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Abstract

In this paper we address the problem of detecting small,
rare events in very high resolution, far-field video streams.
Rather than learning color distributions for individual pix-
els, our method utilizes a uniquely structured network of
Bayesian learning units which compute a combined mea-
sure of “surprise” across multiple spatial and temporal
scales on various visual features. The features used, as well
as the learning rules for these units are derived from recent
work in computational neuroscience. We test the system ex-
tensively on both real and virtual data, and show that it out-
performs a standard foreground/background segmentation
approach as well as a standard visual saliency algorithm.

1. Introduction

When processing video under real-time constraints, de-
tecting salient events plays a critical role by selecting sub-
sets of the scene towards which limited computational re-
sources should be allocated. Event detection becomes in-
creasingly difficult as the field of view increases, and the
number of pixels-on-target decreases. For example, figure 1
shows a scene in which two pedestrians comprising roughly
15 vertical pixels are traversing a desert scene captured by
a 16 mega-pixel video camera. These situations are com-
monly encountered in border surveillance applications, yet
to our knowledge no system exists which can robustly de-
tect anomalous events in such circumstances. In this paper,
we focus on developing a solution to this difficult problem.

Current research in video surveillance is concerned
mainly with the detection and annotation of high-level
events [16, 1, 9, 15]. While they often provide very rich se-
mantic descriptions of the scene, these approaches require a
significant number of pixels-on-target, and are thus unsuit-
able to our application. More traditional low-level back-
ground subtraction algorithms [12, 14, 4, 17, 10] generally
operate on pixel level statistics and so are more applica-
ble to our constraints. These methods typically operate by

Figure 1. Example frame from desert test data with inset showing
two pedestrian targets

maintaining a model of the background, e.g. as a mixture
of Gaussian distributions [12], which is learned online to
reflect the state of the world. However, as these methods
have generally served as input into higher level tracking and
recognition algorithms, they perform best when segment-
ing large regions of foreground from background. Thus
little attention has been paid towards selecting representa-
tions which provide an acceptable signal to noise ratio for
far range surveillance.

This paper introduces a novel method for the detection of
such small, rare events in far-field surveillance footage. We
leverage recent computational neuroscience research by [6]
to build a network of Bayesian learners which is inspired
by models of the primate visual attention system. These
Bayesian learners adapt to changes in a scene by learning
feature statistics over several spatial and temporal scales.
By comparing each unit’s learned prior probability distribu-
tion before a video frame is presented to the posterior dis-
tribution estimated after the frame, we generate a measure
of “surprise” which we show is a robust measure for de-
tecting the presence of unexpected events. This is because
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our learned background distributions encode both spatial
and temporal information, such as waving tree branches or
shimmering atmospheric distortions. We test our system on
scenes staged in a desert environment in which transient tar-
gets (persons, vehicles) appear and disappear several kilo-
meters away from a high-resolution camera (16 megapixels)
with a field of view of ∼20◦, such that each target covers as
few as ten pixels in the longest dimension. We also test
our system on artificially generated data to more precisely
characterize its efficiency in detecting when and where such
targets appear.

In section 2, we detail the construction of our model and
implementation. In section 3, we test the system on real
and artificial targets, and compare the performance of our
system to a standard foreground detection system typically
used in surveillance applications. In section 4, we review
the results of these tests, and in section 5 we provide our
conclusions.

2. Methods

Rather than trying to determine which pixels in an im-
age belong to foreground versus background regions, we
pose our problem as determining when and where the spa-
tial and temporal statistics of an image constitute a “surpris-
ing” event warranting the attention of a higher-level process
or human operator. To do so, we first decompose the image
into a number of low-level image features, as described in
section 2.1. At each location in each feature map, the statis-
tics of features are then learned online through a network
of Bayesian computation units and combined, as described
in section 2.2. We run our implementation in real-time by
breaking the 16 megapixel input images into 256×270 pixel
“chips,” and running each chip in parallel. The system then
emits the maximum surprise value computed within each
chip, which can be thresholded to trigger event detections.

2.1. Feature Detectors

Several types of feature detectors were chosen for our
implementation, all of which have been well documented
in the literature on the primary visual cortex of mammals.
Each detector type is implemented an approximation to
center-surround cells with receptive fields spanning a range
of sizes. This approximation is efficiently performed by
constructing Gaussian image pyramids [3] spanning from
2 octaves to 8 octaves above the original scale. In total, we
create 12 different low-level feature pyramids (one inten-
sity, two color, four orientation, four motion, one flicker)
which are combined to create a total of 72 center surround
feature detector maps.

