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Abstract Many high-prevalence neurological disorders

involve dysfunctions of oculomotor control and attention,

including attention deficit hyperactivity disorder (ADHD),

fetal alcohol spectrum disorder (FASD), and Parkinson’s

disease (PD). Previous studies have examined these deficits

with clinical neurological evaluation, structured behavioral

tasks, and neuroimaging. Yet, time and monetary costs

prevent deploying these evaluations to large at-risk popu-

lations, which is critically important for earlier detection

and better treatment. We devised a high-throughput, low-

cost method where participants simply watched television

while we recorded their eye movements. We combined eye-

tracking data from patients and controls with a computa-

tional model of visual attention to extract 224 quantitative

features. Using machine learning in a workflow inspired by

microarray analysis, we identified critical features that

differentiate patients from control subjects. With eye

movement traces recorded from only 15 min of videos, we

classified PD versus age-matched controls with 89.6 %

accuracy (chance 63.2 %), and ADHD versus FASD versus

control children with 77.3 % accuracy (chance 40.4 %).

Our technique provides new quantitative insights into which

aspects of attention and gaze control are affected by specific

disorders. There is considerable promise in using this

approach as a potential screening tool that is easily

deployed, low-cost, and high-throughput for clinical disor-

ders, especially in young children and elderly populations

who may be less compliant to traditional evaluation tests.

Keywords ADHD � FASD � Parkinson’s disease �
Attention deficits � Eye tracking

Introduction

Visual attention and eye movements enable us to interact

with complex environments by selecting relevant infor-

mation to be processed in the brain. To properly allocate

attention, a network of brain resources is engaged, from

low-level visual processing to motor control of gaze ori-

enting [1]. This renders visual attention vulnerable to

neurological disorders. Several neuropsychological and

neuroimaging studies have demonstrated that damage in

different areas of the attentional network can impair
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distinct aspects of task performance or can reveal unusual

patterns of brain activity in laboratory tasks that test for

specific aspects of attention [2]. However, while in-depth

clinical evaluation, structured behavioral tasks, and neu-

roimaging are extremely valuable and are the current gold

standard for identifying particular impairments, they suffer

from limitations that prevent their large-scale deployment:

time and cost by limited numbers of medical experts, and

inability of some patients (e.g., young children or some

elderly) to either understand or comply with structured task

instructions, or with the testing machinery or protocol.

Our core hypothesis is that natural attention and eye

movement behavior—like a drop of saliva—contains a

biometric signature of an individual and of her/his state of

brain function or dysfunction. Such individual signatures,

and especially potential biomarkers of particular neuro-

logical disorders, which they may contain, however, have

not yet been successfully decoded. This is likely because of

the high dimensionality and complexity of the natural

stimulus (input space), of the stimulus to behavior transfer

function (brain function), and of the behavioral repertoire

itself (output space). We devised a simple paradigm that

does not require expensive machinery, involves no prepa-

ration and no cognitive task for participants, is completed

in 15 min, is portable for use outside large medical centers,

and (after initial training of the machine learning algo-

rithms) autonomously provides detailed decoding of an

individual’s signature.

We validated our technique with one neurodegenerative

and two neurodevelopmental disorders that have been

shown to involve deficits in visual attention and oculomotor

functions. These deficits were exploited by our algorithm

with features corresponding to oculomotor control, stimu-

lus-driven (bottom-up) attention, and voluntary, contextual

(top-down) attention. We first tested the algorithm on

elderly participants with the neurodegenerative disorder,

Parkinson’s disease (PD) and validated the signature of PD

discovered by our algorithm, because the behavioral deficits

of PD are well understood. In short, PD is characterized by

degeneration of dopaminergic neurons in the substantia

nigra pars compacta, affecting basal ganglia processes,

which subsequently impairs body movement (tremor, bra-

dykinesia) and oculomotor movement (slower and shorter

saccades) [3–5]. PD also impairs the prefrontal, premotor,

motor, and basal ganglia networks [6], leading to deficits in

attentional control; in particular, PD patients are less suc-

cessful in inhibiting automatic saccades to a salient stimulus

compared to controls [3, 4]. Therefore, we expected PD

patients to show deficient oculomotor control, weakened

top-down control, and stronger bottom-up guidance in

natural viewing.

Next, we tested the algorithm on the two neurodevel-

opmental disorders at the other end of the age spectrum:

attention deficit hyperactivity disorder (ADHD) and fetal

alcohol spectrum disorder (FASD). Patients with ADHD or

FASD demonstrate comparable deficits in visual attention

tasks [7–11], but for different reasons. ADHD in childhood

is characterized by delayed cortical maturation, dysfunc-

tion in dopamine transmission in the frontal cortex and/or

basal ganglia [12], and decreased activity in frontal and

striatal regions [13, 14]. These deficits result in difficulties

in inhibiting premature responses (weakened top-down

control), and thus patients appear more stimulus-driven

(stronger bottom-up guidance) [7]. Oculomotor function

seems relatively unimpaired, though previous studies have

shown inconsistent findings [11]. On the other hand, FASD

is caused by excessive maternal alcohol consumption,

which results in malformation of the cerebral cortex, basal

ganglia and cerebellum, and reduced overall brain and

white-matter volumes [10, 15]. Deficits include impaired

oculomotor functions [16], decreased top-down attentional

control [17], and weakened bottom-up attention, possibly

due to deficient visual sensory processing [18]. The

weakened bottom-up guidance of children with FASD

could be a differential factor between FASD and ADHD,

because children with ADHD appear to be more stimulus-

driven. For example, in pro-/anti-saccade tasks (where a

pro-saccade requires participants to initiate an automatic

eye movement to a visual stimulus, and an anti-saccade

requires participants to make a voluntary eye movement in

the opposite direction) [19], children with ADHD or FASD

both made more directional errors in the anti-saccade task

(implying difficulty in inhibiting automatic responses), but

only children with FASD made more directional errors and

had longer reaction time in the pro-saccade task (implying

weakened stimulus-driven guidance) [7, 9]. While diag-

nosis of some subtypes of FASD is often assisted by the

presence of dysmorphic facial features [20], the majority of

affected children do not exhibit facial dysmorphology, and

when these features are not obvious, there is a significant

risk of misdiagnosis with ADHD [21]. Thus, the differen-

tial classification of ADHD versus FASD provides a dif-

ficult challenge for our method.

Methods

The experimental procedure is summarized in Fig. 1a.

Participants’ eye traces were recorded while watching

20 min of video. Participants were instructed to ‘‘watch

and enjoy the clips.’’ Five minutes of video was excluded

from the analysis because of different lengths of the clip

snippets for purposes beyond the scope of this study (see

Supplementary Methods: Stimuli, Data Acquisition for

detail). Each 30-s video clip was composed of 2–4-s clip

snippets of unrelated scenes to minimize predictability and
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to emphasize attentional deployment in new environments.

Saliency maps (Fig. 1b; topographic maps that predict the

locations of visually conspicuous stimuli based on low-level

image properties; Supplementary Methods: Computing

Saliency Maps from Stimuli) were computed for every

frame [22], and correlations between model-predicted

salience values and measured human saccade endpoints

(gaze) were computed (Fig. 1c–e). Based on previous

studies [3–18] of how the disorders may affect eye move-

ment, we extracted a large number of features from the eye

movement recordings (categorized into oculomotor-based,

saliency-based, and group-based features; see Methods:

Features) and built a classifier to differentiate patients and

controls based on these features. We also analyzed the

features for biomarkers through recursive evaluation,

selection, and classification. Our workflow was inspired by

successful application of advanced machine learning tech-

niques to microarray analysis [23], here using similar

techniques for the first time in high-throughput analysis of

natural eye movement behavior.

Standard protocol approvals and patient consent

All experimental procedures were approved by the Human

Research and Ethics Board at Queen’s University, adhering

to the guidelines of the Declaration of Helsinki and the

Canadian Tri-Council Policy Statement on Ethical Conduct

for Research Involving Humans.

Participants

This study describes data collected from 21 children with

ADHD, 13 children with FASD, 14 elderly PD participants,

18 control children, 18 young controls, and 24 elderly

controls (Table 1; Supplementary Methods: Participants,

Diagnostic Criteria).

Features

From eye traces recorded while participants viewed short

videos, we extracted three types of features that we
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Fig. 1 Experimental and classification paradigms. a Participants

freely viewed scene-shuffled videos (SV), and their eye movements

were recorded. Saliency maps of each SV were computed using a

computational model that mimics early visual processing. Next, we

used the recorded eye movements to compute (1) oculomotor-based

saccade metrics, (2) saliency-based correlations between saliency

maps and gaze (bottom-up attention), and (3) group-based similarities

in spatiotemporal distributions of gaze with reference to a database of

control eye traces (top-down attention). These features were used in a

classifier with a recursive feature selection method to identify

important features that distinguished populations. b Ten saliency

maps of different features (color, intensity, etc.) were computed, here

illustrated for the video frame shown in (a) under ‘‘Saliency maps.’’

Brighter shades of grey indicate stronger feature contrast at the

corresponding image locations; for example, the red and yellow
flowers between the two people elicit a strong response in the color

contrast map. c To compute saliency-based or group-based features,

each saliency map was sampled around the saccade target location

(red circle) when a participant initiated a saccade (red dot). At the

same time, 100 map values were randomly sampled from the map as a

baseline (blue circles) for comparison. d Histograms were generated

from both the human and random sample values. e Differences

between human and random histograms were further summarized by

ordinal dominance analysis to quantify the extent to which human

observers gazed towards higher salience values than expected by

chance in terms of the area under the curve (AUC, yellow region) (see

Supplementary Methods: Computing Features for more detail)
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hypothesized would be differentially affected by disorders.

First, oculomotor-based features were computed (e.g.,

distributions of saccade amplitudes and fixation durations)

as they might reveal deficiencies in motor control of

attention and gaze. Second, saliency-based features corre-

lated participants’ gaze to predictions from a computational

model of visual salience [22], which has been previously

shown to significantly predict which locations in a scene

may more strongly attract attention of control subjects. We

hypothesized that these features would reveal deficits in

reflexive, stimulus-driven, or so-called ‘‘bottom-up’’

attention. The third type, group-based features, captured

deviations in participants’ gaze allocation onto our stimuli

compared to a normative group of young adult controls.

