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Learning a Combined Model of Visual
Saliency for Fixation Prediction
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Abstract— A large number of saliency models, each based
on a different hypothesis, have been proposed over the past
20 years. In practice, while subscribing to one hypothesis or
computational principle makes a model that performs well on
some types of images, it hinders the general performance of a
model on arbitrary images and large-scale data sets. One natural
approach to improve overall saliency detection accuracy would
then be fusing different types of models. In this paper, inspired
by the success of late-fusion strategies in semantic analysis and
multi-modal biometrics, we propose to fuse the state-of-the-art
saliency models at the score level in a para-boosting learning
fashion. First, saliency maps generated by several models are used
as confidence scores. Then, these scores are fed into our para-
boosting learner (i.e., support vector machine, adaptive boosting,
or probability density estimator) to generate the final saliency
map. In order to explore the strength of para-boosting learners,
traditional transformation-based fusion strategies, such as Sum,
Min, and Max, are also explored and compared in this paper.
To further reduce the computation cost of fusing too many
models, only a few of them are considered in the next step.
Experimental results show that score-level fusion outperforms
each individual model and can further reduce the performance
gap between the current models and the human inter-observer
model.

Index Terms— Saliency, bottom-up attention, regions of
interest, eye movements, score level fusion, para-boosting learner,
scene understanding.

I. INTRODUCTION

PREDICTING where humans look in viewing natural
scenes, known as saliency prediction or detection, has

attracted a lot of interest in computer vision, robotics, and
neurosciences. High saliency prediction accuracy is essential
for many applications such as salient object detection and
segmentation, content-aware media retargeting, content-based
compression, scene understanding, robot navigation, and
image/video quality assessment. Please see [1]–[12] for
comprehensive reviews).
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In existing literature, many saliency models have been
proposed based on purely bottom-up image cues, top-down
semantic cues and naturally the combination of both types of
cues. These models have used various visual features including
low-, middle- and high-level features. However, every single
model has its own hypothesis and methodology focusing on a
different aspect of human visual attention. Further, researchers
have usually chosen few datasets to develop their models. Thus
dataset bias [13] is often reflected in their models. Due to
these assumptions and constraints, each model has its own
favorite image category [14] and the corresponding weak cases
or false positives (see some examples in Fig. 1). Therefore, one
approach to construct a more predictive model is to combine
weaker models. While a few studies have examined this in the
past in limited cases, here we address it in a more systematic
manner examining a larger number of combination methods
and parameters.

A. Models Based on Low-Level Features

Bottom-up saliency models using biologically-plausible
low-level features are mainly based on computational
principles proposed by Itti et al. [15] and its predecessor
(e.g., [16], [17]). Assuming that salient regions are conspic-
uous in terms of color, intensity, or orientation, Itti et al.
derived bottom-up visual saliency using center-surround
differences across multi-scale image features. Harel et al. [18]
built a Graph Based Visual Saliency (GBVS) model based
on the idea that local image patches highly dissimilar to
their surrounding patches are salient. They measured the
dissimilarity among local patches using a Markov chain
method. Similarly, Liu et al. [19] used Conditional Random
Fields (CRF) to identify regions of interest (ROI) using
three types of features: multi-scale contrast, center-surround
histogram, and color spatial-distribution. Based on the
idea that fixations are attracted to rare local image patches
in natural images, Bruce and Tsotsos [20] proposed the
Attention for Information Maximization (AIM) saliency model.
Hou and Zhang [21] and Zhang et al. [22] proposed models
based on the same principle as in the AIM model utilizing
sparse representation of local image patches. Kong et al. [23]
proposed a multi-scale intergration strategy to combine various
low-level saliency features at different levels. Fang et al. [24]
derived a compressed domain saliency detection method using
motion and color features. Assuming that visual attention
area of interest has a shape prior, Jiang et al. [25] detected
salient regions using contour energy computation. The
above-mentioned models perform well, but with the limitation
of not considering high-level object and semantic cues.
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Fig. 1. Illustration of inaccurate cases of saliency models (image example
from MIT dataset [28]). (a) Original images, (b) Ground-truth human fixation
map, (c) Failed saliency prediction cases for three models, from left to right
(Itti [15], AIM [20], and Judd [28], and (d) Our Para-boosting learner results.
Compared to individual models, score-level fusion results are closer to human
eye movement patterns.

