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Most visual saliency models that integrate top-down
factors process task and context information using
machine learning techniques. Although these methods
have been successful in improving prediction accuracy
for human attention, they require significant training
data and are unable to provide an understanding of
what makes information relevant to a task such that it
will attract gaze. This means that we still lack a general
theory for the interaction between task and attention or
eye movements. Recently, Tanner and Itti (2017)
proposed the theory of goal relevance to explain what
makes information relevant to goals. In this work, we
record eye movements of 80 participants who each
played one of four variants of a Mario video game and
construct a combined saliency model using features from
three sources: bottom-up, learned top-down, and goal
relevance. We use this model to predict the eye behavior
and find that the addition of goal relevance significantly
improves the Normalized Scanpath Saliency score of the
model from 4.35 to 5.82 (p , 1 3 10–100).

Introduction

Often, attention is discussed in terms of two facets:
bottom-up and top-down. It is generally accepted that
bottom-up represents attention drawn to visually
distinct characteristics such as color and motion,
whereas top-down attention is a tendency to look
toward locations that provide more information based
on the current context or goal of the viewer. Although
bottom-up attention is well studied, our knowledge of
top-down attention is not as advanced because of its
more complex nature. Importantly, given a task, there
is no general theory that allows researchers to
quantitatively evaluate which pieces of information are
more likely to attract the attention of humans
performing that task. When driving, for example,
humans are more likely to look toward intersections
(Shinoda, Hayhoe, & Shrivastava, 2001). This is fairly

intuitive, but there is no generalized method for
explaining why this might happen.

Hayhoe and Ballard (2014) provided a review of
recent advances in goal-directed attention research, in
which they noted that attention has been examined in
many visuomotor tasks, including walking, driving,
sports, and making sandwiches (Hayhoe & Ballard,
2005; Land & Hayhoe, 2001; Land & Lee, 1994;
Sprague & Ballard, 2003). The development of a
general theory for top-down effects on eye movements
has been avoided by the use of reinforcement learning
techniques. For example, Navalpakkam and Itti (2005)
developed one of the earlier computational models for
predicting how tasks and goals might influence
saccades. In their model, the task definition provides
top-down biasing over which visual features would
contribute more strongly to a saliency map for guiding
attention. Given a task, their model first searches its
long-term memory for relevant entities (where rele-
vance is a conceptual distance over a concept ontology)
and then biases attention toward the visual features of
those entities. Items selected by attention are analyzed
by an object recognition process, and any objects
successfully identified in a scene are then added to the
working memory of the model, allowing it to reason
about both relevant entities and found entities when
planning the next attention biasing and next eye
movement. Although this model uses a simple classical
similarity metric for the definition of relevance, it
provides a computational framework in which rele-
vance directly interacts with attention deployment.

Video games are increasingly being used in experi-
ments because they allow for the presentation of
complex visual tasks in a controlled environment. In
one recent example, Kotseruba and Tsotsos (2017)
presented an intricate cognitive architecture that
combines mechanisms of visual attention, working
memory, and executive control to play video games in
real time and achieve scores comparable to human
experts. Several studies have used learning from
examples to implicitly capture task influences on eye
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movements. In one such study, Peters and Itti (2007)
recorded the human gaze while playing video games
and learned a mapping from the visual input to screen
locations. Borji, Sihite, and Itti (2014) also used video
games to learn a Dynamic Bayesian Network for
predicting future gaze. This model was able to
outperform purely bottom-up saliency models in
predicting a player’s next eye movement. Their model
essentially captures the current state of the game
through analysis of past and present video frames, user
actions, and eye movements. This allows it to learn
associations between game state and relevant locations/
objects, in which relevance is defined as the probability
of being the location of the next fixation.

A shortcoming of this approach is that it is a black
box, in that the learned parameters of the Dynamic
Bayesian Network are not easily interpreted. Another is
that the learning is task specific, so the model must be
retrained for each new task. In addition, the process of
learning does not single out top-down features. The
learned model represents a complete approximation of
attentional behavior including all factors. However, as
argued by Pinto, van der Leij, Sligte, Lamme, and
Scholte (2013), top-down information is likely inde-
pendent of bottom-up. All of these points demonstrate
that we still do not fully understand algorithmically
how a given task specifically affects attention, despite
the success of these studies. As a result, even the current
state of the art in gaze prediction during tasks is unable
to reliably mimic human gaze behavior (Borji et al.,
2014). Thus, we do not have models that, given a task,
can generally predict a priori which objects will attract
more attention.

Additional recent approaches to top-down saliency
models have aimed to supply category-specific saliency
models (i.e., provide one saliency map for an image
focusing on a cat and another map for the same image
focusing on a bottle instead). This approach allows the
appropriate map to be chosen based on the object of
interest. In Kocak, Cizmeciler, Erdem, and Erdem
(2014), object classes are represented using superpixels,
which are learned in a conditional random field (CRF)
framework. Another variant (Yang & Yang, 2017) uses
sparse coding from images patches, which are also
learned in a CRF. These methods provide excellent
performance, but they are machine learning models and
thus still leave us without any conceptual understanding
of top-down attention. Also, these methods are essen-
tially solving an object detection task and therefore will
have difficulty on tasks in which the contextual
information is more than a simple object of interest.

The problem with these models (Borji et al., 2014;
Peters & Itti, 2007) is that they learn to predict eye
movement behavior without having any understanding
of the process from which that behavior emerges.
Although their predictive accuracy is higher than

models without learned top-down features, the top-
down features represent a very shallow understanding,
and there is much room for improvement. The learned
models also present a requirement to be retrained on
each new task and cannot predict a priori which objects
will attract more attention. Developing an under-
standing of the relationship between goal relevance and
eye movements can hopefully address these issues.