To create the center-surround channels, we first cre-
ate their component feature pyramids as follows, follow-
ing the basic approach already explored previously to de-

velop saliency map algorithms [8]. From an input image
comprised of a red, green, and blue channel (r, g, and b),
we compute an intensity pyramid (I) as well as four color
pyramids (R, G, B, Y ) which are tuned to respond to red,
green, blue, and yellow respectively while producing zero
response to both black and white. Four pyramids are also
created for orientations, denoted as Oθ and are made by
convolving the input image with an oriented Gabor filter.
Four motion energy pyramids (Mθ) are created as responses
to Reichardt motion detectors [13] in the four cardinal direc-
tions. Finally, a flicker pyramid (F ) is created by subtract-
ing the intensity channel response at the current frame from
the intensity channel response at the previous frame.

From these raw channel pyramids, the various types of
center-surround feature detectors are computed by subtract-
ing the value of a center channel at level x = {2, 3, 4} in
the pyramid by the response of a rescaled and interpolated
surround channel at level x + δ, with δ = {3, 4}, giving us
six center/surround pairs: 2/5, 2/6, 3/6, 3/7, 4/7, and 4/8.

Each of these feature maps is sensitive to local contrasts
at multiple spatial scales in its feature domain. I(c, s) is an
intensity contrast map,RG(c, s) and BY(c, s) are red/green
and blue/yellow double opponency maps,Oθ(c, s) is an ori-
entation contrast map, Mθ(c, s) is a motion contrast map,
and F(c, s) is a flicker contrast map. Using a total of six
center/surround combinations as described above and four
orientations yields the total of 72 center-surround feature
maps.

2.2. Surprise computation

In [5, 7], surprise is defined in general Bayesian terms,
as the difference between a prior belief distribution and a
posterior distribution that is generated when new data is ob-
served. Assuming a prior distribution P (M) of beliefs over
a set of hypotheses or modelsM, Bayes rule is employed to
compute the posterior beliefs P (M |D) each time new data
D is observed:

P (M |D) = P (M)P (D|M)/P (D) (1)

Intuitively, if the posterior distribution is highly similar
to the prior, then the data D contributed little change to the
observer’s beliefs, and hence it was boring; conversely, data
that yields a significant update of the prior into the posterior
is surprising as it significantly affected the learner’s beliefs.
This prompted a simple definition of surprise S(D,M)
from first principles in [5], as some distance measure be-
tween the posterior and the prior; here we use the Kullback-
Leibler divergence KL, such that:

S(D,M) = KL(P (M |D), P (M)) (2)

=

∫
M
P (M |D) log

P (M |D)

P (M)
dM (3)



We implement our system using such surprise as the ba-
sic measure of how interesting video data may be over time.
A single surprise computation unit thus takes as input a
prior distribution and a data distribution, and outputs both a
posterior distribution as well as a surprise value represent-
ing the amount of novelty in the input.

In our implementation, a chain of such surprise detec-
tion units is connected to each location in each level of each
feature map such that the first unit in the chain estimates
its prior distribution directly from a feature detector’s out-
put value, as further described below. Data is obtained from
each video frame, and is modeled at every visual location as
a Poisson distribution M(λ), where the rate parameter λ is
simply estimated as the detector’s output value. Modeling
the prior and posterior as Gamma distributions:

P (M(λ)) = γ(λ;α, β) =
βαλα−1e−βλ

Γ(α)
(4)

with shape α > 0 and inverse scale β > 0 parameters and
Γ(.) the Euler Gamma function, allows us to use the poste-
rior from a previous step as the prior for the current step
in a Bayesian learning configuration. Given an observa-
tion D = λ and prior distribution γ(λ;α, β), the posterior
γ(λ;α′, β′) obtained by Bayes’ rule is also a Gamma distri-
bution, with:

α′ = α+ λ and β′ = β + 1 (5)

and the surprise that results from observing D can be com-
puted in closed form [7]:

S(D,M) = KL(γ(λ;α′, β′), γ(λ;α, β)) = (6)

α log
β′

β
+ log

Γ(α)

Γ(α′)
+ β

α′

β′
+ (α′ − α)Ψ(α′) (7)

where Ψ(.) is the digamma function. In this way, the detec-
tor is able to constantly update its belief of the distribution
of a single feature detector’s response and to output a mea-
sure of the amount by which a new feature response violates
its learned expectations.