As a result of different assumptions, each model has its own
most suitable image category [14]. For example, focusing on
local dissimilarities, Itti [15] and GBVS [18] models fall short
in detecting global visual saliency, while the AIM [20] model
shows weakness in detecting local dissimilarities (i.e., local vs.
global saliency [26]). In general, these bottom-up models fail
to detect salient regions with semantic information, such as
humans, animals, faces, objects, texts, and signs. Such failure
can be seen in the Fig. 1, row (c), where itti model cannot
distinguish a human body from its surroundings.

B. Models Based on Low- and High-Level Features

Several researchers have addressed saliency detection from
a top-down point of view by incorporating both low- and high-
level features. Cerf et al. [27] showed performance improve-
ments by adding a high-level factor, face detection, to the
Itti’s model. By adding more high-level features such as faces,
people and text, in conjunction with other low- and middle-
level features, Judd et al. [28] developed a saliency detection
model by learning best weights for all combined features
using Support Vector Machines (SVM). Similarly, based on the
finding that observers tend to look at the center of objects [29],

Chang et al. [30] proposed an object-based saliency model
using an objectness measure [31]. Although top-down models
highlight the importance of high-level and semantic features
(e.g., faces, animals, cars, text, symmetry [32], object center-
bias [33], and image center-bias [34]), they often fail to
detect salient objects for which they have not been trained.
Further, performance of the combined models in detecting
non-semantic bottom-up salient regions may not be as as
good as purely bottom-up models. For example, Judd [28]
model fails to detect the local dissimilarity well in some cases
(Fig. 1 row (c)). Considering that no individual model is able
to fit to all images, fusion of different models has the potential
of improving the overall saliency prediction performance.

C. Learning-Based Saliency Models

Saliency models usually, followed by Itti et al. [15],
Koch and Ullman [16], and Feature Integration The-
ory (FIT) [17], first, extract a set of visual features such
as contrast, edge content, intensity, and color for a given
image. Then, they apply a spatial competition mechanism
via a center-surround operation (e.g., using Difference of
Gaussian filters) to quantify conspicuity in a particular feature
dimension. Finally, they linearly (with equal weights) integrate
conspicuity maps to generate a scalar master saliency map
(e.g., [15]–[17], [26], [27], [35]). Some researchers have
proposed “max” type of integration (e.g., [36]). Under the
linear assumption, Itti and Koch [37] have proposed various
ways to normalize the feature maps based on map distributions
before linearly integrating them.

Instead of linear combination with equal weights, some
models learn weights for different channels from a set of
training data. Judd et al. [28] used low-level image features, a
mid-level horizon detector, and two high-level object detectors
(faces using [38] and humans using [39]) and learned a
saliency model with liblinear SVM. Following Judd et al.,
Zhao and Koch [40] learned feature weights using constraint
linear regression and showed enhanced results on different
datasets using different sets of weights. Later, Borji [41]
proposed an AdaBoost [42] based model to approach feature
selection, thresholding, weight assignment, and integration in
a principled, nonlinear learning framework. The AdaBoost-
based method combines a series of base classifiers to model
the complex input data.

Some models directly learn a mapping from image patches
to fixated locations. Followed by Reinagel and Zadore’s
study [43] who proposed that fixated patches have different
statistics than random patches, Kienzle et al. [44], learned a
mapping from patch content to whether it should be fixated
or not (i.e., +1 for fixated and −1 for not-fixated). They
learned a completely parameter-free model directly from raw
data using support vector machine with Gaussian radial basis
functions (RBF). On the other hand, Zhang et al. [45] use a
graphlet-based deep architecture to learn a saliency map from
raw imge pixels to object-level graphlets (oGLs) and further
to spatial-level graphlets (sGLs).

In [19], Conditional Random Field (CRF) that encodes
interaction of neighboring pixels effectively in images,
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have been used for combining cues for salient object
detection.1 Similarly, Mai et al. [46] proposed a data-driven
approach under a Conditional Random Field (CRF) framework
to aggregate individual saliency maps, which focused on
learning the interactive relationship between neighboring
pixels by learning from groundtruth saliency map.

Borji et al. [14] considered two simple combination methods
(sum and multiplication) using three normalization schemes
(identity, exponential, and logarithmic) for combining saliency
models. Bayesian integration, and linear weighted combination
of different cues have been also used in some studies for
salient object detection (e.g., [48]–[50]). Olivier et al. [47]
investigated the supervised/unsupervised learning methods
to aggregate 8 low-level feature(bottom-up) based saliency
models, and they found that the aggregation performance
is improved when there is a similarity in the training
samples.

In the context of visual search or object detection, some
researchers have proposed approaches for learning a set of
parameters (gains or weights of saliency channels) to render
an object of interest more salient (e.g., [35], [51]–[53]). Some
researchers have used evolutionary optimization algorithms to
find optimal set of combination weights [53].