Recently, Tanner and Itti (2017) proposed a simple
mathematical definition of goal relevance, which
suggests that an observation is relevant to a task to the
degree to which it affects the solution space of the task.
As described in Tanner and Itti (2017), goal relevance is
defined for a data observation D with respect to an
agent’s probability distribution P(S) over the set S of
possible ways it could achieve its goals as a distance
measure, d(�, �), between the prior distribution of beliefs
P(S) and the posterior distribution P(SjD) after
observation of data D:

RðD;SÞ ¼ dðPðSjDÞ;PðSÞÞ ð1Þ
In their article, the Kullback-Leibler divergence is

used as the distance metric for d(�, �), along with a
discretized form of the function, giving

RðD;SÞ ¼ KLðPðSjDÞ;PðSÞÞ

¼
X

S

PðSjDÞ log
PðSjDÞ
PðSÞ ð2Þ

Tanner and Itti (2017) demonstrated that goal
relevance was correlated with human responses to a
simple visual task. This equation still requires that the
task be defined in terms of its solution space, but it
provides a quantitative value for task relevance. Our
contribution is to establish that goal relevance is also
correlated with human eye movements while perform-
ing a task and to use it in a top-down saliency model.
Goal relevance as defined here is closely related to the
previously proposed mathematical definition of sur-
prise (Itti & Baldi, 2006). In this experiment, we make
the assumption that participants will spend more time
fixating objects that are more relevant to the task.
Objects of interest might first be noticed in peripheral
vision and fixated to gather more details or the dynamic
nature of the world might require multiple fixations
toward highly relevant objects in order to monitor
them for changes.

Methods

Experimental methods

Human participants were recruited and their eye
movements (saccades) recorded while performing a

Journal of Vision (2019) 19(1):11, 1–16 Tanner & Itti 2

Downloaded from jov.arvojournals.org on 01/28/2019



task. Participants sat 106 cm away from a 42-in., 1,920
3 1,080 pixel LCD monitor screen and images
subtended approximately 45.58 3 318 visual angle.
Similar to the experiment presented in Peters and Itti
(2007), the task was a video game. However, in this
experiment, all participants played a single game,
Mario World, and were be told that their goal was to
reach the end of each level as quickly as possible while
taking as little damage as possible (specifically, they
were told to maximize their score, which will be
explained later). Participants were first briefed and then
given a short questionnaire asking about their level of
experience with Mario World and with video games in
general. Then, after calibration with the eye-tracking
equipment, they had the opportunity to practice
playing the game until they were ready. Finally, they
played through eight levels in a randomized order.
Their eye movements were recorded during this period
in addition to during the practice period. In total, 84
participants were recruited (42 males and 42 females).

Mario World was chosen because of a competition
held several years ago, called MarioAI (‘‘2012 Mario
AI Championship,’’ n.d.), which released an open-
source Java implementation of the game. This allows us
to modify Mario World for our own purposes, to create
a customized levels to best test our hypotheses and also
adjust some of the game mechanics. For readers
familiar with Mario World, the mechanics we have
changed are as follows:

1. Mario has unlimited life. When he takes damage,
the participant receives feedback but Mario is not
killed.

2. There is no time limit for completing a level.
3. None of the levels contain any pits into which

Mario could fall and die.
4. All coins and power-ups have been removed from

the game.
5. Mario is unable to run and can only walk.
6. When a Koopa enemy is destroyed, no shell is left

behind.
7. At the end of each level, an itemized score is

displayed based on the time taken and how many
times Mario took damage.

Some of these changes were to ensure consistency
across participants. Changes 1 to 3 guaranteed that all
participants reached the end of the customized levels
and therefore saw all of the content in them. Changes 4
to 6 removed some of the more complex aspects of the
game, so that there would be less of a difference in
performance between participants who were new to the
game and those who had prior experience. In partic-
ular, Change 5 prevented very experienced participants
from completing the levels in a drastically shorter time
than other participants, so there would be less variation
in the overall session duration.

Change 7 exists to make explicit what the partici-
pants’ goals were as they played. This allows us to
confidently design a predictive model using the same
goals as the human participants. The score displayed to
participants was based on two factors: the amount of
time taken to complete the level and the number of
times that Mario took damage during the level. The
total score was calculated using the following equation:

Score ¼ 100;000� t3 100ð Þ � d3 3;000ð Þ ð3Þ
where t is the amount of time taken, in seconds, and d is
the number of times Mario received damage. This
equation means that a single instance of taking damage
costs the same amount of points as spending an
additional 30 seconds. Our custom levels are designed
such that there is no scenario in which this occurs, so it
is never worth taking damage to reach the end of the
level more quickly. The optimal strategy is to prioritize
avoiding damage and otherwise proceed as quickly as
possible. This was explained to the participants, and
the score display after each level showed the calcula-
tions to continually reiterate this point. The intention
of this scoring metric was to ensure that the partici-
pants focused on avoiding the enemies and obstacles,
rather than simply running as fast as possible without
regard for the environment. To this end, in observing
the participants, we felt we were successful in keeping
them highly engaged in safely navigating the levels.

Unbeknownst to the participants, they were each
randomly assigned to one of four different versions of
our game before they arrived, such that each group
contained 21 participants. The different versions are as
follows:

� Normal: Our modified Mario World game as
described above.
� Small: Mario is half as tall as in the normal
version. This allows him to fit through some gaps
not accessible to normal Mario.
� High Jump: Mario can jump about twice as high as
normal Mario.
� Invulnerable: Mario does not take damage when
coming into contact with enemies and instead
simply passes through them.

Participants were made aware of the special prop-
erties of their version of the game but were not told
about the other versions. The assigned version was used
for the entirety of the session, both during practice and
data collection.

Each version of the game is designed to have a
significant impact on the space of possible actions that
Mario can take, and the levels are also designed to
focus on these differences. For example, in many
locations throughout the levels, there are enemies high
above the ground such that they cannot interact with
normal Mario (Figure 1A). In this case, the theory of
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goal relevance labels this enemy as irrelevant to the
participant’s goal. However, high-jumping Mario must
be careful not to jump while passing underneath this
enemy to avoid taking damage. For participants
assigned to the High Jump version, this enemy was
considered relevant. Examples such as this are littered
throughout the levels, where goal relevance will assign
different values of relevance to certain objects de-
pending on which version of Mario World is being
played (Figure 1). In this way, we can investigate a
causal effect of changing the solution space on eye
movement behavior.