By applying such a surprise detector to each feature map
at each spatial scale, we are able to detect unexpected events
of various sizes and types. However, to effectively adjust to
repeating or periodic motions in the image (e.g., trees in
the wind), it is also desirable to detect surprise at multiple
temporal scales. In addition, while monitoring surprise over
time may be useful to detect local transient events, comput-
ing surprise over space is also important to focus onto those
events which are also spatially salient (see [7] for further
details). To accomplish this, we set up a network of these
surprise detectors to form a complete temporal and spatial
surprise computation unit. The input to this unit is a single
feature map from a single pyramid scale. At each location

in this map, we compute both the spatial and temporal sur-
prise over five temporal scales. At the first temporal scale,
the data from the feature map is fed into the data inputs
of both a temporal surprise detector, and a spatial surprise
detector. The temporal surprise detectors at each tempo-
ral scale use the posterior from their previous time step as
the prior, and output the amount of surprise generated. The
posterior from each temporal detector is then used as the
data input for the next-level temporal detector. In this way,
each successive level of the temporal surprise computation
chain adapts to a slower band of temporal frequencies than
its input. The spatial surprise detectors use the same data
input as the temporal detectors, but use an average of the
surrounding responses weighted by a Gaussian envelope as
their prior distributions. This spatial surprise detector then
outputs the novelty of a stimulus based only on the sur-
rounding feature responses from the current frame. At each
temporal scale, the spatial and temporal surprise computa-
tions are combined with a weighted sum and a non-linearity.
The resulting maps from each temporal scale are then com-
bined via a product to produce the final surprise map for
the given feature. Once all feature maps are computed, they
are averaged to produce a final surprise map for the current
frame.

3. Performance Evaluation Methods

To analyze the effectiveness of our attentional front-
end in highlighting only regions which contain interesting
events, we put our system through two sets of rigorous tests
and compare our results to those obtained by a standard
foreground/background discrimination algorithm as well as
a neuromorphic spatial attention model.

3.1. Comparison Algorithms

The foreground/background discrimination algorithm
used as benchmark is the popular OpenCV [2] implemen-
tation of Li et al’s 2003 paper, “Foreground Object Detec-
tion from Videos Containing Complex Background” [10],
which we believe is a good example of the canonical pixel-
based background learning methods. Li’s algorithm uses a
Bayesian decision rule and feature vector learning to pro-
duce a dense map denoting the probability that each pixel
belongs to a foreground object rather than the background.
The maximum pixel’s likelihood of containing a foreground
object within each region was then taken as the score for
that region and these scores were then aggregated together
as in our implementation.

The spatial attention model used for comparison is an
integer-math implementation of Itti’s saliency model [8,
11]. This model uses the same feature detector types, pyra-
mid architecture, center-surround computations, and ranges
of spatial scales as our proposed algorithm, but instead of



computing surprise, applies a non-linear spatial competi-
tion within each feature map and across all scales. Using
this model as reference allows us to quantify how much of
the performance of our new method is attributable to the
surprise component per se, as opposed to the choice of low-
level visual features and range of pyramid scales used. The
feature maps are then summed together to produce a master
saliency map. As with Li’s algorithm, this saliency model
was applied to our distributed architecture such that each
image region was computed independently in parallel.

3.2. Testing and validation experiments

Two sets of tests were run using all of the algorithms de-
scribed in section 3.1 to determine their performance in both
the real world, and in rigorously generated artificial scenes.
The first set of tests was used to establish the usefulness
of each algorithm in a realistic large scale surveillance sce-
nario, while the second set of tests explores the performance
of each algorithm by varying the difficulty of the detection
task using target sizes and image noise as parameters.

In the first set of tests we were provided with three
ground-truthed datasets of video taken from a desert en-
vironment. Each dataset consisted of 4864 × 3248 pixels
shot at 2.98 frames per second, with each frame compris-
ing a 20◦ horizontal field of view. There were a total of
5333 frames from these videos, totalling 29.8 continuous
minutes of footage. The videos were hand annotated to pro-
vide ground truth bounding boxes around targets of interest.
Throughout all video sequences, these annotated targets had
an average size of 20.1± 17.5 pixels by 37.1± 34.9 pixels
and ranged from around .5km to nearly 10km away from
the camera.

In the second set of tests, we created a large set of scenes
with artificial targets in which both the size of the targets
and the level of noise in each clip was independently ad-
justable. These artificial target events were created by ex-
tracting 200 consecutive frames of size 256 × 270 pixels
from each of 20 different regions from the original datasets
which contained no events, documented or otherwise. Five
different images of targets were then composited across the
scenes at three different scales onto these backgrounds to
create a series of 300 video clips. The spatial scales were
defined as the number of pixels across the largest dimension
of the target, and the targets were presented at scales of 10,
40, and 80 pixels. These clips were then corrupted by five
different levels of Gaussian noise.