These features, we posited, might reveal impaired voli-

tional, subject-dependent, or ‘‘top-down’’ attentional con-

trol, especially if differences were observed in group-based

but not saliency-based features. Together, we utilized all

these features to classify participants into clinical groups

based on natural viewing behavior, the complexity of

which imposed challenges in data analysis, but also

revealed rich and profound information about the different

populations.

The classifiers were built to discriminate patients from

controls based on 15 core features from our three types:

four oculomotor-based core features (distributions of sac-

cade duration, inter-saccade interval, saccadic peak

velocity, and saccade amplitude), ten saliency-based core

features (differential distributions of salience values at

human gaze vs other locations, using the ten saliency maps

of Fig. 1b), and one group-based core feature (correlation

between a patient’s gaze and aggregate eye traces from a

normative group of young adult controls, Fig. 1a). Each

core feature was represented by several sub-features to

capture the dynamics of free-viewing: each oculomotor-

based core feature was subdivided into 12 sub-features [3

measures (lower quartile, medium, upper quartile) 9 4

saccades (the 1st, 2nd, 3rd, and all saccades on each 2–4-s

clip snippet) = 12 sub-features]; each saliency-based core

feature was subdivided into 16 sub-features: 4 measures

[area under the ROC curve (AUC; see Supplementary

Methods: Computing Features) for low/medium/high sal-

ience bins] 9 4 saccades, as was each group-based core

feature: 4 measures (AUC, low/medium/high similarity

bins) 9 4 saccades. Thus, in total, 15 core features subdi-

vided into 224 sub-features were used (Supplementary

Table S2).

Classification and feature selection

Feature selection is a popular machine learning method to

identify useful features and overcome situations where the

number of features is possibly larger than the number of

samples when training a classifier [24]. We performed

feature selection with support vector machine-recursive

feature elimination (SVM-RFE) [25], which has been used

with great success in other fields (e.g., cancer classification

with microarrays [25]). SVM-RFE consists of training a

classifier and discarding the weakest feature iteratively

until all features are eliminated. We used SVM-RFE to

differentiate PD patients from elderly controls (binary

classification), and multiple SVM-RFE (MSVM-RFE) [26]

to distinguish children in the ADHD, FASD, and control

groups (3-way classification). All classification accuracies

reported were obtained using these two feature selection

methods.

Performance of each classifier that used a particular

selected subset of features was computed using 30 itera-

tions of a repeated leave-one-out bootstrap validation [27].

This validation method was similar to the standard

leave-one-out validation, which leaves one participant out

for testing, but here the classifier was trained on the

remaining participants that were bootstrapped (sample with

replacement) ten times the number of these remaining

participants. The performance was tested against permuted

chance, which was the classification accuracy of a classifier

trained on the same bootstrap structure but with randomly

permuted class labels (class labels were randomly rear-

ranged). Because classification accuracy varied with the

number of features in the process of RFE, we tested the

performance of classifiers by comparing the maximum

accuracy obtained by the classifier trained with true labels

to that obtained by the classifier trained with randomly

permuted labels (permuted chance, the chance referred to

in this article unless stated otherwise), regardless of how

many features each classifier used to obtain maximum

Table 1 Demographic data (see Supplementary Table S1 for full

demographic data)

n Age (year) Sub-type/severity Medication

Ctrl. elderly 24 70.33 ± 7.53

PD 14 67.43 ± 6.62 Hoehn and Yahr Yes: 14

Stage 2: 6 No: 0

Stage 2.5: 6

Stage 3: 2

Ctrl. young 18 23.17 ± 2.60

Ctrl. child 18 10.67 ± 1.82

ADHD 21 11.19 ± 1.83 Inattentive: 4 Yes: 16

Hyperactive: 0 No: 5

Combined: 19

FASD 13 12.31 ± 2.10 FAS: 4 Yes: 10

pFAS: 2 No: 3

ARND: 7
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accuracy (one-tail paired t test; Supplementary Methods:

Classification and Feature Selection). All tests were Bon-

ferroni corrected.

Results

Classifying PD and controls

Classification accuracy for 14 patients versus 24 age-mat-

ched controls reached 89.6 % (chance: 63.2 %, obtained by

performing the same classification procedure with per-

muted class labels; Fig. 2a), with only 5 of 224 sub-fea-

tures selected as most discriminative by the process of

feature elimination (SVM-RFE). The confusion and sen-

sitivity/specificity matrices reveal that the classifier made

slightly more false negatives than false positives as we

aimed to maximize overall classification performance. In

scenarios where the classifier may be used for screening

purposes, sensitivity of the classifier can be increased by

assigning higher costs to missed PD patients and lower

costs to false positives during training.

Our method not only differentiated PD from elderly

controls [one-tail paired t test, t(29) = 23.07, p \ 0.01],

but also provided information about how PD affects eye

movements, obtained by separately studying classification

accuracy for oculomotor-based, saliency-based, or group-

based features (Fig. 2b). PD patients demonstrated motor

deficits as revealed by classification differences between

them and controls in oculomotor features [considering

only the 48 oculomotor-based sub-features, accuracy was

86.4 %, t(29) = 28.02, p \ 0.01]. Oculomotor deficits

have been attributed to dysfunction in the basal ganglia

[28–30], crucial for voluntary saccade control [19].

Patient’s top-down attention also differed from elderly

controls [16 group-based sub-features, 74.6 %, t(29) =

11.58, p \ 0.01], in agreement with previously reported

impairment in voluntary attention, involving cortical and

sub-cortical attention networks [28, 29, 31–33]. How-

ever, counter to our expectation that lower top-down

control may give rise to higher reliance upon stimulus-

driven salience, bottom-up attention of PD patients

seemed unaffected, as saliency-based features showed no

overall differences [160 saliency-based sub-features,

63.16 %, t(29) = -4.10, n.s]. It is possible that any

higher reliance upon visually salient stimuli to guide

gaze may have been offset by impaired salience com-

putation because of deficient early visual processing in

PD patients, as reported in previous laboratory studies

[34] [see Supplementary Discussion of Neurological

Implications: Parkinson’s disease (PD) for more details

relating the findings from previous studies to the results

from classification].

At a finer granularity, our method also permitted

investigating whether each of our 15 core features was

affected by PD. We tested 15 separate classifiers, each

using only the 12 or 16 sub-features of a given core feature

(with SVM-RFE). This yielded a 15-component biometric

signature of PD (Fig. 2c). During natural viewing, PD

patients demonstrated motor deficits as their saccades were

of shorter amplitude and duration [classification accuracy:

t(29) [ 9.62, p \ 0.01; direction of the effect: two-sample

t test, t(36) [ 2.73, p \ 0.01]; peak velocity and inter-
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Fig. 2 Classification performance in differentiating PD patients from

elderly controls at three granularities of starting feature sets: a all

features, b the 3 feature types, and c the 15 core features (biometric

signatures). a Starting with all 224 sub-features, PD patients were

distinguished from elderly controls with 89.6 % accuracy after feature

selection (SVM-RFE). Each row in the confusion matrix represents

actual classes, and each column predicted classes. b PD and elderly

controls differed significantly in oculomotor (starting with 48 sub-

features) and group-based behavior (16 sub-features), but not in

saliency processing (160 sub-features). Asterisks indicate cases where

the classifiers performed significantly better than permuted chance

(computed from training a classifier with randomly permuted class

labels). Dashed line represents prior chance based on the number of

controls and patients. c PD patients exhibited differences in saccade

amplitude, duration, peak velocity, inter-saccade interval, intensity

variance processing, texture saliency processing, and similarity to

normative young observers. This pattern of differences yields the

15-component biometric signature of PD. Dashed line is the prior

chance. Background colors separate oculomotor-based, saliency-

based, and group-based features from left to right (error bars indicate

95 % confidence intervals after Bonferroni corrections). Significance

level: p \ 0.01, one-tailed paired t test (df = 29)
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saccade interval were also affected [t(29) [ 6.31,

p \ 0.01], but without a unified upward or downward

direction of effect among the 12 sub-features (Supple-

mentary Methods: Direction of Effect). These observations

are consistent with earlier structured-task studies, which

showed shorter and slower voluntary saccades of PD

patients toward pre-determined visual locations [3, 5, 28,

35], with less impairment for visually guided saccades [28,

35]. The classifier also found that PD and elderly controls

differed in intensity variance [t(29) = 4.96, p \ 0.01] and

texture contrast [t(29) = 8.36, p \ 0.01], though with

mixed upward and downward effects among the involved

sub-features, suggesting complex interactions between

deficits that affect behavior in opposite directions: e.g.,

weakened top-down control (stronger bottom-up) and

impaired saliency computation (weaker bottom-up). Defi-

cits in voluntary control and top-down attention were also

revealed by different similarities to our normative young

observers between PD patients and elderly controls

[t(29) = 7.06, p \ 0.01].

Classifying ADHD, FASD, and control children

Classification accuracy with MSVM-RFE for 21 children

with ADHD vs. 13 children with FASD vs. 18 control

children reached 77.3 % (chance 40.4 %) with 19 of all

224 sub-features (Fig. 3a). With these 19 features, the

average two-way classification accuracy for ADHD versus

control was 83.3 % (chance 53.8 %); FASD versus control

was 79.2 % (chance 58.1 %); ADHD versus FASD was

90.4 % (chance 61.8 %). Rates of miss and false alarm

errors were balanced, except for a slightly higher miss rate

for FASD, as the classifier aimed to maximize overall

accuracy.

Our method further examined which of the three feature

types contained differential information among the three

groups of children (Fig. 3b). Classification accuracies were

significantly above chance with the saliency-based [50.8 %,

t(29) = 4.04, p \ 0.05], but not with the oculomotor-based

features [40.5 %, t(29) = -5.28, n.s] and the group-based

features [45.7 %, t(29) = 1.03, n.s.]. When comparing each

pair of the three child groups, first, children with ADHD

and controls were distinguished significantly in saliency-

based features [78.2 %, t(29) = 12.68, p \ 0.01]; second,

children with FASD and controls differed in both saliency-

based features [77.6 %, t(29) = 9.95, p \ 0.01] and group-

based features [69.8 %, t(29) = 6.01, p \ 0.01]; lastly,

children with ADHD and FASD showed no differentiability

by each feature type alone, but they could be distinguished

with all feature types together [t(29) \ 22.96, p \ 0.01].