Analytical methods

With the data collected, two separate analyses were
performed: (1) determining if changes in goal relevance
values caused by changes in the solution space are
correlated with the amount of time participants spend
looking at those objects and (2) using the goal relevance
model as an additional feature in a saliency model to see
if the predictive accuracy can be improved. These analyses

will be referred to as the Solution Space Experiment and
the Saliency Model Experiment, respectively.

The data analysis for both of these experiments
requires the computation of goal relevance for game
objects in each recorded video frame. To use Equation
2, a goal and a solution space for Mario World must
first be defined. In Mario World, the goal is to reach the
end of the level as quickly as possible and while taking
damage the least number of times. However, because of
the side-scrolling nature of Mario World, the end of
each level is not visible on screen until Mario has
almost reached it. The participant is also completely
unaware of any enemies and obstacles until Mario has
progressed far enough for them to enter the visible
scene. Therefore, we instead define our goal as reaching
the right side of the visible scene as quickly as possible
and while taking damage the least number of times.
This better matches the goal toward which participants
will most likely plan, because they do not have any
information with which to plan further.

The Mario game operates in frames, at a rate of 24
frames per second. A solution for reaching the goal is a
list of discrete actions to be taken in each frame. As

Figure 1. More goal relevance test object examples. (A) The enemy Goomba is too high to threaten normal Mario. However, high-

jumping Mario must be careful to jump over the pipe while not colliding with the enemy. (B) Normal Mario must go through the

middle opening in the wall. However, small Mario can also choose to walk under the bottom, and high-jumping Mario can leap over

the wall. (C) Small Mario can avoid some enemies by walking under the walkway, but the other Marios cannot fit. (D) High-jumping

Mario can jump on top of the overhanging walkway to avoid an enemy. (E) The shell inside the blocks at the top is highly salient from

a bottom-up perspective because it bounces back and forth quickly and makes noise. However, no version of Mario can interact with

it. (F) The three Spiky enemies at the bottom are also uninteractable.
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there are only three different buttons used to control
Mario (move left, move right, and jump), there are six
distinct actions:

1. Do nothing
2. Move left
3. Move right
4. Jump
5. Jump left
6. Jump right

To enumerate the possible solutions, we perform a
breadth-first search, simulating the game state for each
action at each time step, and recording any path through
the breadth-first graph that ends with a node repre-
senting Mario reaching the right side of the screen. Of
course, there are an infinite number of such solutions
because of the option to do nothing for any amount of
time, and aside from that, this graph would expand
exponentially and become intractable very quickly. To
avoid both of these issues, we first compute the optimal
solution using the A* search algorithm (Hart, Nilsson, &
Raphael, 1968), using the following heuristic for
evaluating the fitness h of each node in the graph:

h x; y; t; dð Þ ¼ 100; 000� tþ e xð Þð Þ3 100ð Þ
� d3 3; 000ð Þ ð4Þ

where x and y are the coordinates of Mario in the level, t
is the amount of time currently elapsed, in seconds, and
d is the number of times Mario has received damage.
e(x) is a function for estimating the amount of time
remaining before Mario reaches the level end and is
simply calculated as the remaining distance to the goal
divided by Mario’s maximum speed. Note that this
equation is the same as Equation 3, except that the time
component is broken down into current time and
estimated remaining time, which is available to the
model. The players had no direct information about the
estimated remaining time. However, all of the levels are
the same length, so players could have noticed this and
gained an approximate sense. The model computes the
optimal solution to Equation 4 using A*, which is used
to limit the breadth-first search by evaluating each node
using the same fitness function. Any node whose fitness
is lower than the optimal solution’s fitness by more than
a threshold dfitness is pruned, reducing the graph to a
manageable size. Even with this restriction, the size of
the search tree becomes extremely large, and the search
must be performed several times on every frame.
Because of this, it became necessary to set this threshold
to 0 to satisfy computational constraints. To ensure that
this did not negatively affect our results, we compare the
results of our saliency models using a higher threshold,
but using data from a small subset of our participants, in
the Effect of dfitness on NSS Scores subsection.

After obtaining a list of possible solutions, a model
space must be chosen that can represent them as a

distribution. Similar to the procedure in Tanner and Itti
(2017), we discretize the visible screen into a two-
dimensional grid and project the solutions onto it, in
which each grid cell is assigned a value equal to the
number of solutions passing through that cell. The
resulting distribution can be compared (using Equation
2) to another distribution that does not include the
object in question to produce the goal relevance of the
object. This full process is shown in Figure 2.

The last decision to make with regard to computing
goal relevance is what should be considered an object for
which we will evaluate goal relevance. It is clear that we
should compute goal relevance for each enemy, but the
method for evaluating the relevance of blocks and
terrain is not obvious. For blocks, we decided to
consider each connected component (groups of adjacent
block tiles) as a single object. The same strategy cannot
be used for terrain because all of the terrain in an entire
level would be considered as a single connected
component, and we want to capture the different
sections of the terrain. Instead, we evaluate individual
grid units of terrain at corners: locations where a unit of
terrain is bordered by nonterrain on the top and either
the left or the right. Each terrain corner is the same size
as a standard block unit. Overall, this lets our model
consider many possible places of interest.

We additionally compute the goal relevance of
Mario himself. However, a game state without Mario
included would have no solutions, which would lead to
a null distribution over which Kullback-Lieblier
divergence (KL) is undefined. This same problem
occurs when there are no paths to a goal. Tanner and
Itti (2017) suggested that this situation be handled by
adding a fixed, uniform low-probability density over
the solution space. We could alternatively use a
uniform probability over the reachable states rather
than the whole space, but the intuition of this
distribution in terms of reaching the goal is unclear.
Therefore, the goal relevance of Mario is computed by
comparing a flat distribution over the whole space with
the prior. Figure 3 visualizes the objects on which goal
relevance is computed, along with the result.

