improving the localization accuracy. In fact, on average, the localization error actually decreases from 1.39m
to 1.09m before and after avoidance.
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Figure 22: Box plot of localization errors during obstacle avoidance on the different routes, and in both low
and high crowd conditions. Note that the result for the PROF route during low crowd is missing because
the robot did not execute a single obstacle avoidance maneuver on that run.

For the most part, the amount of localization error carried by the system is manageable, especially in the
middle of segments, where the task of the robot is mainly to proceed forward. However, it becomes critical
when the robot is trying to turn to the next segment at an intersection. In figure 23, we plot the turn
locations with respect to the center of the intersection.
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Figure 23: Plot of turning locations throughout the experiment. The black partially-blocked arrow coming
from the bottom of the figure indicates the direction of where the robot is coming from. It is pointing toward
the gray and black circle representing the center of the intersection, which is the ideal turn location. The
color of the dots, which corresponds to the color of the arrows, indicates where the robot is trying to go: red
is for turning left, green for right, and yellow for straight. Each red, yellow, and green dot represents where
the robot was when turning (the robot turns in place).

Fortunately, considering that the robot is traveling on campus roads of 6 to 8 meters in width, it never misses
the road completely. Even when the robot needs to turn to narrower roads, it manages to do so because



these roads tend to be in between buildings. An example is when the robot is entering the corridor at the
last segment of PROF route. In this case, the obstacle avoidance, or wall following behavior, kicks in and
funnels the robot to the segment. We believe that in order for the robot to properly turn at the center of
an intersection, both localization and navigation must work in concert. That is, localization can seed the
system that it is nearly time to turn, while navigation should then estimate the configuration of the junction
using the involved road boundaries to fine-tune the turn location.

4.2 Navigation Testing

We measure the accuracy of the system in being able to navigate and maintain its position in the middle
of the road on many different road types and challenges. They range from clean roads with clear borders,
roads with complex markings, to roads without clear boundaries. Navigation error is defined as the physical
lateral distance of the robot center from the center of the road. We measure the ground truth by manually
annotating the robot’s lateral position when crossing certain points of the path. We then interpolate the
points in between using odometry.

Figure 24 reports the result, which is divided by sites, and then by crowding conditions. Overall, the system
is able to stay within 1.37m median of the center, which is acceptable given the challenges that the robot
faced. However, clearly, there are a number of aspects that needs improving.
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Figure 24: Results of the navigation system in each site and under low and high crowding conditions. We
measure the error as lateral deviation of the robot from the road center. The far right bars display the
distributions of low vs. high crowd performance, which is statistically significant (Friedman test, p < 0.005).

The data shows that there is a statistically significant difference between the low and high crowd conditions
(Friedman test, p < 0.005), with the median of 1.23m for low crowd vs. 1.55m for high. As mentioned in the
previous section, excluding numerous slight changes of direction, there are only a low number (25 in total)
of obvious obstacle avoidance situations. One reason for this is because the 7.2m front extent of the local
map allows the robot to register obstacles early enough to move away gracefully. In addition, the robot only
encounters a small number of static obstacles because it is moving in the middle of the street. Also, because
of the robot’s appearance and relatively slower moving speed, pedestrians are aware of it approaching them.
In some cases, however, the robot does have to break from its path to avoid collision. And, sometimes, the
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Figure 25: Trajectory of the robot on the PROF route trial run under low crowd condition. Here the
deviation from the ground truth center of road is indicated by the gradation of the red color, with the darker
hue being higher error. In addition, the green bar behind the trajectory indicates that the error is within
1.5m of the center of the road, while the wider black bar is for 5m.

navigation performance suffers because of it.

It is important to note that the starting point of an avoidance maneuver’s temporal window is when the
robot first rapidly changes its direction, and ends when it stabilizes its lateral position. For some situations,
however, the system error remains long after the maneuver is deemed over. For example, during the LIBR
test run in low crowd condition, the robot has to avoid two people, street signs, and a long bike rack in
succession (observe figure 26). Because the compound maneuver keeps the robot on the left flank of the road
(3m from the center) for so long, the system resets its current lateral position, thinking that the robot is at
a new center of the road. Had the robot moved back to the center, as opposed to staying out in the flank
for more than 70 meters, the overall median would have been 0.87m, lower than the actual 1.09m error.