Although we focus on classification performance, these

results are in line with earlier studies that showed how

children with ADHD have difficulties in inhibiting

premature responses and thus appear more stimulus-driven

[7], as well as studies that demonstrated how children with

FASD have atypical top-down [8, 9, 17] and bottom-up [18]

attentional control (see Supplementary Discussion of

Neurological Implications: ADHD, FASD, and ADHD

versus FASD for more details pertaining to previous studies

and the present results). However, when we examined

whether the saliency-based and group-based sub-features

showed larger feature values in one population than in the

other, we found mixed directions of effect among the sub-

features of both feature types, indicating that the disorder

impacts natural viewing behavior in more than one single

unified manner (e.g., impaired response inhibition [7, 9],

but also possibly weakened early visual processing [36–

38]). The quantitative predictions of our classifier for every

sub-feature provide for the first time a rich basis to further

investigate these complex effects from a neurological

viewpoint.

At the level of the 15 core features, our method yielded

clearly distinct biometric signatures for ADHD versus

FASD (Fig. 3c), thus successfully teasing apart the two

disorders along 15 important dimensions. For children with

ADHD, the best feature differentiating them from control

children was texture processing [t(29) = 15.67, p \ 0.01];

children with ADHD showed a higher correlation with

texture contrast [two-sample t test, t(37) = 2.75, p \ 0.01;

Fig. 3c], in line with previously reported tactile texture

sensitivity [39–41]. Thus, the current results suggest this

may not be limited to the tactile domain. Propensity to look

toward color contrast [36, 37] [t(29) = 5.63, p \ 0.01] and

oriented edges [t(29) = 6.72, p \ 0.01] was also discrim-

inative between children with ADHD and controls. Ori-

ented edges are important to perceptually construct the

contour and shape of objects. For children with FASD, line

junctions, overall salience, and texture contrast were dis-

criminative [t(29) [ 4.92, p \ 0.01]. To our knowledge, no

previous study has investigated how ADHD might affect

processing of oriented edges, nor how different domains of

salient features may be affected by FASD. The discovery

of these features by our classifier thus suggests interesting

new research directions.

Sub-features selected by the SVM-RFE process

Finally, we investigated which collections of sub-features

best differentiated the populations based on the result of

feature selection (SVM-RFE). The top five sub-features

that classified PD from elderly controls and their normal-

ized feature values are shown in Fig. 4a. The feature

selection method found a collection of five oculomotor

sub-features that reliably differentiate PD from elderly

controls. On the other hand, the top 19 features for dif-

ferentiating each pair of the three child populations
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(ADHD, FASD and control) spanned all three broad fea-

ture types (Fig. 4b). While some core features of the

selected sub-features failed to differentiate the populations

when considered in isolation, they are important comple-

mentary features for the classifiers to separate the groups.

Obviously the pattern of feature values observed here is

complex, indicating that sophisticated classifiers were

indeed necessary to discover the subsets of features that

yielded the best classification accuracy. To visualize how

well our approach was able to cluster individuals into

separate groups, we further reduced the dimensionality of

our results using Linear Discriminant Analysis, which finds

axes that best separate each pair of groups (Fig. 4c, d). This

analysis allowed us to validate our method by demon-

strating clearly distinct clusters based on the features

selected by our classifiers. We suggest that similar clus-

tering techniques could be employed in future studies of

other disorders and to possibly discover different sub-

population clusters within patient groups that were previ-

ously considered homogeneous per standard medical

assessment.

Discussion

This study revealed different biometric profiles of oculo-

motor function and attention allocation among PD, ADHD,

and FASD patient groups through quantitative analysis of

natural viewing eye traces. Our automated SVM-RFE

process discovered that PD patients were best
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Fig. 3 Classification performance for children with ADHD, FASD,

and control children for: a all features, b the 3 feature types, and c the

15 core features (biometric signatures). a Starting with all sub-

features, children with ADHD, FASD, and control children were best

classified with 77.3 % accuracy (ADHD: sensitivity 80 %, specificity

90 %; FASD: sensitivity 73 %, specificity 91 %) after feature

selection (MSVM-RFE). Format is as in Fig. 2. b Classifying the

three child groups with different feature sets demonstrated that they

differed significantly in saliency-based behavior (upper-left sub-plot).

Children with ADHD differed from control children in saliency-based

features, whereas children with FASD differed from controls in both

saliency-based and group-based features, and children with ADHD

and those with FASD could only be distinguished with all three

feature types together. c The 15-component biometric signature of

ADHD and FASD. Children with ADHD compared to control

children demonstrated significantly different sensitivity in color

contrast and oriented edges, as well as increased sensitivity to texture

contrast. Children with FASD, in contrast, showed a different

signature that involved differences in similarity to young observers

in gaze distribution, sensitivity to line junctions, and sensitivity to

overall salience, as well as increased sensitivity to texture contrast.

Background colors separate oculomotor-based, saliency-based, and

group-based features from left to right (see Fig. 2 for the computation

of chance level, error bars, statistical tests, and significance level)

J Neurol

123



discriminated from elderly controls by oculomotor-based

features, implying that motor deficits are more apparent

than attention deficits for PD patients during free viewing.

In contrast, children with ADHD or FASD were best dis-

tinguished from controls by saliency-based features, sug-

gesting that the disorders affect their bottom-up attention.

The disorders also influence overall attention allocation in

every patient group, as group-based features showed dif-

ferentiability for clinical and control populations (see

Supplementary Discussion for our interpretations of the

particular features identified by our method and the cor-

responding neurological implications in each disorder). By

identifying features that are most discriminative among

populations, our technique provides new insights into the

nature of the different disorders and their interactions with

attentional control. The encouraging results obtained here

with diseases that lie on both ends of the age spectrum

suggest that the proposed approach may generalize to

additional disorders that affect attention and oculomotor

systems. The fact that our paradigm alleviates the need for

structured tasks is of great importance because the

approach can be applied to a wider range of populations,

including very young children who cannot understand the

instructions of experiments or individuals who have cog-

nitive impairment.

Our method robustly differentiates disorders that may

have overlapping behavioral phenotypes (ADHD and

FASD) but that nonetheless affect visual processing dif-

ferently. Overall, we suggest that with natural scene videos,

participants’ natural viewing behaviors are evoked, and

their eye movement patterns contain unique and revealing

information about their cognitive and motor processes. One

of the strengths of this study is that it is a general frame-

work that could identify such information in several patient

populations. In the future, with better understanding of

differences in cognitive control, attention, and oculomotor

systems of patients with these disorders, the experiment

could be further shortened by selecting stimuli that maxi-

mally evoke different eye movement patterns between

populations. This would also provide for a better under-

standing of novel behavioral differences that were revealed

by this study, such as the discovery of edge processing

differences in children with ADHD (see Supplementary

Discussion: Future Directions and Study Limitations). In

summary, our method provides for the first time an

objective, automated, high-throughput, time- and cost-

effective tool that can screen large populations and that,

through clustering, may further discover new disease sub-

types and assist making more precise medical diagnoses.

Future benefits of our method may include earlier and more

accurate identification of neurological disorders and

subtypes.

Acknowledgments We thank the National Science Foundation

(CRCNS grant number BCS-0827764), the Army Research Office

(grant nos. W911NF-08-1-0360 and W911NF-11-1-0046), the Human

Frontier Science Program (grant RGP0039/2005-C), and the Canadian

Institutes of Health Research (grant no. ELA 80227) for supporting

this study. IGMC was supported by a scholarship from the Canadian

Institutes for Health Research, and DPM was supported by the Can-

ada Research Chair program.

interval**
velocity
velocity*
duration**
duration**

O*
Txt*
Yo**
duration
M
velocity
Txt*
Txt**
Txt
Txt
CIOFM
M
CIOFMJ
J
interval
Txt
J
Txt**
C

(a)

(d)(c)

(b)

PD Elderly

Child ADHD FASD

42......1,41......1

1......1
subject index

subject index

normalized feature value

L1

L2

L1L2

L3

PD
Elderly

Child
ADHD
FASD

−1 0 1

...18, ...21, ...13...1

Fig. 4 Sub-features selected by SVM-RFE. a Normalized values for

the top five ranked sub-features selected by SVM-RFE for PD. Sub-

feature’s names were replaced by their corresponding core features

for simplicity (see Supplementary Fig. S1 for sub-feature names; e.g.,

two different sub-features of the velocity core feature were selected).

Feature values are standardized z-scores filtered by an arctangent

function. Rows represent the top five ranked sub-features. Columns
represent 38 participants, and the white vertical line separates the two

populations. b Normalized feature values for the top 19 ranked sub-

features selected by MSVM-RFE that best classified children with

ADHD, FASD, and control children. Note that most of the sub-

features discovered by the classifiers belonged to the saliency-based

feature type. Features and participants were re-arranged so that high

feature values were better clustered at the diagonal of the plot. c 14

PD and 24 elderly controls were separated into two different clusters

as revealed by linear discriminant analysis (LDA), which finds the

dimensions (L1 and L2) from the top five sub-features in (a) that best

distinguished the two groups. d Similarly, LDA found the three

dimensions (L1, L2, and L3) from the top 19 sub-features in (b) that

best differentiated every pair among 21 children with ADHD, 13

children with FASD, and 18 control children. The three child groups

are clearly separated in these dimensions, even though clusters in

(b) are less visually distinct. (ANOVA **p \ 0.01; ANOVA

*p \ 0.05)
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SUPPLEMENTARY METHODS 

Stimuli.  Sixty Scene-shuffle Videos (SV, approximately 30 seconds each) were used.  To create 

these, we filmed thirty 30-second continuous videos with a camcorder (Sony HandyCam DCR-HC211 

NTSC, 640 480 pixels, MPEG-1), set either: immobile on a tripod, to pan at a constant speed 

(6°/second ranging 120° back and forth horizontally), or to follow particular people at a university 

campus, a beach, a shopping district, a ski resort, and a desert (filmed videos).  We also recorded ten 

30-second continuous videos from television and video games (recorded videos).  The 30 filmed videos 

were randomly cut to clip snippets (2 – 4 seconds uniformly distributed), yielding a total of 291 

snippets, and reassembled to thirty 30-second SVs.  Each SV (approximately 30 seconds) was made 

from 9 to 11 snippets without any temporal gap in between, and there were no more than one snippet 

included from the same original video.  One set of 30 SVs were made from the filmed videos only.  