Solution space experiment

As noted earlier and shown in Figure 1, throughout
the game levels are many objects designed to have
significantly different values for goal relevance de-
pending on which version of Mario World the
participant has been assigned, which will be referred to
as test objects. This first experiment uses these to see if
changing the solution space causes a predictable change
in human gaze behavior.

To show that changing the solution space causes
differences in eye movements, we need to measure the
goal relevance and the amount of time spent looking at
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Figure 2. Visualization of goal relevance computation. In this case, we are computing the goal relevance of the lower set of blocks. (A,

B) First, a posterior state is created in which the object in question is removed. (C, D) Then, the solution set for each state is found

using the guided breadth-first search described above. Paths are colored from green to red based on their fitness compared with the

�
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many objects and see if changes in these averages across
game versions are correlated between them. For
example, we expect that enemies hovering high in the
air (as in Figure 1A) will have much higher goal
relevance values for participants playing the High Jump
version, and we hypothesize that this will lead to those
same participants spending significantly more time
looking at those enemies than participants in the other
groups.

To measure this, for each participant and each test
object, we compute two values, referred to as the
attention ratio (AR) and the goal relevance ratio
(GRR). The AR represents how much time that
participant spent attending to that object, and the
GRR represents the average goal relevance of the
object.

AR ¼ Number of frames attending to the object

Number of frames object is visible
ð5Þ

GRR ¼
Sum of goal relevance of the object

for each frame it is visible
Number of frames object is visible

ð6Þ

The equations are designed this way to account for
the fact that participants progress through the game at

different speeds. Even though each participant sees
every object, the objects are not visible for the same
amount of time for each participant. Participants who
are slower would have more frames in which to view
the objects, so we must average based on the number of
frames in which the objects are visible. Also note that
the goal relevance values are different in each frame,
depending on the game state, so they must also be
averaged. The subject is considered to be attending to
the object if his or her gaze location is within a
threshold distance dtest of the object’s center, to account
for the fact that subjects often attend to locations
adjacent to intended objects and for minor eye-tracking
miscalibrations that arise from small head movements.
We set dtest ¼ 48 visual angle, which is approximately
the height of Mario. These AR and GRR values are
then averaged across participants, separately for
participants in each of the four versions of the game.
This will provide us with four AR averages and four
GRR averages for each object. Finally, we analyze
these values within specific subsets of objects. Specif-
ically, we investigate the following object subsets:

1. Flying enemies (Figure 1A)
2. Custom wall lowers: The lower portion of the

specially designed wall sections (Figure 1B)

Figure 3. Objects on which goal relevance is computed. (A) Each red dot indicates an object to which we assign a goal relevance value.

Goal relevance is computed on enemies, terrain units at corners, blocks, and on Mario himself. (B) The results of the goal relevance

computations, visualized as a raw saliency mask. The goal relevance of an object is distributed over its visual area in the mask. This is

the same mask that will be used in our saliency model. In this case, the two most relevant objects are Mario and the Bullet Bill enemy.

Note that some objects do not appear in the mask because of low or 0 values for goal relevance.

 
optimal path found by A*, shown in yellow. Mario is too large to fit through the gap at the bottom, so he must jump through the middle.

(E, F) The solution sets are converted into probability distributions via grid discretization. These two images have been edited with increased

gamma and blurring to improve visualization. Lastly, the goal relevance value is determined by applying Equation 2 to the two distributions.
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3. Custom wall uppers: The upper portion of the
specially designed wall sections (Figure 1B)

4. Tunnels: Long horizontal blocks under which
only small Mario can fit (Figure 1C)

5. Raised ledges: Blocks onto which only high-
jumping Mario can jump (Figure 1D)

6. Uninteractable enemies: Enemies hidden behind
blocks such that no version can interact with them
(Figure 1E,F). Flying enemies are also considered
uninteractable for game versions other than High
Jump

7. Interactable enemies: All enemies not considered
uninteractable

Saliency model experiment

The next experiment aims to show that goal
relevance can be used to improve predictive accuracy in
saliency models. Specifically, our aim is not to show
state-of-the-art results but to demonstrate that goal
relevance presents a new theory of top-down attention
that can significantly contribute to a combined model.
Our saliency model is a combination of three separate
models: Itti and Koch’s classic bottom-up model (Itti,
Koch, & Niebur, 1998), the learned top-down model
presented in Peters and Itti (2007; their full model also
uses Itti et al. [1998], but for clarity, we include the two
parts separately), and our top-down goal relevance
model. The bottom-up model compares distributions of
low-level features (luminance, color opponency, and
orientation) at multiple scales and identifies conspicu-
ous locations based on image statistics. The learned
top-down model first computes a reduced feature
vector for each image representing the ‘‘gist,’’ using the
same multiple-scale low-level features. It then learns a
mapping between this vector and likely gaze locations.
This model is trained separately for each individual
participant and is trained and tested using a leave-one-
out scheme by game level so that each of the
participant’s levels is evaluated by a model trained on
all of the other levels played by the same participant.

To construct the goal relevance saliency mask for
each frame of the recorded video, the goal relevance
values are first computed as described previously. Then,
for each object, a bounding box in the image is
computed, and its goal relevance is distributed evenly
across the values in the corresponding box of the mask.
This means that a small object will have a larger pixel-
wise value than a larger object with the same total goal
relevance. Distributing the goal relevance in this way
accounts for the fact that some objects are larger on the
screen and ensures that the total presence of an object
in the mask is proportional to its goal relevance value.
An example mask is shown in Figure 3. This goal
relevance mask will be provided to the combined
model, in addition to the other masks produced by the

bottom-up and learned top-down models. Each mask is
individually blurred to maximize performance, using a
standard Gaussian filter with a sigma of 40 pixels and a
kernel size of 161 pixels.