We decided to add a reset option because the current road recognition system does not have the capability to
recognize the true center robustly. Resetting the center whenever a new stable lateral position is established
allows the system to react to changing boundary positions. If the system is able to estimate the road center,
it would help not only for obstacle avoidance recovery, but also in the case where the localization system
turns at the wrong point of the intersection at the start of a segment. Currently, the navigation system
assumes that the original lateral position is the center of the road, and simply tries to maintain that spot.

We also analyze the navigation error during obstacle avoidance, with the result shown in figure 27. Again,



Figure 26: Successive avoidance maneuver by the robot. It has to avoid two people (first image), street signs
(second), and long bike rack (third).

the figure shows statistical significance on all cases: navigation error during obstacle avoidance for low vs.
high crowd conditions (Friedman Test, p < 0.005), during non-obstacle avoidance traversals for low vs.
high crowd conditions (Friedman Test, p < 0.005), as well as between obstacle and non-obstacle avoidance
traversals for both crowd conditions combined (Friedman Test, p < 0.005). Here the difference for the latter
comparison is more pronounced, 1.58m vs. 1.36m medians, respectively. In addition, the disparity is also
supported by the average error increase between start and end of obstacle maneuver of 32 cm.
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Figure 27: Navigation errors during obstacle avoidance from different routes, and in both low and high crowd
conditions. Note that the result for the PROF route during low crowd is missing because the robot did not
execute a single obstacle avoidance maneuver during the time.

Even without obstacle avoidance, in the case of the PROF route during the low crowd condition (indicated
by missing bar in figure 27), there is still error in the system. A major reason for this is because, in some
areas, visual cues for road direction are very sparse. An example is the water fountain area in the PROF
route, where the road changes seamlessly to an open space before continuing to another road (observe figure
28). In the absence of these visual cues, and thus of a vanishing point, the robot simply maintains the last
road IMU heading estimate while avoiding obstacles whenever needed. Despite this difficult stretch, however,
the robot was still able to arrive at the target location, about 200m further.

On a related topic, open areas present a challenge in terms of constructing a topological representation
because the robot can move about in any direction. In a truly open area devoid of obstacles, there can be
any number of maps that can be created to describe the space, but in the end, these do not matter since
the space is open and hence can be traversed in any way. Our strategy with mapping open spaces thus
incorporates the robot behavior of keep going straight while avoiding obstacles. So, for example, in the case
of a large plaza with 4 roads connecting to it from the North, East, South and West, we just reduce the
plaza to its center point and extend the 4 roads to meet at that point. If the open space does contain fixed



obstacles, these will be represented as additional nodes in our topological map.

Figure 28: Views of the environment as the robot is moving through a water fountain area.

Throughout the experiment, there were only a few times when the robot failed to detect obstacles in its
path. On these occasions, we stepped in front of the robot to assert the presence of the obstacles, and let
the system adjust by itself. One cause of the mistakes is because the planar LRF is placed too high above
the ground to detect shorter or protruding object parts such as the seat of a bench. However, we find that
there is no correct height because, if it is placed low, the robot may attempt to drive underneath an obstacle.
Other reasons to note are the inability of the LRF to consistently detect thin objects (e.g., poles, fences),
and objects with holes such as a bicycle approached at certain angles. Furthermore, the navigation system
currently is unable to detect negative obstacles such as a ditch or a hole, making it unsafe to navigate on
roads with hazardous boundaries such as sidewalks, ramps, and cliffs. In section 5.3, we describe our plan
to rectify these problems.

5 Discussion and Conclusion

In this paper we present a real-time visually-guided autonomous localization and navigation system. We
demonstrate the system’s efficacy using a wheeled robot and driving it through long-range and challenging
routes of at least 400m at the University of Southern California (USC) campus, for a total of 10.11km of
documented testing. In each route, the robot has to show its robustness in navigating among crowds, turning
at several intersections, and stopping at the assigned destination. In section 5.1, we discuss why the system
is able to perform as well as it did. We then compare its performance with the available state of the art
systems and describe how our work relates to them in section 5.2. We finish by listing the current system
failures as well as future improvements in section 5.3.

For our setup, we have clearly framed the objective of our system to within a specific type of environments
and application and, at this point, we do not know whether this approach generalizes to a completely different
scenario (e.g., autonomous cars). However, the service robot task in unconstrained pedestrian environments
has quite a broad potential impact onto society. We believe our extensive work will help be an inspiration
for many others in continuing the research in autonomous mobile robotics.