Another set of 30 SVs were made from the 10 recorded videos alone in the same way, but contained 

snippets of different lengths (0.5-2.5, 1-3, or 2-4 seconds).  Within this set, the 10 recorded videos were 

cut to snippets whose length uniformly distributed from 0.5 – 2.5 seconds (200 snippets) and 

reassembled to create the first group of 10 SVs.  A second group of 10 SVs was made with the same 10 

recorded videos, but they were cut to snippets whose length uniformly distributed from 1 – 3 seconds 

(139 snippets).  Similarly, a third group of 10 SVs had snippet lengths varied uniformly from 2 – 4 

seconds (93 snippets).  Our choice of snippet length (2 - 4 s) was within the range of our daily exposure 

to television and it enabled us to convey the relative quickness of new, novel and dynamic stimuli 

(television commercials have 1-2 seconds shot length (in 15- and 30-seconds commercials) in the 

United States [1], and Hollywood films have an average of 5 seconds shot length [2]). 

This snippet length was further motivated by our previous studies of saliency effects during free 

viewing in normal volunteers [3].  The study investigated the role of memory in guiding attention when 
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watching continuous, uncut videos versus watching video snippets of 1-3 seconds in length.  Perceptual 

memory is critical in guiding attention, and the authors suggested that perceptual memory of a scene 

could be quickly replaced by a new scene when the scene changes.  Immediately after the scene 

changes, observers rely more on their bottom-up attention guidance to deploy their attention because it 

is faster than top-down attention [4,5].  Then, the top-down control is expected to gradually take over 

after the scene is recognized.  Therefore, with longer snippet length, one may expect to observe 

stronger components of perceptual memory and top-down attention control in guiding attention, and we 

explicitly wanted to extract bottom-up measures. 

Participants.  This paper describes data collected from 21 children with ADHD, 13 children with 

FASD, 14 elderly PD participants, 18 control children, 18 young controls, and 24 elderly controls (see 

Diagnostic Criteria and Supplementary Table S1 for demographic data).  More participants were 

recruited (3 patient groups: 32 ADHD, 22 FASD, 15 PD; 3 healthy control groups: 24 children, 18 

young adults, 25 elderly) than those entered in the final analysis; an individual participant was excluded 

if he/she had too few (<10) valid eye traces (see Data Acquisition) or had received medication on the 

day of the experiment in the child participant groups (PD patients were not required to withhold 

medication).  A few of the youngest control children and children with ADHD were excluded to match 

age across the 3 child groups.  All participants had normal or corrected-to-normal vision, were 

compensated, and were naive to the purpose of the experiment. Young adult controls were not directly 

involved in classification.  They were recruited to (1) provide an independent gaze distribution to 

compute group-based, young-observer similarities and (2) perform saccade selection (see Saccades 

Deviated from Norm). 

Diagnostic Criteria.  Diagnosis of PD was established by one of the co-authors, Dr. Giovanni Pari, a 

neurologist specializing in movement disorders, based upon the Unified Parkinson’s Disease Rating 
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Scale.  Children with ADHD were diagnosed from licensed practitioner across Ontario, Canada.  

Diagnosis of ADHD was confirmed and co-morbidity assessed using DSM-IV criteria and the Conner 

Parent’s Rating Scales (CPRS) for children. Inclusion criteria for the ADHD pool included meeting 

DSM-IV criteria and criteria established from the CPRS.  ADHD subjects were excluded if we 

identified the following co-morbid signs: learning disabilities resulting in delayed advancement in 

school, Tourette’s syndrome, or bipolar disease. Children with FASD recruited in this study were 

previously assessed at diagnostic clinics in Ontario and in accordance with the Canadian Diagnostic 

guidelines [6].  The FASD group in the study contained children with one of three diagnoses (Fetal 

Alcohol Syndrome (FAS), partial FAS or Alcohol Related Neurodevelopmental Disorder (ARND) that 

fall under the FASD umbrella term. FAS requires (i) the presence of a characteristic pattern of 

craniofacial dysmorphologies (short palpebral fissures, smooth philtrum, thin upper lip, flattened 

midface); (ii) pre- and/or postnatal growth restriction; and (iii) structural and/or functional 

abnormalities of the CNS. A diagnosis of FAS can be made in the absence of confirmed maternal 

alcohol consumption. Partial FAS is the diagnosis when the presentation of the child includes some of 

the craniofacial and physical features, and structural and/or functional abnormalities of the CNS not 

explained by other causes, and confirmed maternal alcohol consumption during pregnancy. ARND is 

the diagnosis used when the child presents with structural and/or functional abnormalities of the CNS 

not explained by other causes, confirmed maternal alcohol consumption during pregnancy, but few or 

no physical features. 

Data Acquisition.  Forty SVs (30 from the filmed videos and 10 from the recorded videos) were 

played in a random order.  Participants were allowed to rest after every 10 clips (about 5 minutes).  A 

nine-point calibration was performed at the beginning of each session.  At the beginning of each SV, 

participants were required to fixate on a grey cross displayed at the center of the screen, but they could 

then look anywhere on the screen at the beginning of a snippet. Instantaneous gaze position was 
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tracked by a head-mounted EyeLink II (SR Research Ltd.) from the participants' right eye, and 5,066 

eye traces (137 participants × ≤40 SVs) were obtained.  Eye-movement traces from the SVs made of 

recorded videos were not used in the present study because of their different snippet lengths, and these 

clips were used to explore other aspects of eye-movements unrelated to this study.  The remaining 

3,763 eye traces (137 participants × ≤30 SVs from filmed videos) were further analyzed, and each gaze 

position was classified as fixation, saccade, blink/artifact, saccade during blink, smooth pursuit, and 

eye tracker drift/misclassification.  After excluding participants and discarding invalid eye traces 

(validity is described in Data Acquisition of Supplementary Methods), there were 108 participants with 

2,654 valid eye traces, and 147,489 saccades were obtained from 79,574 seconds of eye-movement 

recording (see Supplementary Table S1). 

An eye trace needed to meet the following criteria to be considered valid: (1) calibration error less than 

0.75°, (2) drift correction error less than 5° at the end of an eye trace, (3) gaze position outside a 1° 

inside border of the screen occurred less than 20% during a trace, (4) loss of gaze tracking occurred 

less than 10% during a trace, and (5) maximum fixation length of a single fixation was less than 6 

seconds; otherwise, the eye trace was removed (bad tracking quality).    

The major causes for excluding participants were high calibration and drift error rates (17 out of 20 

excluded participants) (Supplementary Table S1).  For the 3 child groups, it was harder to obtain 

accurate calibration, which resulted in higher exclusion rate compared to the older participants.   The 

child groups were less likely to complete the entire 20-minute-long experiment; however, as long as 

they had 5-minutes (10 eye traces) of valid data, they were not excluded.  Although children with 

FASD had lower completion rate compared to ADHD and control children, children with FASD were 

engaged with the task. Interestingly, children with ADHD were the most difficult as far as sitting still.  

The lower completion rate for children with FAS (a subtype of FASD) might result from microcephaly, 
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which in our experiment using a head-mounted eye-tracker (EYELINK II) posed problems, because it 

was too big and heavy for some children.  We believe that our method would perform even better by 

minimizing eye-tracking calibration issues, which experience has taught is possible when using newer 

eye-tracker models with children (e.g. EYELINK 1000 with remote setup instead of head-mounted 

EYELINK II).  Moreover, reducing the length of the experiment would improve the completion rate as 

well.  Finally, we were strict in our criteria for inclusion, and we rejected all clips that followed a bad 

calibration (10 eye traces).  One could also decrease rejection rate by performing calibration more 

often. 

Computing Saliency Maps from Stimuli.  The Itti and Koch saliency model [7–9] is a 

biologically-inspired computation model based on feature integration theory [10] and the primate visual 

system.  The model successfully explains human performance in visual search [8], and has been widely 

used in predicting human gaze in both artificial and natural scene stimuli.  The model computes 

saliency maps for several low-level features, or combination of features, for every video frame.  These 

saliency maps are topographic maps of conspicuity which highlight locations that may attract attention 

in a stimulus-driven manner.  It has been shown that several regions in the brain resemble a saliency 

map, such as the superior colliculus [11], frontal eye fields [12], posterior parietal cortex [13], and 

pulvinar [14].  

The saliency model first applied a linear filter of a feature on a video frame at several scales to generate 

multi-scale (i.e., fine to coarse) filtered maps.  Fine filtered maps were then subtracted from coarse 

filtered maps to simulate center-surround operations in human vision and to produce feature maps.  

Next, these multi-scale feature maps were normalized and combined together to generate conspicuity 

maps in a manner that favors feature maps with sparse peak responses.  Finally, conspicuity maps of 

different features were linearly summed together to form a saliency map [7].  A brief description of 
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each feature and the corresponding citation are provided as follows: 

Color contrast [7]  

Color red ( ), green ( ), and blue ( ) from a video frame were normalized by intensity  (see 

Intensity contrast) to decouple hue from intensity.  Next, four filters of different color were 

created: red ( ), green ( ), blue ( ), and 

yellow ( ). 

Intensity contrast [7]  

An intensity filter was calculated as . 

Oriented edges [7]  

Gabor filters of 4 different orientations ( ) were generated to filter video 

frames. 

Temporal flicker [9]  

Flicker ( ) was the absolute difference in Intensity between the current frame and the previous 

frame ( ). 