To combine these three masks into a single model,
we take a simple linear combination of the masks and
their second-order terms. That is, given masks BU, TD,
and GR, the combined mask can be computed with the
following equation:

C ¼ x0 3 BUþ x1 3 TDþ x2 3 GR
þ x3 3 BU 3 TDþ x4 3 BU 3 GR
þ x5 3 TD 3 GRþ x6 3 BU 3 TD 3 GR ð7Þ

where x0 – x6 are coefficients selected using the simplex
search method (Lagarias, Reeds, Wright, & Wright,
1998), an iterative algorithm for minimizing nonlinear
functions. To avoid overfitting, we randomly set aside
one participant from each group (two men, two
women) and use the results from these four participants
in the simplex search. The remaining analysis proceeds
with these participants excluded, leaving 20 (10 men, 10
women) in each group.

A number of metrics have been proposed for
evaluating saliency models, from normalized scanpath
saliency (NSS) and several variants of area-under-the-
curve (AUC) to the correlation coeffiecient (CC), KL,
and, most recently, information gain (IG; Kümmerer,
Wallis, & Bethge, 2015) metrics. For two reasons, we
have decided to primarily report our results using the
NSS score (we also computed our results using the
AUC metric, which can be found in the AUC Results
subsection of the Appendix). First, typical saliency
models operate on data sets of static images, in which
each participant views each image for a period of time.
This provides a distribution over the image for each
participant of attended locations and allows for a
correspondence between participants. In this experi-
ment, we used dynamic video (controlled by real-time
user input), which provides us with only a single point
for each image and prevents any correspondence
between frames. This makes the creation of a human
competitor model as a benchmark impossible. Also,
several of the saliency metrics are designed to compare
between two distributions and thus are not as well
suited for comparing a model prediction to a single
point. The CC, KL, and IG scores fall into this
category. Second, there has been much discussion in the
saliency community about the growing number of
metrics and the inconsistencies between them. In their
review, Bylinskii, Judd, Oliva, Torralba, and Durand
(2016) recommended KL or IG when evaluating
probabilistic saliency models and the NSS and CC
metrics when using saliency models for capturing
viewing behavior. Because our experiment falls into the
latter category, we chose NSS.
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Results

Solution space experiment

The hypothesis of this experiment is that by
manipulating the game rules and thereby controlling the
solution space and the goal relevance values, a similar

change in human attention would be produced. To
evaluate this hypothesis, we analyzed how the GRR and
AR values change in one version of the game compared
with another for specific object subsets. Specifically, for
each object category, a baseline version was selected, and
we measured whether significant differences in GRR
values were matched by significant differences in AR
values in the same direction. The results of this analyses
are shown in Figure 4. In cases in which the GRR values

Figure 4. Attention ratio (AR) and goal relevance ratio (GRR) averages for specific subsets of objects. These are the same object subsets

shown in Figure 1A-F. For easier comparison, a baseline game version is selected (usually regular Mario), and the axes are scaled such

that the AR and GRR values for the baseline are centered. The horizontal dotted line represents the baseline. In cases in which the GRR is

significantly different from baseline, columns are highlighted in green ([) if the AR is significantly different in the same direction, red (3)

if the AR is significant in the opposite direction, and yellow (line) otherwise. (E) Note the axis break that is necessary to maintain the

normalized view. (F) Instead of comparing game versions, this graph compares interactive and noninteractive enemies, averaged across

versions. The differences sometimes appear small because, despite our intent to measure top-down effects, bottom-up effects on eye

behavior are still present, which means that in some cases, the relative effect of the game version on AR can be small.
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in a version are significantly different from the baseline
GRR, we show the following:

1. A green shade, if the AR values are significantly
different from the baseline AR in the same
direction as the GRR difference (up or down)

2. A yellow shade, if the AR values are not
significantly different from the baseline

3. A red shade, if the AR values are significantly
different but in the opposite direction as GRR

We used the Regular Mario version as the baseline in
most cases. Note that in Figure 4A, the High Jump
version is used as the baseline because the GRR values
for all other versions are 0. All of the statistical results
for this figure are shown in Table 1. Of 16 comparisons
(three in each of A–E, one in F) we show eight green
shades, six yellow shades, one red shade, and one with
no shade (Figure 4D Invincible, in which the GRR was
not significantly different from baseline).

Figure 4A shows the values for all flying enemies
across the four game versions. As high-jumping Mario
is the only version capable of interacting with these
enemies, the GRR values are trivially 0 for all other
versions, and so the GRR values for all the other
versions were statistically different from the baseline.
The AR values also show intuitive results, following the
same trend by being lower for the nonbaseline versions.
However, the AR values for the small version did not
quite meet the 5% confidence level for significance, so a
yellow shade is shown. This is caused by a very high
standard deviation in AR values, which is also present
in the other object subsets.

In Figure 4B, we have a similar story, although a bit
less intuitive. For the lower section of the custom walls,

the GRR value is significantly lower for small Mario
because small Mario can fit under the wall, so removing
the wall has less of an impact on the solutions. We can
see that this is matched with the significantly lower AR
value. The GRR is also lower for high-jumping Mario
because he can jump over the entire wall and ignore the
bottom section, but the AR in that case is only a bit
lower, and it is not significant.

The custom wall upper sections (Figure 4C) were
similar to A, with the highest GRR values for the high-
jumping version matched by the highest AR values.
The higher goal relevance comes from these objects
being higher in the air and mostly reachable only by
high-jumping Mario. The invincible version for this
subset was the only case in which GRR and AR values
were significantly different in opposite directions.

Figure 4D shows the results of what we refer to as
tunnels, which are long sequences of blocks that leave
just enough space underneath for small Mario to pass
through. The initial prediction for these objects was
that small Mario would have the lowest GRR because
he is affected the least, just as with the lower wall
sections. The small Mario cases indeed had a lower
GRR, but it turns out that high-jumping Mario has the
lowest GRR. This is due to high-jumping Mario being
able to spend more time in the air, in which blocks near
the ground have less of an effect. No shade is shown for
the invincible version because the GRR values were not
significantly different from baseline.