5.1 Performance Evaluation

A key factor for our system’s success is the hierarchical representation, which effectively separates the
localization and navigation tasks. Here, the former is dealt with at the local map level, while the latter
is at the global map level. The separation enables the navigation module to independently control the
robot, affording the localization module a longer period to perform its computations. This, in fact, is a
necessity because it takes seconds for the localization module to compare input landmarks with its large
stored database. However, unlike obstacle avoidance and road heading correction, localization-related tasks
such as turning at an intersection or stopping at the goal are infrequently invoked and can be updated at a
substantial delay. In addition, the infrequent goal location updates do not affect the navigation system on a
frame-to-frame basis because it is assumed that the robot wants to go toward the direction of the road.



On the contrary, by having a mechanism that keeps the robot’s viewing perspective from or near the center
of the road, we do not have to train the vision localization system on landmarks from other perspectives.
Such requirements would almost certainly put our recognition system past its limits because we use a regular
camera as opposed to omni-directional camera (Murillo et al., 2007; Valgren and Lilienthal, 2008) or creating
3D landmark representation (Trulls et al., 2011). In addition, staying in the middle of the road also allows
the robot to better see other semantically important objects, such as stop or exit signs, building entrances,
and doors. In the future we would like to have the system be able to navigate through open areas where the
road lines are not readily visible, while still be able to optimally view these important cues.

Another important aspect for the success of the system is the implementation of many techniques to account
for different processing delays of the vision modules. For the long latency of the localization module, the
system implements a multilevel recognition with gist for segment recognition, and landmark recognition to
refine the localization hypothesis. In addition, the system also projects forward the results by adding an
odometry difference to the localization estimation between the start and end of the landmark recognition
process. Also, in the road recognition system, the module runs two processing pipelines: one for the full
visual road recognition, while another tracks previously detected road lines to produce updated estimates
while the full recognition pipeline looks for new road lines.

In terms of implementation, the overall system uses a number of parameters. For the most part, we have
chosen them experimentally during development. We tried several values for each parameter and used the
one that produce the best performance. For example, we tried to incorporate the last 100 and 500 absolute
headings in the road direction filtering step. We found that the former, which we decided on using in the end,
allows for robust filtering while also being responsive enough to detect a change in road direction. On the
other hand, the latter seems to adapt to road changes noticeably more slowly. Furthermore, when possible,
we and others have previously conducted extensive parametric testing of system components: for attention
(Itti and Koch, 2001), gist (Siagian and Itti, 2007), SIFT (Lowe, 2004), road recognition (Siagian et al.,
2013a).

To obtain a truly optimal set of parameters, we have to test all possible combinations of all possible values.
Unfortunately, the presented system is tightly coupled, where the number of variants to consider when
adjusting possible parameters is subject to combinatorial explosion. Nevertheless, we have shown that the
system still performs quite robustly with the parameters chosen. We believe that most of these parameters
are not extremely sensitive for performance, and there is flexibility in selecting these numbers. In this paper
we tried to give an intuition for what the factors are that should be considered, and we provide these values
to gauge what is the expected ideal range. We do not claim that these are the best or only possible values.
It is possible that better values will be found in future research. However, we report those numbers to allow
the readers to reproduce our exact system if they want to. To that end, we also provide the software source
code at (Itti, 2012) to port to other robotic systems, or as a guide to adapt our algorithms for specific usage.

5.2 System Comparison

Our evaluation, in terms of scope, is most similar to the Tsukuba challenge (Yuta et al., 2011), which takes its
human-sized service robot participants through 1.1km route of pedestrian road in the city of Tsukuba. This
is unlike the Darpa grand challenge (Montemerlo et al., 2008) and European Land-Robot Trial (ELROB)
(Schneider and Wildermuth, 2011), which are for autonomous cars, or AUVSI’s Intelligent Ground Vehicle
Competition (IGVC) (Theisen et al., 2011) and NASA’s Centennial Challenge (NASA, 2013), which are
conducted on open grass fields.

In terms of goals, our system relates to a number of fully autonomous systems that are operating in outdoor
pedestrian environments. The ACE project robot (Lidoris et al., 2009) performs outdoor navigation but
relies on passersby to guide it to the final destination 1.5km away. The EUROPA project robot (Stachniss,
2013), on the other hand, is able to navigate and localize in unconstrained urban settings using LRF sensors.
To the best of our knowledge, we did not find a fully autonomous visually-guided localization and navigation



system that is tested in the pedestrian environment to compare with.