Motion contrast [9]  

Motion contrast was computed by the Reichardt model [15].  For each scale, the motion filter 

, where  is the point product,  is the Gabor filter 

of orientation , and  is a spatially-shifted difference between two frames that is orthogonal 

to .   



7 
 

Line junctions including corners and edge crossings [16]  

Junction filters were built on top of oriented Gabor filters.  Four types of junction filters were 

created: L-junction, T-junction, X-junction, and E-junction.  The L-junction filter responds to edge 

corners; the T-junction filter is sensitive to two perpendicular edges that only one edge ends at the 

intersection; similarly, the X-junction filter responds to two perpendicular edges that cross each 

other; the E-junction filter responds at the endpoint of an edge. 

Intensity variance [16] 

Local intensity variance was computed over 16 16 image patches as the following equation:  

, where  is the size of the patch, and  is the average intensity 

value of the image patch. 

Texture contrast [16]  

Texture contrast was computed as the spatial correlation between a 16 16 image patch and its 

neighboring patches within a specified radius (16 pixels, where 19 pixels equaled 1 degree visual 

angle).   

, where  is the number of patches within the radius, and 

, where X and Y are two image patches and E 

is the expected value.  Therefore, high correlation indicates low texture contrast; low correlation 

indicates high texture contrast. 
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The choice of which features were included in the overall saliency maps was mostly due to history of 

model development.  In the Itti and Koch saliency model developed in 1998 [7], there were only 

features C, I, and O in the model to analyze static images, but later on F and M [9] were added to 

analyze videos.  Since then we have been using CIOFM as the standard measure of “salience.”  

Recently, we added line junctions as a new feature [16].  That is why we here used both CIOFM and 

CIOFMJ.  Features C, I, O, F, M, and J were implemented with an attempt to mimic visual processing 

of primates.  However, texture and variance were image statistics commonly used by computer vision 

researchers to describe images.  As C, I, O, F, M, and J were derived from a different route than 

variance and texture, we have not attempted to put all of them together into a single map. 

Saccades after Scene Onset.  Hypothesizing that some differences between clinical populations 

are more governed by “stimulus-driven” processes, we attempted to find the saccades that were more 

likely driven by bottom-up processes.  We designed videos that changed scenes every 2 – 4 seconds 

because we assumed that the onset of a new scene would interrupt observers’ top-down expectations of 

what might occur, and the observers may rely more on their bottom-up attention mechanism to allocate 

their attention [17].  Therefore, we considered the first 3 saccades individually as well as all the 

saccades combined to compare populations.   

Saccades deviated from Norm.  To reveal differences between groups, we selected saccades that 

were deviated from the gaze of “young adult controls”, the 'norm'.  Examining these deviated saccades 

may be more revealing in whether one group is more easily attracted to salient features than the others.  

Because if all saccades were included, differences between the groups may be diluted, which may not 

only decrease the performance of classification, but also hinder the identification of any underlying 

differences in attention mechanisms across groups.  Hence, a spatiotemporal map of gaze distribution 

was first computed from the scanpaths of young controls.  Next, for each participant (except young 
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adult controls), we discarded half of his/her saccades that were better predicted by the gaze distribution 

of young adult controls (see next paragraph for predictability index), and analyzed only the other half 

of the saccades that were more deviated.  Note that this selection did not involve any of the saliency-

based features, saccade dynamics, nor comparing the clinical groups against each other, but was based 

solely on eliminating those saccades which were most predictable given the young adult controls. Then 

we computed values of saliency-based and group-based features.  

The predictability index was determined in the following manner.  First, a spatiotemporal map of gaze 

distribution was computed from the scanpaths of young adult controls.  Second, we extracted a map 

value at the saccade endpoint when a saccade was initiated and compared that to 100 randomly values 

sampled in the same map.  Then, the predictability of this saccade was determined by the rank of the 

map value at saccade endpoint among the 100 randomly sampled map values.  If the saccade endpoint 

ranked No. 1 (had the highest map value), it meant that this saccade can be easily predicted from the 

young adult sample.  On the contrary, if the saccade endpoint ranked No. 101 (had the lowest map 

value), then this saccade was the most difficult to predict.  This procedure was done on all saccades. 

Finally, we sorted all saccades of an observer by their ease of prediction (from the easiest to the most 

difficult), discarded the first half of saccades that were easier to predict, and analyzed only the other 

half that was more difficult to predict. 

Computing Features.  Saliency-based and group-based features were titrated by ordinal dominance 

analysis [18].  Both types of features reflected the correlations/similarities between gaze and maps 

(saliency maps for saliency-based features; gaze distribution maps of control young adults for group-

based features).  To compute the correlation, a map value at saccade endpoint (max value in a 2.5° 

circular window) was obtained when an observer initiated a saccade (Fig. 1c).  One hundred map 

values were also randomly sampled from the same map as a baseline for comparison.  These map 
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values were normalized to values from 0 to 1 relative to the minimum and maximum values of the map.  

With all the saccades, an observer histogram and a random histogram (bin size was 0.1) were generated 

from the normalized map values (Fig. 1d).  The differences between the two histograms were 

summarized as an ordinal dominance curve, which is the correlation between the map and gaze.   To 

create an ordinal dominance curve, we incremented a threshold from 0 to 1 and calculated the 

percentage of sampled map values in each histogram that were above the threshold (“hits”).  The 

vertical axis of the rotated ordinal dominance curve was the percentage of "observer hits", and the 

horizontal axis was the percentage of "random hits".  Thus, calculation of the area under the curve 

(AUC) shows the predictability of the maps based on observers' saccade endpoints.  AUC values 

obtained from different feature maps typically ranged between chance (0.5) and an upper bound 

computed from inter-observer gaze similarity (here, around 0.88 among young adults), depending on 

how predictive the feature of interest was of the observer's gaze.  In addition to the measure of AUC, 

the histograms provided the frequency that an observer looked at locations of low-/medium-/high map 

values. 

An AUC of 0.5 means the maps predicted saccade endpoint no better than random.  An AUC above 0.5 

indicates the maps predict saccade endpoints above chance.  If we assume a model cannot predict a 

human's gaze better than another group of human, then we can use inter-observer similarity as the 

upper bound of AUC.  To do this, we took one person out of the group of control young adults, and 

utilized the spatiotemporal gaze distribution of the remaining young adults to predict his gaze.  Next, an 

AUC value was obtained showing the similarity between his gaze and the rest of the group.  We did 

this for every individual in the group of control young adults, and the averaged AUC, 0.88, was 

obtained. 

The group-based features were derived in the same fashion as the saliency-based features.  The only 
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difference was how maps were generated.  For saliency-based features, maps were computed by several 

saliency models of different features, but maps for group-based features were generated by the 

spatiotemporal gaze distribution of the control young adults.  To generate the gaze distributions, the 

instantaneous eye position of each young adult control was represented as a Gaussian blob  (standard 

deviation = 2°), and combined into a single probability density map across all young adult controls.  

Because it took roughly 80 ms from planning to initiating a saccade, the timing of instantaneous eye 

positions was shifted earlier so that the gaze distribution was predictive to eye positions of other 

participants.  Once the gaze distribution maps were generated, the group-based features were derived in 

the same way as the saliency-based features.  The low, medium, and high salience bins for the saliency-

based features correspond to low, medium, and high inter-observer similarity bins for the group-based 

features.   

Classification and Feature Selection.  The classification and feature selection workflow was 

inspired by microarray analysis, which has two goals:  (1) classifying patients from controls by gene 

expression in the microarray, and (2) identifying genes relevant to the disease.  One gene (similarly to 

one of our core features, e.g., color or motion) can express several different mRNA/proteins (similar to 

our sub-features, e.g., color contrast at the target of the first saccade) by alternative splicing.  While 

microarray analysis usually has thousands of genes to be examined, we had 224 oculomotor-based, 

saliency-based and group-based sub-features.  

For feature selection of multiple classes, we used MSVM-RFE [19], an extension of SVM-RFE [20] 

for feature selection of multiple classes.   Note that MSVM-RFE ranked features that were most useful 

in differentiating all populations, rather than a pair of populations.  Therefore, we looked at the weights 

of the features when the overall classifier reached maximum classification accuracy.  However, even 

with using the same set of features, some features might be more important to classify a pair of clinical 
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groups, e.g. ADHD vs. FASD, but other features might be more important to classify another pair of 

populations, e.g. controls vs. children with ADHD.  Hence, features with larger squared weight were 

considered more important in differentiating a pair of clinical groups.  In any case, this ranking of 

features ranked features that were most useful in differentiating all groups, rather than any pair of 

groups.   

Thirty iterations of a repeated leave-one-out bootstrap [21] were used to test the performance of each 

classifier that used a particular selected subset of features. The average accuracy is reported (with 

significant deviations quantified using one-tailed paired t-tests, df=29).  Chance level was computed by 

training a classifier with the same bootstrap structure but with randomly permuted class labels. Because 

classification accuracy varied with the number of features in the process of RFE, we tested the 

performance of classifiers by comparing the maximum accuracy obtained by the classifier trained with 

true labels, to that obtained by the classifier trained with randomly permuted labels (chance level), 

regardless of how many features each classifier used to obtain maximum accuracy.  In addition, to test 

whether a core feature was different between populations, all its sub-features were recruited to build a 

classifier, and we tested whether it performed better than the one with permuted class labels, as above. 

Before training the classifier, features were normalized, and outliers of each feature were 

identified before feature values were standardized.  If a feature value was outside the upper or lower 

quartile by greater than 1.5 times the inter-quartile difference, it was considered as an outlier.  Then, 

the mean and standard deviation of that feature was calculated excluding the outliers.  All the feature 

values were subtracted from the mean and divided by the standard deviation.  Finally, standardized 

feature values were filtered by an arctangent function to diminish the influence of the outliers.  

Direction of Effect.  Once a feature (e.g. a core feature, or a feature type) was found discriminative 

by the classifiers, we examined the direction of differences between patients and controls by comparing 
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between populations the averages of the sub-features of the discriminative feature (e.g., averages of the 

12 saccade amplitude sub-features).  Note that these sub-features can be averaged because they were 

standardized into the same range.  Next, the averages between two populations were tested (two-sample 

t-test, p<0.01).  If they were significantly different, then the direction was reported. 