Figure 4E shows three yellow shades, even though
the AR values matched the changes in GRR values,
particularly for the high jump version, in which we
should intuitively see the biggest change. Unfortu-
nately, the AR differences did not reach significance, in

Versus GRR AR

Flying R t(838) ¼ 12.18, p ¼ 1.58 3 10–31 t(838) ¼ 2.00, p ¼ 4.54 3 10–2

S t(838) ¼ 12.18, p ¼ 1.58 3 10–31 t(838) ¼ 1.52, p ¼ 0.128

I t(838) ¼ 12.18, p ¼ 1.58 3 10–31 t(838) ¼ 2.83, p ¼ 4.80 3 10–3

S t(678) ¼ 22.62, p ¼ 7.56 3 10–85 t(678) ¼ 5.13, p ¼ 3.86 3 10–7

Wall lowers HJ t(678) ¼ 13.71, p ¼ 6.15 3 10–38 t(678) ¼ 0.14, p ¼ 0.89

I t(678) ¼ �3.45, p ¼ 6.06 3 10–4 t(678) ¼ �0.68, p ¼ 0.50

S t(678) ¼ 31.18, p , 1 3 10–100 t(678) ¼ 2.54, p ¼ 0.01

Wall uppers HJ t(678) ¼ �18.93, p ¼ 1.82 3 10–64 t(678) ¼ �3.88, p ¼ 1.14 3 10–4

I t(678) ¼ �3.80, p ¼ 1.55 3 10–4 t(678) ¼ 1.88, p ¼ 0.06

S t(638) ¼ 6.69, p ¼ 4.92 3 10–11 t(638) ¼ 4.35, p ¼ 1.58 3 10–5

Tunnels HJ t(638) ¼ 11.13, p ¼ 2.04 3 10–26 t(638) ¼ 2.93, p ¼ 3.50 3 10–3

I t(638) ¼ �0.62, p ¼ 0.54 t(638) ¼ 3.37, p ¼ 8.00 3 10–4

S t(158) ¼ 8.96, p ¼ 8.56 3 10–16 t(158) ¼ 0.64, p ¼ 0.52

Ledges HJ t(158) ¼ �31.34, p ¼ 1.06 3 10–69 t(158) ¼ �1.87, p ¼ 0.06

I t(158) ¼ 7.75, p ¼ 1.07 3 10–12 t(158) ¼ 0.63, p ¼ 0.53

Interactable Uninteractable t(55497) ¼ 24.75, p , 1 3 10–100 t(55497) ¼ 27.46, p , 1 3 10–100

Table 1. Statistical results using a standard t test, corresponding to the data in Figure 4. Notes: For each object category, a game
version selected as the baseline is compared against the other three versions, in both GRR and AR. R¼ regular; S¼ small; HJ¼ high
jump; I ¼ invincible.
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part because of the smaller sample size for this object
subset because the raised ledges were the least common
of the specialized objects in our levels. We suspect that
at least the high jump version, if not all three versions,
would become significant with enough data. However,
for now, we can only say that there is a trend here.

Finally, Figure 4F is different in that it compares
two object subsets rather than a single subset across the
different versions. However, the results are clear;
noninteractive enemies, which trivially have a goal
relevance of 0, are also looked at significantly less
frequently than interactive enemies, which have a
significantly higher goal relevance.

In addition, we computed the correlation between
AR and GRR values for all objects. Across all objects
presented in the experiment, there was a weak but
significant correlation between AR and GRR values,
r(162,218)¼ 0.1217, p , 1 3 10–100. This correlation is
impressive because the AR computation, unlike the
GRR, captures all influences on human gaze, not just
the top-down influences. This means that many of the
saccades may be guided by other factors that goal
relevance is not designed to capture. It is well known
that task plays a role in attention (Hayhoe & Ballard,
2014), but it is clearly not the only factor, so it is
expected that there be a significant portion of the AR
values that are a priori uncorrelated with the GRR.
Because of this, the GRR values are likely much more
strongly correlated with the human notion of goal
relevance than indicated by the numbers alone.

Saliency model experiment

As described earlier, we also used goal relevance to
create a saliency mask, which was included in a
combined model along with masks from bottom-up
and learned top-down models. Figure 5 visualizes
several example frames and the masks produced by
each of the three components individually, along with
the combined model mask. Overall, goal relevance
generally provides more intuitive masks, focusing on
enemies and objects with which Mario will soon
interact. However, human participants also spend
significant time looking at other parts of the scene, such
as less relevant objects or the background, and these
cases are better captured by the learned top-down
model regardless of intent.

The metric results of the models are shown in Figure
6. Here we show the model results only for the NSS
metric, but results for the AUC metric can also be
found in the AUC Results subsection of the Appendix.
To compare the contribution of the three models, we
show results for each model individually as well as the
three combinations of the two models together. For
example, a combined model including only BU and TD

is one in which x2 and x4 – x6 are set to 0 and x0, x1,
and x4 are found using the simplex search method as
above. These combinations allow us to see the effects of
adding or removing individual components from the
combined model.

Although goal relevance is not intended to be used as
a stand-alone saliency model, we can still gain insights
from comparing the individual models. First, it is clear
that TD performed the best of the three models, based
on its individual score and on the scores of combina-
tions in which it is included. Goal relevance performs
well, and every combination in which it is included has
a higher score than the corresponding combination
without it. For example, the TdGr combination does
much better than TD on its own.

The BU model struggled with this task, with the
individual BU model barely scoring above chance. This
may be caused by the biases present in this particular
task. For example, there was an extremely strong bias
for participants to attend to the right side of the screen,
because their goal is to move Mario to the right, and
therefore, the right side contains the information
needed for planning a path. The TD model can handle
this bias because it learns where the participants tended
to look, and the GR model discovers this on its own
because the paths with higher fitness all go toward the
right. The BU model has no way to account for this, so
it gives just as much weight to salient things on the left
side as on the right side, significantly decreasing its
score. However, we can see that the information
provided by the BU model is still useful because
combining BU with the other models yields improve-
ments. This happens because of the second-order terms,
in which the BU mask is multiplied by other masks. In
these terms, the right-side bias is already contained in
the additional masks and BU simply filters for the most
salient regions remaining.