One that comes closest is RatSLAM (Milford and Wyeth, 2008), which takes inspiration from research done
in how rat brains perform navigation tasks. It has a fully autonomous version (Milford and Wyeth, 2010),
where it simultaneously localizes and maps (SLAM) the environment using vision, and navigates using a
planar LRF indoors. Our system, despite not having SLAM yet, performs both navigation and localization
outdoors. Another aspect of RatSLAM to note is its visual features. It uses a column average intensity
profile taken at specific windows for three different purposes: scene recognition, rotation detection, and
speed estimation. This is a stark difference from what most state-of-the-art vision localization systems,
including ours, used: computationally complex keypoint-based recognition. Our perceptual system, which
relies on SIFT-based salient landmark database matching, is more inline with that of the current SLAM
systems: FAB MAP (Cummins and Newman, 2008) or CAT-SLAM (Maddern et al., 2012).

In terms of results, the best way to benchmark our system is by directly comparing our results with others in
the same settings. However, this would be a large undertaking. To have a fair comparison, the systems would
have to be run on the same robot that they are originally published in, or at least the same configuration of
sensors. In addition, there is also an issue of code availability as well as the care needed to port and have it
perform optimally. A way to circumvent this is by requesting the authors to run their systems on a recorded
data. However, we are dealing with active systems, where different decisions at each step can lead to very
different outcomes. Similarly, simulation exercises would also fall short of real-life testing because the robot
operates in a dynamic, unpredictable, and not fully accessible (in the A.I. sense) world, which we believe
cannot be well captured by the current world models. Given these difficulties, we decided to compare our
results with the results of other systems as reported in their respective papers.

Our localization median error of 0.97m is quite high compared to that of outdoor LRF-based systems such
as (Montella et al., 2012), which reports error near 10 cm. This is because proximity data is much more
discriminating when there is sufficient amount of valid laser readings, which is not always the case outdoors.
Visual features, on the other hand, observe the appearance of the environment. They help the system to
rely less on nearby surfaces by extending its perceptual range. Because of this we believe our vision-based
navigation and localization system will complement laser-based systems.

The use of geographical distance from ground truth as localization metric in our testing is actually different
than how vision-based SLAM systems are currently evaluated. They use precision-recall curve, which focuses
more on the recognition step. Here precision is the number of correct landmark matches over the number
of matches, while recall is the number of correct matches over the number of possible matches. Our recall
rate is close to one landmark per five possible matches in an image (20%). Our precision rate, on the other
hand, is close to 100% because of the high threshold on positive matches, at least 3 keypoints in a proper
affine configuration. Note that almost perfect precision rate is the norm for keypoint-based systems. Thus,
precision is usually set at 99% to 100% before evaluating the recall rate. From (Maddern et al., 2012), we
gauge our recall rate is competitive as anything above 10% is respectable.

Recognition rate is also the metric of choice for visual place recognition systems. As (Siagian and Itti, 2008a)
and a number of others (Song and Tao, 2010; Fazl-Ersi and Tsotsos, 2012) have shown, the performance of
our gist-based system, which is about 80% for the standard USC dataset, is only 10% lower than some of
the more recent systems. In a sense, place recognition is a different classification problem than that of visual
SLAM systems. The former has to discriminate a smaller number of classes, but with more in-class variance,
while the latter has to discriminate many more classes, with fewer number of views within class. We believe
that, to build a vision localization system that can perform robustly in many environments, a system has to
be able to distinguish places at different levels, from the general place names to the specific locations.

For navigation, there are a number of metrics that are currently used for evaluation. One is the success
rate in reaching an assigned goal. Although localization is also involved, it is clear to us that the main
difficulty lies in path creation and execution. Even if the path created is perfect, if the robot is not able
to properly execute the commands, it can still hit an obstacle. Thus, systems are also evaluated on the



severity of the failure, whether it is a square hit or just a graze (Marder-Eppstein et al., 2010). Our system,
aside from a number of isolated incidents, usually provides about 30cm of space between its body and the
obstacles. In addition, we can also consider execution speed, which is currently less emphasized. The goal
for service robots, which are meant to help people, such as ours is to at least match that of an average person
(about 1.4m/s). Our average velocity is currently half (0.66m/s) that and is competitive with most currently
available systems. It should be noted that robot speed also depends on computational platform and can be
increased by simply upgrading them.