Properties of Support Vector Machine – Recursive Feature Elimination (SVM-RFE).   One 

characteristic of SVM-RFE is that it does not select redundant features.  Mutual information between 

features is taken into account by the nature of SVM.  Consider, for instance, that saccade duration, 

amplitude and peak velocity are highly correlated features (following the main sequence) that all 

exhibit significant population differences (e.g. by t-test).  If features were selected based on individual 

significance values (e.g. p-value), then all 3 features would be selected.  However, because they are 

highly correlated, which means highly redundant, having all features does not add much in 

differentiating populations. Consequently, highly correlated features will both receive smaller weights 

in SVM, with the one that is least noisy receiving slightly higher weight (correlated features might 

exhibit different noise levels as the correlation between saccade duration, amplitude and peak velocity 

may not be perfect because of, say, curved saccade trajectories or measurement noise).  Therefore, the 

noisier ones will be eliminated first during RFE, and the other ones will remain in subsequent steps 

with other complementary features to maximize the performance of the classifier. (For more details on 

how SVM works, interested readers are referred to…)
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SUPPLEMENTARY RESULTS 

Classifying PD and Controls.  Classification accuracy reached 89.6% with only 5 features in the 

process of feature selection (SVM-RFE).  The classification accuracy along the process is plotted in 

Fig. S2a.  While using all 224 features, the classifier performed significantly but slightly better than 

chance. This was probably due to over-fitting because there were more features than participants; 

therefore, the classifier performed well in training, but poorly in testing.   Nevertheless, as the process 

of feature elimination went on, the classification accuracy started to increase, achieving peak 

performance (89.6% accuracy) with 5 features (out of 224).  Subsequently, when more features were 

eliminated, the accuracy decreased due to too few features.  

Classifying ADHD, FASD and Control Children.   The classification accuracy throughout 

MSVM-RFE is shown in Fig. S2b.  The overall classifier (ADHD vs FASD vs control children) 

reached the highest accuracy (77.3%) with 19 features.  With these 19 features, the average 2-way 

classification accuracy for ADHD vs. control children was 83.3% (chance 53.8%); FASD vs. control 

children was 79.2% (chance 58.1%); and ADHD vs. FASD was 90.4% (chance 61.8%). When using all 

the features, children with ADHD or FASD were harder to differentiate in comparison to ADHD vs 

control and FASD vs control.  Nevertheless, as the feature selection processes went on and critical 

features were identified, all three classifiers' performance improved, especially the classifier for 

children with ADHD vs FASD.  
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SUPPLEMENTARY DISCUSSION OF NEUROLOGICAL 

IMPLICATIONS 

Hypotheses and Choice of Feature Categories. We posited that the commonly observed 

deficits in attention allocation and oculomotor function are based on pathological neural substrates that 

also govern how a person naturally directs attention in an everyday environment.  We predicted PD 

patients would show deficient oculomotor control (oculomotor-based features), weakened top-down 

control (group-based features), and stronger bottom-up guidance (saliency-based features) in natural 

viewing.  Because PD patients have been shown to exhibit shorter and slower saccades to pre-defined 

targets [22], we expected to observe similar oculomotor deficits over our video stimuli even when there 

is no pre-defined target, and hence our classifiers would reveal significant differences in oculomotor-

based features. PD also affects the frontal lobe and other parts of the attention network, as mentioned 

above, so that they appear more stimulus-driven due to weakened top-down control; hence we expected 

to see increased guidance of gaze towards salient stimuli (saliency-based features) as well as lowered 

similarities of gaze distributions between PD and controls (group-based features).  With respect to 

ADHD, as children with ADHD are primarily deficient in frontal cortical processing, we expected that 

their weakened top-down control would give rise to more saliency-driven saccades (saliency-based 

features), and thus they would attend to different locations from controls (group-based features).  

Although ADHD affects the basal ganglia as well, we did not predict that oculomotor-based features 

would be different because previous literature shows inconsistent results in motor deficits.  Finally, as 

FASD influences the brain globally, we anticipated impairments in both oculomotor function and 

attention control.  First, we predicted slower saccades and longer inter-saccade intervals (oculomotor-

based features).  Second, due to their frontal impairments possibly affecting top-down control, we 

expected lower spatiotemporal correlation with young adult controls (group-based features).  We also 
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predicted differences, though initially not in any particular direction, in bottom-up attention (saliency-

based features): while weakened top-down attention control could give rise to higher reliance on 

bottom-up stimuli, deficits in visual sensory processing could decrease bottom-up attention process.   

We constructed classifiers with each feature type to test our hypotheses.  Furthermore, to derive more 

precise conclusions than the previous studies which had motivated our fairly coarse initial set of 

hypotheses, we quantified differences in individual component features for each feature type. For 

example, saccade amplitude and peak velocity features were considered within the oculomotor-based 

feature type, and color contrast, oriented edges, and motion features were considered within the 

saliency-based feature type.  In summary, the rich information exhibited in natural scenes and the 

corresponding eye traces enabled us to quantify the differences in several aspects of oculomotor 

functions and attention allocation in one simple paradigm, and we utilized these differences between 

patients and controls to build a classifier that can reliably identify individual participants in different 

clinical groups.   

Parkinson's Disease (PD).  As predicted, PD patients demonstrated deficits in saccade dynamics 

(oculomotor-based features: e.g., shorter duration and smaller amplitude), which suggests disruptions 

in cortical-subcortical pathways as well as brainstem nuclei (as described in the following paragraphs).  

Attention allocation (group-based features) of PD patients was different from elderly controls (mixed 

directions), implying impairment in attention networks involving the frontal lobe, parietal cortex and 

basal ganglia.  However, counter to our expectation that lower top-down control may give rise to higher 

reliance on salience, bottom-up attention of PD patients seemed to be unaffected as saliency-based 

features showed no differences (except texture contrast) between the two populations.  

During natural viewing, PD patients demonstrated motor deficits as their saccades were of shorter 

amplitude and duration.  Previous studies have shown that voluntary saccades of PD patients are 
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smaller in amplitude and slower toward pre-determined targets [22–30], while the impairment is less 

pronounced when their saccades are visually guided [24,26,31,32].  This motor deficit has been 

primarily attributed to dysfunction in the basal ganglia [26,33–35], which is heavily involved in 

voluntary saccade control [36].  Smaller saccade amplitude data of the PD patients was not caused by 

‘square wave jerks’ [37–39] because only a few saccades were categorized as square wave jerks during 

free viewing.  In addition to motor deficits, other factors could contribute to the smaller saccades in PD 

patients. PD patients have been shown to have reduced 'useful fields of view' (i.e., attentional 

processing range) [40] so that they may not have processed peripheral information as well as control 

subjects, and therefore their range of the next saccade location is limited. We also observed slightly 

longer inter-saccade intervals (two-sample t-test, t(36)=1.72, p=0.09) in PD patients, which could be 

due to slower visual information processing [41,42] and/or slower voluntary saccade initiation [22,43], 

which is shown to correlate with reduced frontal cortical activation in PD [44].   

Our data suggests that top-down attentional control, but not bottom-up responding, is selectively 

impaired in PD patients, because the classifiers showed differences (mixed directions) in group-based 

features, but not in saliency-based features.  This finding is consistent with earlier studies that PD 

patients are impaired in executive functions including top-down attention, and these deficits have been 

attributed to pathological changes in the striatum, and later, in frontal cortex [45].  When these deficits 

in top-down attention are considered in the context of task performance, PD and control participants 

differed behaviorally in tasks that measure response times to visual targets under manipulation of 

attention direction; for instance, PD patients can show enhanced attentional ‘capture’ effects to a visual 

stimulus, resulting in faster processing of subsequent targets that appear at the same location [46,47].  

This behavior points to intact bottom-up processing. At the same time, PD patients can show impaired 

maintenance of attention to specific locations [48], and stronger ‘inhibition of return’ (an initial cue 

slows responding to targets that appear later at the same location) than controls for advanced PD 
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patients [49].  When one considers voluntary saccade deficits in PD, combined with increased capture 

of attention to transient cues, but decreased maintenance of attention to those locations, a common 

trend of “hyper-reflexivity” in PD in visual tasks emerges, predicting that we should have observed 

differences in saliency-based features.  However, hyper-reflexivity (measured in many cases by pro-

saccade reaction times) was not consistently reported across studies in a recent meta-analysis [50].  

This study revealed that the disparities may relate, in part, to differences in target eccentricity: PD 

patients being faster than controls for small saccades (< 7 degrees) but slower for larger ones, which 

might be caused by interactions between retinal center-surround inhibition and inhibition on the 

superior colliculus by the basal ganglia (see Chambers & Prescott [50] for details).  One might expect 

that hyper-reflexivity to abrupt salient scene onset might alter the overall saccade dynamics in PD in 

the current experiment (independent of specific saliency-based features), but PD patients were not any 

faster at initiating a saccade following scene change even though the average amplitude was less than 7 

degrees.  Therefore, it is difficult to take a hyper-reflexivity interpretation derived from cue-target tasks 

and apply it to the current dynamic and free viewing environment, especially when one considers that 

basic prosaccades are not always produced at faster latencies.   

Nevertheless, our results are consistent with studies that show PD patients have little impairment in 

reflexive prosaccades, and it may be interpreted as unimpaired bottom-up processing.   Reflexive 

prosaccades can be generated when incoming sensory information directly inputs to saccade motor 

cells in the superior colliculus (thus bypassing frontal cortex and basal ganglia circuits) [51]. Clinically, 

it is also interesting that “freezing symptoms” (i.e, hypokinetic movements) can be ameliorated by 

providing visual cues, suggesting that bottom-up processing may not only be less impaired, but can be 

useful to guide voluntary behavior [52]. The neuronal implications of these findings together point to a 

pathology in the basal ganglia that affects circuits important to voluntary movement and voluntary 

attentional orienting: those that include the premotor, prefrontal and motor cortices and basal ganglia 
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circuits. In contrast, bottom-up signals may be utilized by neural networks that are less dependent on 

these brain regions. 