The higher scores from the GR model suggest that
this task had a strong effect on eye behavior.
Specifically, it indicates that participants reliably gazed
toward objects that directly affected how the task could
be solved. The goal relevance calculations were able to
capture this, including the right-side bias, purely based
on a computational definition of the task itself. It is
interesting that goal relevance was a reliable predictor
of eye behavior even in the presence of very strong
distractors. For example, some of the noninteractive
enemies (such as the shells bouncing back and forth)
are extremely distracting because of the speed at which
they move and the sounds they make. In terms of
bottom-up saliency for the human, they are often the
most salient objects on the screen, and it is quite
reasonable to expect participants to look at them
frequently. Goal relevance, by contrast, gives them a
value of 0 because they do not affect any solutions.
Although the participants did occasionally look at
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these enemies, Figure 4F, in addition to the NSS scores,
shows that the difference in goal relevance had a very
strong effect on the time spent looking at them.

The TD model performed the best because it is able
to directly learn where participants tend to look. In this
case, it learned the right-side bias and also that
participants frequently looked toward a particular spot
slightly below the center of the screen, which can be
seen in the TD masks in Figure 5. The game screen
scrolls to the side as Mario progresses through each
level, such that Mario is always centered horizontally,
and this spot is based on the average height of Mario.
The model also learns other regions of the screen where
each participant tends to look, although on average it

does not give them as much weight as this below-center
location.

Finally, introducing an additional component
caused a significant improvement in the NSS score in
all cases. This is a pleasing result that suggests that
none of the models overlaps another in terms of the
information it provides. In particular, goal relevance
performed well and significantly contributed to all of
the models in which it was included. There was a
significant effect of adding the GR mask to the BU
mask to form the BuGr model, F(279,648) ¼
�313.1510, p , 1310–100. Similarly, adding GR to the
TD mask was also significant, F(279,648)¼�91.2175,
p , 1 3 10–100, as well as adding GR to the BuTd

Figure 5. Example images along with the model prediction masks. We show the mask produced by each individual model (including

blurring) along with the final combined model. In each image, the cyan dot marks the participant’s gaze location. Note that here we

show the final masks, which include blurring, particularly the BU and GR masks. Also, mask images have been edited with increased

gamma to improve visibility. In most of these examples, goal relevance does very well. For each row, starting from the top: (1) Gaze is

directed to a ledge as Mario falls. (2) Gaze is directed to a cannon which fires missiles. The left-most cannon is not considered relevant

because Mario is in the ascent of his jump, so most solutions land beyond it. (3) Gaze is directed toward an enemy. (4) Gaze is

directed toward a platform onto which Mario will soon land. (6) The last example shows a situation in which the TD model performs

much better. Gaze is being directed toward the background above Mario. Goal relevance is incapable of predicting this location

because there are no objects there, but the learned model places a low probability there.
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model, F(279,648) ¼�89.9835, p , 1 3 10–100. These
results also hold for each game version individually,
indicating that there was not much difference between
versions in terms of the NSS scores.

To confirm that our results do not only apply to a
single environment representation, we repeated the
above analysis where gaps between blocks or the
ground were also interpreted as objects. Goal relevance
for these gaps was computed by simulating an
environment with the gap filled in by blocks. A
common example of where this occurs can be seen in
Figure 1B, between the upper and lower custom wall
block segments and between the lower segment and the
ground. This modified analysis caused the performance
to drop slightly for each model that included goal
relevance. However, this reduction was less than 0.6%
of the NSS score in the GR model and even less in the
combined models that included GR. None of the
statistical results were affected.

Game experience questionnaire

At the beginning of each session, the participant was
asked to rate the amount of prior experience they had
playing Mario video games from 1 to 4 (1 being barely
any or no experience, 4 being significant prior
experience). We found a significantly positive correla-
tion between these responses and the total game score
received by the participants, r(78)¼0.31, p¼5.1310–3.
However, filtering the model results based on this

question did not reveal any significant differences in
model performance based on player experience. That is,
experience level affected the score but did not
significantly affect the agreement between our model
predictions and the players’ eye movements.

Discussion

In Tanner and Itti (2017), goal relevance was
designed to measure the degree to which information
pertains to a task, but that does not necessarily imply
that it would be correlated with eye behavior. However,
all of the results of the present study together suggest
that goal relevance is indeed correlated with eye
movements. Almost all object subsets tested in Figure 4
produced results correlating goal relevance and visual
attention. Half of the comparisons were green, indi-
cating a positive correlation, while only a single
comparison indicated the opposite. Figure 4 also shows
that changing the task itself causes a change in goal
relevance that is matched by changes in eye behavior.
This is a promising result that might indicate goal
relevance can generalize to other tasks. Finally, the
significant correlation between GRR and AR across all
objects directly showed that goal relevance is correlated
with eye movements.

Furthermore, Figure 6 demonstrates the effective-
ness of goal relevance as a predictor of eye behavior in
a saliency model. The fact that goal relevance improved

Figure 6. NSS scores for all combinations of the three model components: bottom-up, top-down learned, and goal relevance. In all

cases, a combination that includes goal relevance performs significantly better than the corresponding combination without goal

relevance.
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the model for each combination in which it was
included suggests that the predictive information
provided by goal relevance is distinct from both the
bottom-up and top-down learned features. This sup-
ports our belief that goal relevance provides a new
potential stream of information that can be incorpo-
rated into any saliency model involving a specific task.
The best models can be formed by combining multiple
distinct sources of information, including learned
features and conceptually bound features such as those
of the BU and GR models.

Even though the learned top-down model had the
highest individual performance based on NSS scores,
the fact that the goal relevance represents distinct
information means that it will generally improve the
results of any model in which it is included. Also, goal
relevance performs well despite the significant advan-
tages of machine learning techniques and comes
without their disadvantages. Goal relevance requires no
training data at all, whereas most learned top-down
models (including this one) learn from eye behavior of
the same participant. The TD model is not capable of
making a priori predictions about new participants or
new tasks, but the goal relevance model handles this no
differently than examples it has seen before. Also, even
though we refer to the learned model as a top-down
model, its learning process does not discriminate
information. While learning top-down information, it
also captures bottom-up and any other category of
information that is present in the data, so it is really an
all-around learned model.