The success of a system is also influenced by the travel distance, the longer the higher the likelihood of
failure. For shorter distances of 40 to 50 m, it is not unusual to achieve near 100% success rate (Trulls et al.,
2011). Our system is asked to reach a goal of 400m or more in busy outdoor environments. Out of six fully
autonomous runs, we have to intervene in two of them, all of which are more than 200m from the start. As
a comparison, there are a number of indoor systems that have achieved much longer autonomy: lasting a
full 26.2 mile marathon (Marder-Eppstein et al., 2010) and 40km over 37 hours (Milford and Wyeth, 2010).

Because a large part of failure to avoid an obstacle originates in the detection step, another way of evaluating
is based on the produced obstacle avoidance map. This way is often seen in systems (Maye et al., 2012)
that try to detect negative obstacles (e.g., a dip next to a sidewalk). Given the large area which our system
is operating in, it would be time-consuming to create a complete ground truth occupancy map. We are,
however, able to qualitatively assess our system and produce a list of events in which it fails, in section 5.3.

Our lateral deviation navigation metric delves deeper into the quality of robot traversal because we believe
the middle of the road allows the robot to be in position to perform more tasks, if called upon, along the
way. Our road recognition system has been shown to be statistically superior in detecting road centers in
images with a number of other state-of-the-art systems (Kong et al., 2010; Rasmussen et al., 2009; Chang
et al., 2012) with an accuracy level of near 40cm. However, the system performs worse in our robot long-
range testing, with a median of 1.37m. Thus, it is hard to predict how this, or other image-based metrics
(Rasmussen et al., 2009; Miksik, 2012) that measure road segmentation overlap, would translate to actual
autonomous navigation. As such, it is important to create a testing regimen where all the systems are tested
on a robot, under the same conditions.

5.3 Failure Cases and Future Improvements

During testing we observe a number of aspects that we would like to improve upon.

Automatic localization initialization. The current localization system has to be given an initial location
to guarantee correct convergence. It uses the current location to order the database landmarks when com-
paring them with the input regions. In addition, the system also employs a search cutoff in the comparison
process for efficiency reasons. Thus, instead of going through the whole database, there are times when the
matching landmark may not even get to be compared with the input region because of an incorrect prior.
Another related issue is the need to fine tune the matching criteria to maximize matches while keeping false
positives to a minimum. In addition, when the robot is lost, it should be more active in searching for better
views, where the landmarks are more likely to be matched.

Simultaneous Localization & Mapping. Currently, the localization map is still manually constructed.
We always understood that this is inconvenient, although, for many application scenarios (see figure 1), we
believe this step is well worth the effort because the robot will be used many times in the same environment.
In the next iteration, we plan to create the metric topological map automatically using a Simultaneous
Localization and Mapping (SLAM) algorithm. There are a number of SLAM algorithms that aim to create
such hierarchical map. A system by (Marder-Eppstein et al., 2011) connects local overlapping LRF-based
occupancy maps to a single global topological map. Similarly (Pradeep et al., 2010) constructs a topological
map by associating stereo-based local submaps. Note that these systems have only been tested indoors,
and it may not be trivial to adapt them to outdoor environments. For our system, we are particularly



interested in creating a map with meaningful nodes that represent important geographical points, similar to
(Ranganathan and Dellaert, 2011), where it identifies unique LRF signatures produced by junctions in indoor
environments. The key is to robustly do the same in unconstrained pedestrian outdoor environments, where
the presence of surrounding walls cannot be assumed. One way is by using an online gist feature grouping
technique (Valgren and Lilienthal, 2008), which detects a large change in the feature space, corresponding
to moving into a new segment. In addition, related to metric topological SLAM, there is also a research
problem (Beeson et al., 2010; Kuipers et al., 2004) of how to topologically represent more complex path or
space such as winding roads or open area.