In summary, contrary to our initial prediction, bottom-up attention of PD patients seemed to be 

unaffected because saliency-based features showed no difference (except intensity variance and texture 

contrast) compared to elderly controls.  While we expected PD patients to show higher correlation 

between gaze and visual salience (as described above), PD also impairs visual salience computation by 

damaging retinal, LGN and V1 processing [53,54] and reducing pattern contrast and flicker sensitivity 

[55,56].  Therefore, the effect of high correlation to visual salience may have been offset by low 

contrast sensitivity.  We must also acknowledge the potential effect of medication on our results.  First, 

Bodis-Wollner and colleagues [56] showed that PD patients displayed better contrast and flicker 

sensitivity when they were ‘on’ dopamine medication compared to ‘off’ medication, suggesting that PD 

patients will regain the sensitivity to visual salience to a certain degree on-meds.  Second, L-DOPA 

medication (taken by most PD patients in our study) decreases error rates in the anti-saccade task and 

increases reaction time in the pro-saccade task [57], implying better top-down control.  Moreover, L-

DOPA medication might also improve flexibility in attention shifting, but have had less of an effect on 

maintaining attention [58], which perhaps impacts classifier performance when new scenes demanded 

shifting attention.  The exact effects of medication on attentional selection during free viewing are 

unclear without performing an on/off medication experiment.  Nevertheless, our results show that even 

for patients who were on medication, oculomotor-based and group-based features can differentiate PD 

from control behavior – here quantified for the first time in a natural viewing setting – and thus 

potential biomarkers may be revealed in free-viewing conditions. 

ADHD.  As predicted, no motor deficit was observed in children with ADHD (oculomotor-based 

features).  Children with ADHD showed slightly lower similarity to young adults in gaze distribution 
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than control children (group-based features), but it did not approach significance (two-sample t-test, 

t(37)=1.04, p=0.31).   

Children with ADHD also showed differences in (mixed directions) correlation to salience as their 

bottom-up attention was affected.  The best feature in differentiating children with ADHD from 

controls was texture processing.  This is interesting because children with ADHD have deficits in 

sensory processing and modulation [59–63], which influences their early development and task 

performance in daily life [64].  For example, they are responsive to certain food and tactile textures but 

they will try to avoid them (sensory avoidance) [61].  However, they can be very unresponsive to some 

sensory stimuli as well, so that they keep seeking more sensory experience (sensory seeking) [64].  Our 

results suggest that this sensitivity to textures might not be limited to the tactile domain. These children 

appear to be sensitive to texture salience (contrast in texture) because they made saccades more often to 

locations of high or low texture salience values, but not to medium values.  In spite of this overall 

sensitivity, the actual behavior could result from both sensory seeking and sensory avoidance.  For 

example, high texture stimuli might initially capture their attention, but later cognitive processes may 

initiate either salience-seeking or salience-avoiding behavior, similar to what is seen in the tactile 

domain.  The converse explanation (e.g., initial seeking or avoidance behavior, followed by attentional 

capture) could be applied as well, when one considers locations of low texture salience, however this is 

purely speculative.  Nevertheless, we have shown that children with ADHD appear to be sensitive to 

texture salience, because they made saccades to locations of medium salience significantly less often 

than control children.   

Some other saliency-based features were found discriminative between children with ADHD and 

control children with mixed directions of the effects.  We believe that it was the profile of these 

features, rather than the direction, that differentiated the groups, indicating the disorder impacts natural 
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viewing behavior in a more complicated manner than expected.  For example, ADHD impairs response 

inhibition [65] so that children with ADHD may be more stimulus-driven; however, ADHD also delays 

development [66] and weakens early visual processing (e.g., color contrast sensitivity [67,68]), and 

thus discounts their stimulus-driven behavior during natural viewing.  Nevertheless, the classifier still 

revealed several saliency-based features that were discriminative between children with ADHD and 

controls, such as color contrast and oriented edges.  Oriented edges are important to the perceptual 

construction of the contour and shape of objects.  Edge detection is achieved in the retina [69] and the 

visual cortex, and is related to visual acuity.  However, children with ADHD can show reduced visual 

acuity.  This deficit can be improved by psycho-stimulants that increase dopamine-levels [70], and it 

has been shown with fMRI that dopaminergic network activity is different in the brains of children with 

ADHD and control children [71] indicating that it is possible that dopaminergic changes in ADHD may 

impact edge detection, just as retinal dopamine depletion has been suggested to impact contrast 

sensitivity in PD [72]. However, these links drawn between these two disorders, dopamine, and retinal 

processing are speculative. We also point out that the classifier showed that edge detection was 

discriminative between controls and children with ADHD: the direction of effect did not reveal whether 

children with ADHD were more or less sensitive to edges, so it is difficult to speculate on the 

underlying mechanisms.  To our knowledge, there are no previous studies investigating how ADHD 

might affect the processing of oriented edges, and thus the discovery and selection of the oriented edge 

feature by the classifier points to a novel finding for future investigation.   

FASD.  As expected, because children with FASD suffer from a global impact of alcohol on brain 

development, they showed significant differences (p<0.01) in correlation to salience (mixed directions, 

saliency-based features) as well as similarity in gaze distribution to young controls (slightly lower 

similarity (p = 0.15), group-based features).  Deficits in visual processing are consistently observed in 

subjects with FASD [73,74].  These deficits could reflect problems with attention and/or processing of 
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sensory information (they do not appear to be due to problems with motor control), which may result in 

different correlation to salience observed in this study.  Furthermore, deficits in top-down control can 

further interrupt bottom-up process as showed in pro-saccade tasks that children with FASD make 

more direction errors than controls in automatic reflexive saccade [75,76].  Among saliency-based 

features, line junction, overall salience, and texture contrast were found discriminative between 

children with FASD and control children, and children with FASD also showed higher correlation to 

texture contrast (p<0.01).  We are not aware of any research that has attempted to break down the 

deficits in visual processing in children with FASD based on different domains of salient features in a 

visual display, but structural injury to the brain in children with FASD may lead to some of the 

observed deficits.  Children with FASD also exhibited lower similarity to young adults’ gaze 

distribution, as predicted, which is consistent with previous literature showing deficits in the frontal 

lobe for children with FASD [77]. 

Microcephaly is common in individuals with full FAS [78], and structural abnormalities have been 

observed in FASD that correlate to behavioral deficits (see review [79]). Because these characteristics 

are more prominently associated with FASD than ADHD, it is possible that there could be structurally 

based impacts on visual and perceptual processes that could explain some of the differences between 

the groups.  In particular, structural dysmorphology and decreased brain size in FASD has been 

observed in the parietal and temporal lobes [80,81], which should be expected to influence bottom-up 

attention to visual objects. However, it has also been observed that despite smaller overall brain size, 

there can be increased grey matter density (with decreased white matter density) in FASD in superior-

posterior temporal and inferior parietal regions, though mostly laterally in the perisylvian region [82]. 

A recent study also suggests that there is reduced inter-hemispheric connectivity through the corpus 

callosum between parietal cortices in FASD (measured by diffusion tensor imaging, and inter-

hemispheric correlations in fMRI BOLD signal) [83]. In any case, these studies suggest that both dorsal 
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and ventral stream processes guiding visuomotor behavior might be affected in some way if these 

structural abnormalities do impact visual processing. Functionally, however, little research examining 

dysfunction in visual processing in FASD in these regions has been done, as most studies of 

dysfunction in fronto-parietal and fronto-temporal networks are related to primarily cognitive tasks 

(e.g., working memory [79], arithmetic operations [84]).  

ADHD versus FASD.  It is important to understand the differences between ADHD and FASD 

because they can present with similar symptoms clinically, but have different underlying pathologies 

and treatments.  However, this study did not reveal differences between ADHD and FASD in each 

feature type or core feature alone, but we will summarize a few studies that have directly compared 

patients with ADHD or FASD in the context of attentional control.  

Coles and colleagues [85] measured the performance of children with ADHD or FASD on four factors 

of attentional control: sustaining, focusing, encoding (sequential memory and learning), and shifting 

(flexibility and executive function), and each factor was associated with different brain regions (e.g., 

sustain: the prefrontal cortex, parietal cortex; shift: the frontal eye field, posterior parietal cortex).  

They found that children with ADHD suffered more than children with FASD in sustaining and 

focusing attention, and children with FASD performed worse than children with ADHD in encoding 

and shifting attention.  We mainly discuss the shifting attention factor, because our saliency-based and 

group-based features were measured only when observers make an overt attention shift. 

In shifting of attention, consistent with Coles et al. [85], children with FASD or ADHD exhibit 

different patterns of deficits in structured pro/anti-saccade tasks, suggesting different pathological 

effects on oculomotor behavior [65,75,76].  In the pro-saccade task, children with FASD had longer 

reaction times and made more directional errors than both children with ADHD and controls, implying 

that children with FASD are more deficient in orienting than children with ADHD.  This would suggest 
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that alcohol damaged the posterior parietal cortex, frontal cortex, and basal ganglia [76].  In the anti-

saccade task, children with ADHD or FASD made more directional errors compared to controls, 

implying similar level of difficulty in inhibiting automatic response for both groups.  Interestingly, the 

ability to inhibit impulsive responses may depend on different sub-types and event rate.  In a Go/No-

Go task, Kooristra et al. [86] reported that children of the ADHD-combined type made more mistakes 

in the slow-paced condition, and children with FASD or ADHD-inattentive type performed worse in 

the fast-paced condition.   

However, other studies that compared ADHD and FASD directly have arrived at different conclusions, 

especially when patients of different subtypes or severity were recruited, or different outcome measures 

were used.  Taking sustaining attention for example, while Coles et al. [85] reported children with 

ADHD were more deficient than children with FASD, other studies found no differences between 

ADHD and FASD [86,87].  Moreover, Kooistra et al. [88] looked into the ADHD inattentive-type, and 

found that their performance in a flanker task was similar to that of controls, implying no deficits in 

their sustaining attention.   

Taken together, studies have revealed through attentional processing and response control that FASD 

and ADHD are difficult to segregate based on an individual parameter. Both can point to deficits in 

executive control over responding, as well as attentional maintenance. Thus, it fits with why, we found 

null results with regards to the differentiability of each feature type, or core feature alone, between 

ADHD and FASD.  Nevertheless, this could potentially be due to the heterogeneity of the patients 

recruited in this study.  Future studies could investigate a greater number of people with each subtype 

to better identify unique attention profiles. 