For this particular task, the authors suspect that the
primary advantage of the learned model comes from its
ability to adapt to the visuals, rather than the
participant. It is able to learn more precisely which
locations on the screen are important and make small
adjustments based on visual cues. For example, when
there are many hills on screen so that the ground is
elevated, the model often shifts its predictions slightly
upward. Even though the model was trained separately
for each participant, there did not seem to be any
similarly clear differences in the model predictions
between participants. This does not rule out more
subtle adjustments, which could still have a significant
effect on the prediction accuracy.

Despite the correlations between goal relevance and
eye movements in this study, there are some caveats to
this approach. One such issue is that goal relevance still
requires specification by the researcher to define the
task solution space and to designate which pieces of
information should be evaluated for relevance. Every
task is different, and there is no way to escape the fact
that tailoring computation to a task requires some
additional information. Goal relevance can be thought
of as a conceptual framework that provides a simple
way to think about tasks and information. This is

similar to Itti and Baldi’s (2006) concept of surprise,
which also defined a novel way of thinking about
bottom-up attention but left open the question of
which features to use. Of course, this similarity is not
an accident, as the two concepts share much of the
same formulation.

A minor issue is that during the training process,
participants assigned the invincible condition very
quickly realize that the game can be played optimally
by simply holding the ‘‘move right’’ button and
occasionally pressing ‘‘jump.’’ It is possible that this
scenario simplifies the game such that subjects become
less engaged and begin issuing saccades to less
important areas of the screen to entertain themselves.
However, this is purely speculative.

The choices of how to model the solution space and
which objects should be evaluated for goal relevance
undoubtedly had a large impact on the goal relevance
values. There is not always an obvious answer to what
should constitute a single piece of information for the
purposes of this calculation. When deciding how to
handle the blocks, for example, we could instead have
evaluated all of the pieces (individual tiles) of each
block individually. Also, we could have evaluated the
relevance of empty spaces by comparing with game
states containing blocks inserted at the same locations.
This decision, along with the representation of the
solution space, can be thought of as encapsulating the
subjective nature of the task. None of these choices is
any more inherently correct than another, and ulti-
mately, we chose to only include existing objects whose
goal relevance would be evaluated by deleting them and
exclude empty spaces. We chose to group blocks into
connected components because it was more intuitive to
interpret the game environment in that way. This is
why we also tested an alternative representation that
included the gaps between blocks. Changing the
representation did not affect our results, which suggests
that goal relevance has some degree of robustness to
the precise representation chosen. It also demonstrates
that two humans with different representations can be
equally capable of reaching a goal.

Another important choice was the manner in which
goal relevance values were converted into a saliency
mask to be used in the model. As goal relevance is still a
very new concept, the most straightforward method
was chosen, simply using object bounding boxes filled
with intensities proportional to the goal relevance
values. This implies that a very basic logic scheme is
being used, namely, that gaze is directed toward the
most relevant pieces of information. This includes no
inhibition of return and does not account for the many
subproblems that compose complex tasks. For exam-
ple, even though the overall goal was to reach the end
of a level, a participant might briefly become focused
specifically on jumping onto a single ledge. This could
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lead them to focus on the positioning of the ledge and
on Mario, ignoring other enemies and obstacles that
are still relevant but are beyond the ledge. Future work
might improve upon goal relevance by developing a
hierarchy of goals and subgoals to account for cases
such as this one.

Our results do not imply that the details of how goal
relevance is computed match the implementation in the
human brain. Indeed, one might be doubtful that
human participants simulated thousands of game states
at each moment to decide where to direct their gaze.
This is certainly another direction for future research,
but we believe it has been established that goal
relevance is related to the same result as the human
computations, even if the brain arrives via a different
manner. It is possible that humans develop heuristics
(Gigerenzer, 2008), in which case we would argue that
goal relevance is the target that the heuristics attempt
to approximate.

Conclusions

Overall, this study demonstrates that goal relevance
provides a complete theory for the top-down behav-
ioral effects of tasks on human gaze, from deciding
which information is relevant to the task to how that
information affects gaze behavior. In addition, it can be
introduced into saliency models, even those that
already include learned top-down features, to improve
their performance. This is an important step toward
improving our understanding and models of top-down
gaze in humans.

Keywords: top-down, relevance, attention, modeling,
goals
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Appendix

Effect of dfitness on NSS scores

In the Analytical Methods subsection, we described
our method for dealing with an infinite solution space,
which was to prune the search tree by removing any
node with a fitness value more than dfitness below the
fitness of the best path found using an A* search.
However, computational restraints required that we set
this threshold to 0, meaning that we pruned branches as
soon as they became worse than the best solution. To
confirm that this did not affect our results, we reran the
analysis using higher values but only on the four
validation participants used for the simplex search
(Lagarias et al., 1998). This is shown in Figure 7.
Although the NSS scores did slightly worse with the
higher values, the difference is small enough that the
significance of the results is not affected.

AUC results

In Table 2, we show the model scores for the same
models shown in Figure 6, except that we evaluate the
models using the AUC metric instead. Just as before,
there was a significant effect of adding the GR mask to
the BU mask to form the BuGr model, F(279,648) ¼
�269.6313, p , 13 10–100. Adding GR to the TD mask
was also significant, F(279,648)¼�6.8460, p ¼ 7.60 3

10–12, as well as adding GR to the BuTd model,
F(279,648) ¼�6.7976, p ¼ 1.07 3 10–11. Although the
differences between the model scores are not as large,
the significance of the results is unaffected.

Figure 7. NSS scores for the GR and full combined models for

different values of dfitness. The difference in the scores is very

small, so using a low value does not affect our results.

Component AUC score

BU 0.5282

TD 0.9088

GR 0.7973

BuTd 0.9088

BuGr 0.7982

TdGr 0.9137

All 0.9137

Table 2. AUC scores for all combinations of the three model
components: bottom-up, top-down learned, and goal relevance.
Notes: In all cases, a combination that includes goal relevance
performs significantly better than the corresponding combina-
tion without goal relevance.
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