Proper Turning at an Intersection. Although the localization system did not completely fail or misplace
the robot during testing, at times, it converged a few meters away from the true location. This becomes an
issue when the robot is near an intersection and needs to turn. If the turn occurs far away from the center
of the intersection, the robot may end up on the shoulder instead of near the center of the next road. One
way to solve this problem is by explicitly recognizing the junction or intersection. Given a prior that the
robot is near an intersection, the system can look for road lines perpendicular to the lines that are pointing
toward the current robot direction. Another way to avoid traveling on the side of the road is by recovering
the true road center established during training. The visual landmarks in the stored database also carry
image coordinate locations and can be used to adjust the target lateral position. This approach is similar
to teach-and-replay (Chang et al., 2010), but different in that the result is not directly coupled with motor
command generation. It merely corrects for the road center estimation whenever the matches are available,
preventing the system from having to stop the robot when recognition failed. This technique is also useful for
navigating when the vanishing point is undetected, as well as on more extreme curved and winding roads,
improving upon the system’s current ability to follow the more gradually changing roads (Siagian et al.,
2013a).

Robust Obstacle Avoidance Navigation. In terms of navigational shortcomings, there are a few times
when the robot failed to detect obstacles in its path, particularly, thin or short objects, as well as objects
with holes. In addition, there are also a number of scenarios that we did not include in our test, but are
expected to currently lead to system failures and need to be handled in the future: curbs, ramps, off-roads.
To improve the system competencies in these situations, we are adding an up-down sweeping LRF, as well
as applying techniques by (Klasing et al., 2008; Maye et al., 2012). We believe a moving LRF is the best
way to maximize obstacle visibility, while the algorithms enable our system to handle those situations more
robustly. In addition, we also plan to incorporate the evidence from the sweeping LRF with our visual road
recognition module by identifying which road lines are solid boundaries and should never be crossed. Here,
the road boundary can be noted by visual appearance change, change in proximity profile, or a sharp change
in elevation. Once we incorporate these improvements, we believe the resulting system will be robust in
many different outdoor scenarios, sufficient to travel for even longer distances.

Better Road Detection. The system also needs to improve on detecting roads in more difficult conditions,
such as bright sunlight. This can be done in both hardware and software. For the former, a camera with
wider dynamic range would be a welcome addition. In addition, having a lens with wider field-of-view is also
helpful, especially for the wider uniform roads with no direction cues between the boundaries. For software
improvements, a better low-level edge and line segment detector (with local contrast adjustments) can
significantly boost performance. A different way to improve the system is by utilizing visual cues other than
road lines. We are planning to incorporate the use of histogram differencing to segment out the road from
its flanking areas, much like (Chang et al., 2012). By creating a system that runs a number of contrasting
approaches in parallel, we hope to enable the system to robustly detect more road types, even in more
naturalistic off-road environments. Related to this, the localization system, particularly our biologically-
inspired gist classification and saliency, have been shown to perform well on non-urban environments (Siagian
and Itti, 2009; Siagian and Itti, 2007; Itti and Baldi, 2009).

Improved Navigation in Open Areas. In situations where there is no road in front of the robot, the
system simply maintains its current forward heading set by the last seen road, while trying to avoid obstacles.
This goes on until there is a continuing road or the localization module instructs to make a turn. In these



situations, the system performs navigation exclusively using LRF, producing behaviors such as wall-following
or centering along a hallway. Our robot in a sense follows a subsumption architecture (Brooks, 1986), i.e.,
when a road is detected, follow it, otherwise default to driving straight forward. Thus the navigation system
is not dependent on the presence of the vanishing point. On the contrary, it only uses visual road recognition
when it is advantageous. This way the road recognition system enhances the standard laser-based navigation
system largely utilized today. In pedestrian environments, however, there are open areas such as a square
or a large hall, where there are no nearby wall surfaces to guide the robot. In the experiment, the system
was able to navigate through an open water fountain area (observe figure 28). However, this success, in
large part, is because the continuing road is aligned with the previous road. In less ideal configurations, the
system can be confused and drive to the wrong road. To rectify this problem, the system must have a richer
understanding of the space, knowing all the roads that come in and out of the area.

Navigation in Crowded Areas. As for the effect of crowding to our system, we are encouraged by the
results that show that it is able to localize and navigate through those difficult conditions. In the future we
would like improve on Beobot’s navigation skills in moving more naturally among people (Trautman and
Krause, 2010), for example using a fast GPU-based pedestrian recognition system (Benenson et al., 2012)
to properly anticipate where they are headed. We can also try to characterize how pedestrian behave as a
group (Henry et al., 2010), which would be more feasible for denser crowds.
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