Implications of Mixed Directions of Effects.  Lack of uniformity in saliency and group-based features 

may reflect greater variability of responses that are typical for patient populations. Indeed, PD, ADHD, 
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and FASD (for anti-saccades only), have shown greater variability in saccade reaction times [22,65,75].  

Other laboratories have also characterized response variability across other behaviors in ADHD using 

“sigma” and “tau” parameters, which relate to increased variability in ADHD in the normally 

distributed populations of reaction times (sigma) as well as increased skew towards a higher occurrence 

of longer-latency reaction times (tau) [89,90]. This tau parameter may be particularly useful as a 

primary characteristic of a neurological disorder, because it indicates lapses in attention.  

However, it is still unknown what causes the general variability across responses, and in particular, 

what are the specific neuronal reasons for why this variability might be increased in a neurological 

condition. For example, is it that sensory information is sometimes not input into the system optimally 

on some trials? Or, is it that sensory information is sometimes not accessed efficiently by motor 

networks important for response generation? We can only speculate that because ADHD and PD 

impact frontal cortex and basal ganglia in particular, that it is related to this latter case (sensory 

information not accessed by motor networks). For FASD, it could represent a more widespread 

dysfunction in the brain. 

Future Directions and Study Limitations. Because ADHD and FASD (and to a lesser extent PD) 

have very broad clinical spectra (e.g., subtypes, disease severity), our limited number of participants 

might not have covered the entire extent of the neurobehavioral profile. Thus, the usefulness of this 

approach for screening of early stage and yet undiagnosed patients remains to be proven.  This likely 

will require a large-scale, multi-year screening study with many more participants.  Our goal is to 

eventually run such study.  Nevertheless, we believe that we have achieved an exciting proof of 

concept for our methodology here. Second, different medications taken by individuals further 

complicated the variability in our samples.  We attempted to minimize this confound in the child 

populations (children in the ADHD and FASD groups did not take stimulant medication on the day of 
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experiment); however, whether the effects of medication taken in earlier days were completely 'washed 

out' is unclear.  PD patients were not required to withhold their medications, as we, and others, have 

previously shown that medicated PD patients continue to display deficits in visual processing and 

saccade generation [22,43,91].  Nevertheless, a stricter off-medication condition should be considered 

in the future.  Third, while our short video set was sufficient to reliably classify patient and control 

groups, the limited content may not identify all the features that are discriminative between the groups.  

It is possible that other features are discriminative with a different stimulus set or with a given viewing 

instruction. Finally, the comorbidity of the disorders made classification accuracy a challenge. Children 

with ADHD or FASD were often co-morbid with other disorders (see Supplementary Table S1).  A 

majority of FASD children included in our analysis had a co-morbid diagnosis of ADHD, although 

they were still shown to be different from children with ADHD only.  This is potentially very 

important, since one of the best practical applications of a successful classifier to different patient 

groups is one that can perform above chance when the data from two populations display significant 

overlapping symptoms. Therefore, it is apparent that the classification method utilized in this study 

demonstrates the robustness of its application in differentiating disorders that may have overlapping 

behavioral phenotypes, but that nonetheless affect visual processing differently.   

Machine learning techniques could further support a better understanding of subtypes in two ways: 

supervised and unsupervised learning.  For supervised learning, the method can give each subtype a 

class label and train a classifier.  When the classifier attempts to differentiate each subtype, the features 

that are important to identify each subtype will emerge, and thus the oculomotor and attention profile 

of each subtype is revealed.  Similarly, if there are no categorical labels, but a continuous scale such as 

a severity spectrum, we could learn how the profile changes across the severity through regression.  For 

unsupervised learning, clustering methods can be applied to see whether the discovered clusters 

correspond to the known sub-types.  If there are more clusters than number of subtypes, then 
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researchers can investigate whether a known subtype needs to be further divided.  If there are fewer 

clusters than the number of subtypes, then investigators can see which known subtypes show no 

differences in their oculomotor and attention profiles.   

Our method could assist confirmatory diagnoses.  Currently, confirmatory diagnoses rarely depend on a 

single behavioral measure, especially for differential diagnoses.  Nevertheless, our approach has the 

potential to be used as a large-scale screening tool, and then trigger further medical examinations and 

diagnosis.  Furthermore, our objective, quantitative results could be integrated into expert systems that 

assist doctors to evaluate participants and to diagnose disorders. 
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Supplementary Table S1.  Demographric data of participants in analysis (after removing ineligible participants). ODD, 

Oppositional Defiant Disorder; DD, Developmental Delay; LD, Learning Disability; NS, Noonan's Syndrome; MMR, Mild 

Mental Retardation. Notes: 1 Participants were not required to finish the entire 20-minute-long experiment in order to be 

included.  2For the 2 child clinical populations, 'None' meant the child had never taken medicine for the disorder. If they 

took medicine regularly but not on the day of the experiment, they were listed in the table. If they took medicine on the day 

of experiment, they were removed from any analysis. For the PD population, even they took medicine on the day of 

experiment they were listed in the table and were included in analysis. 

Category  Ctrl. Elderly  PD  Ctrl. Young  Ctrl. Child  ADHD  FASD  
recruited n  25  15  18  24  32  23  
unfinished 20-
minute-long 
experiment n1  

0 0 0 5 7 8 

excluded n 
(<10 valid eye 
movement 
traces)  

1  1  0  4  6  8  

excluded n 
(medication on 
the day of 
experiment)  

0  0  0  0  2  2  

excluded n (to 
balance age)  0  0  0  2  3  0  

n (analysis)  24  14  18  18  21  13  
number of 
valid eye traces 
(time)  

638  
(19125.6 sec.)  

357  
(10720.7 sec.)  

516  
(15461.5 sec.)  

436  
(13054.1 sec.)  

450  
(13486.6 sec.)  

257  
(7725.8 sec.)  

number of 
valid eye traces 
/ participant  

26.6  25.5  28.7  24.2  21.4  19.8  

saccade 
frequency 
(number per 
second) 

2.18 1.90 1.97 1.62 1.66 1.48 

number of 
saccades  41774  20338  30530  21098  22347  11402  

age±SD (year)  70.33±7.53 67.43±6.62  23.17±2.60  10.67±1.82  11.19±1.83  12.31±2.10  
male:female  11:13  10:4  8:10  10:8  16:5  7:6  

subtype      
inattentive: 4 
hyperactive: 0 
combined: 19  

FAS: 4 
pFAS: 2 
ARND: 7 

medication2   

None: 0 
Amantadine: 1 
Clonazepam: 1 
Entacapone: 1 
Ldopa/carbidopa: 8 
Ldopa/carbidopa-
CR: 1 
Pramipexole: 2 

  

None: 5 
Non-stimulant: 
2 
Stimulant-LA: 7 
Stimulant-SA: 7  

None: 3 
Antianxiety: 1 
Anticonvulsant: 1 
Antidepressant: 2 
Antipsychotic: 7 
Antihypertensive: 2 
Non-stimulant: 1 
Stimulant-LA: 6 
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Ropinirole HCl: 9  Stimulant-SA: 2  

comorbidity      
LD: 3 
ODD: 1 
MMR: 1  

ADHD: 10 
Anxiety: 5 
Bipolar: 1 
Conduct: 1 
DD: 2 
Depression: 1 
ODD: 3 
NS: 1 
LD: 2  

Clinical rating 
scores   

UPDRS motor: 
25.17±7.22 
Hoehn and Yahr 
stage: 2.42±0.36  
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Supplementary Table S2. Look up table for feature abbreviation, whose format is [feature]_[measure]_[saccade].  *after 
onset of snippets 

category feature measure saccade 
pkvel (peak velocity)   
sacamp (saccade amplitude)   
sacdur (saccade duration)   

Oculomotor-
based 

sacint (saccade interval) 

qL (lower quartile) 
none (median) 
qU (upper quartile) 

  
C (color contrast)      
I (intensity contrast)     
O (oriented edges)     
F (temporal flicker) hL (low salience bin) sA (all saccades) 
M (motion contrast) hM (medium salience bin) s1 (1st saccade*) 
J (line junction) hH (high salience bin) s2 (2nd saccade*) 
Txt (texture contrast) None (AUC) s3 (3rd saccade*) 
Var (intensity variance)     
CIOFM (overall salience)     

Saliency-
based 

CIOFMJ (overall salience and line junction)     
hL (low similarity bin)   
hM (medium similarity bin)   
hH (high similarity bin)   

Group-based Yo (similarity to young-observer) 

None (AUC)   
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Supplementary Fig. S1.  A supplementary figure related to Fig. 4 showing selected sub-feature names.  (a) Normalized 
values for sub-features selected by SVM-RFE while classifying PD and elderly controls.  **, ANOVA p<0.01; *, ANOVA 
p<0.05. (b) Normalized feature values for features selected by MSVM-RFE while classifying ADHD, FASD, and control 
children. **, ANOVA p<0.01; *, ANOVA p<0.05.   
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Supplementary Fig. S2.   (a) Classification accuracy for differentiating PD and elderly controls, plotted as a function of the 
number of selected features during SVM-RFE.  Maximum classification accuracy (89.6%) was obtained with 5 features 
(black arrow).  Shaded region indicates mean ±1 standard deviation over the repeated leave one out bootstrap validation. 
Chance performance (classification accuracy with permuted class labels, ~52.0%) is indicated by the dashed curve. (b) 
Classification accuracy for differentiating ADHD, FASD, and control children is plotted as a function of the number of 
selected features during MSVM-RFE.  The red line indicates the overall classification accuracy for differentiating 3 
populations, and the classifier reaches peak performance (77.3%) with 19 features (black arrow).  The blue, green, and cyan 
lines are classification accuracies for classifying each pair of populations.  The black dashed line is the chance level for the 
overall classifier.  Shaded regions indicate mean ± 1 standard deviation. Chance performance (~32.4%) is indicated by the 
dashed curve.  
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