The evaluation of both test scenarios was achieved by
creating a log file containing the maximum score for each
region in each frame. In the second round of tests, each
frame contained only one region, but the analysis remained
the same. These log files were then compared against the re-
spective ground truths to create a Receiver Operating Char-
acteristic (ROC) plot of the probability of a true positive
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Figure 2. ROC results from Desert Environment Tests

versus the probability of a false positive, for a surprise
threshold which was swept from the minimum observed re-
gion score to the maximum. A given region in a frame was
recorded as containing a true positive for a given threshold
value if its maximal surprise value exceeded that threshold
and contained at least 25% of the width and height of the
bounding rectangle of a ground-truthed target. A chip was
recorded as a false positive if it exceeded the threshold, but
overlapped with less than 25% of the width and height of the
bounding rectangle of a ground-truthed target. The proba-
bility of a true positive for a given threshold was then cal-
culated as the total number of true positives divided by the
number of regions which actually contained targets. The
corresponding probability of a false alarm for that threshold
was calculated as the total number of false alarms divided
by the number of regions which did not contain targets.

4. Results
The ROC results from the first round of testing, in which

real events were staged in desert scenes, are shown in fig-
ure 2. The plot shows the probability of the system report-
ing a false positive along the horizontal axis, and the prob-
ability of the system reporting a true positive along the ver-
tical axis. The two versions of the surprise algorithm which
were run using different sets of feature detectors are labeled
as ’Surprise (All Channels)’ and ’Surprise (Flicker).’ The
’Surprise (All Channels)’ model utilized feature detectors
for color, flicker, intensity, orientation, and motion, while
the ’Surprise (Flicker)’ model used only a flicker feature
detector. The OpenCV implementation of Li’s algorithm
is labeled in the plot as ’Li, et al. 2003’, and the integer
implementation of Itti’s saliency model is labeled as ’Fast
Saliency.’ The area under each of these curves is shown in
table 1.

The results of the second round of testing in which artifi-
cial target events were created are shown in Fig. 3. In these
tests, the two surprise models had a much stronger invari-
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Algorithm AUC Score
Li, et al. 2003 0.80754

Surprise (All Channels) 0.93957
Surprise (Flicker) 0.92502

Fast Saliency 0.77038
Table 1. AUC Scores for Tests on Real Data

ance to the amount of noise than the reference algorithms.
Additionally, while all of the systems had difficulty detect-
ing the extremely small 10 pixel targets, the surprise model
with all feature detectors enabled showed poor relative per-
formance in the low noise case. Using only the flicker de-
tector allowed the model to achieve the best performance
in all cases. A random permutation test with 10,000 itera-
tions showed that the flicker surprise model outperformed
the other systems with a better than 5% significance level in
all cases. Comparing the ROC curves for surprise with all
channels vs. flicker only reveals that, for a given hit rate, the
false-alarm rate with all channels is higher than when using

only flicker, revealing that the surprise model with all chan-
nels does not score as well overall mainly because it detects
more false events. That is, the flicker channel has higher
signal-to-noise ratio, in our artificial dataset, for targets vs.
non-targets than does the combination of all channels. In
the following section we discuss this result in light of the
results obtained with the first experiment.

5. Discussion

In this work, we have presented a novel application of a
neuroscience attention model to the field of large-field-of-
view surveillance. A first set of tests showed that the sys-
tem was able to reliably detect subtle targets in a real envi-
ronment, which more often evaded detection by a standard
foreground segmentation algorithm as well as a popular spa-
tial visual attention model. The second testing paradigm re-
vealed the system’s strong invariance to both noise and tar-
get size. Even under noise conditions which made the other
algorithms perform only slightly above chance, the surprise



model with flicker feature detectors took only a modest per-
formance hit.

While the model performed best in the first task with all
of its feature detectors enabled, it was interesting to note
that it performed best in the second task with only the flicker
channel enabled, as can be seen in figure 3. The flicker
channel produced the best results in these tests because the
artificial targets had been designed by hand to have simi-
lar hues and contrasts ratios to the background, in order to
increase the test difficulty. This similarity diminished the
effectiveness of the color, intensity, and orientation chan-
nels because they rely highly on static contrast differences
between foreground and background. In essence, in the sec-
ond test, channels other than flicker hence contributed lit-
tle in terms of increasing hit rate over the flicker channel
alone, but added to the false alarm rate; in sum, using all
channels resulted in lower ROC performance compared to
flicker alone. However, as can be seen in figure 2, the full
set of features provided a better probability of detection for
low false alarm rates in the real world scenarios. This is
because real world targets are likely to have spatial differ-
ences against backgrounds, as well as because real targets
may generate little detectable motion. This suggests that
while our test sets may have been biased slightly towards
the flicker channel responses, real world applications will
likely require the full range of feature detectors.
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