D. Our Contributions

We present three major contributions. Firstly, we propose to
fuse multiple saliency models’ outputs, called para-boosting.
Through exhaustive evaluation over challenging benchmark
databases, combining both low-level and high-level feature-
based saliency models, we show that para-boosting at the
score level outperforms the individual state-of-the-art saliency
prediction models, and achieves closer accuracy to the human
inter-observer model. Secondly, several para-boosting strate-
gies including transformation-based and learning-based fusion
schemes (including joint density estimation based and linear/
nonlinear classifier-based), are proposed and compared in this
paper to investigate several possible fusing strategies, For
example, according to the experimental results, our proposed
learning-based schemes perform the best among different
fusion schemes. Thirdly, we investigate the role of each
individual model during the fusing procedure. Experimental
results demonstrate that models do not play equal roles in the
final decision, which provides the possibility of fusing fewer
models while maintaining similar performance. Corresponding
experimental results show that the integration of a few best
of the individual models can sometimes outperform fusing
all models.

II. PARA-BOOST FOR SALIENCY LEARNING

Inspired by the success of late fusion strategies in seman-
tic analysis and multi-modal biometrics, we propose to use
para-boosting for combining several saliency models at the
confidence score level. Our choice is based on the two

1Note that salient object detection models attempt to detect and segment
the most salient object while fixation prediction models aim to predict sparse
locations that observers may fixate. In this paper, we are interested in fixation
prediction.

following reasons. First, the computation and combination
flexibility of different saliency models can be maintained
as much as possible using the late fusion strategy. Feeding
low-level features directly into a black box machine learning
method such as SVM for combining them (as in [28]) has
the disadvantage that strength of the original computation on
individual features will be eliminated. Also, in each individual
model, feature subsets are manipulated differently to its own
best in predicting saliency while early feature combination
has the same manipulation schema on all features. Second,
variation among different models can be maintained well in a
late fusion stage. Even when sharing similar feature subsets,
different computation models may generate different saliency
maps. For example, although both Itti and HouCVPR models
use illumination information, Itti model describes the saliency
relationship in spatial domain when HouCVPR describes it in
the FFT domain. This variation can be preserved to a large
extent in a late fusion strategy.

Thus, to fill the performance gap between early feature-level
fusion and the human inter-observer model, and to broaden
applicable image ranges, we propose to fuse state-of-the-art
saliency models at the score level. In our saliency detection
scenario, saliency map generated by each model is regarded
as a single score result, and score level fusing schema is
then applied to boost saliency detection performance by taking
different saliency detection models’ outputs into consideration.
With the aim of learning the influence of different learning
choices, we further investigate various learning techniques
(SVM, AdaBoosting, and PDE), and evaluate their prediction
performance in this scenario.

Making use of the prediction results of different recogni-
tion systems, score level fusion strategies have already been
broadly applied in a variety of biometric systems, and they
can further improve the detection and recognition performance
compared to a single system [55]. Here we present a brief
overview of current score level fusion strategies in biometric
systems. In general, there are three different types of score
level fusion strategies described below:

• Transformation-Based Approaches: In transformation-
based score fusion approaches, scores are first normalized
to a common range for further combining. Choice of
the normalization scheme depends highly on the input
data itself ( [55], [56]). Kittler et al. [57] discussed a
fusion framework by evaluating the sum rule, product
rule, minimum rule, maximum rule, median rule, and
majority voting rule in their work. In their proposed
scheme, scores are converted into posteriori probabilities
through normalization. It has been experimentally shown
that the sum rule outperformed other rules in biometric
system applications.

• Classification-Based Approaches: In this scheme, scores
from individual models are considered as feature vectors
of a classifier, which are constructed to further improve
detection accuracy ([58], [59]). Chen and Rao [60] used
a neural network classifier to combine the scores from
the face and iris recognition systems. Wang and Han [69]
further proposed to apply a classification-based algorithm
based on SVM to fuse the scores.
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Fig. 2. Illustration of our saliency fusion framework (image example from MIT dataset [28]).

• Probability density-based approaches: Well-known prob-
ability models, such as naive Bayesian [61] and the
Gaussian Mixture Models (GMM) [62], have been
broadly applied for model fusion. Nandakumar et al. [62]
proposed a score combination framework based on the
likelihood ratio estimation. The input score vectors are
modeled as a finite Gaussian mixture model. They show
that this density estimation method achieved good perfor-
mance on biometric databases with face, fingerprint, iris
and speech modalities. Probability-density based score
fusion methods highly depend on accuracy of score’s
probability density estimation.

Fig. 2 shows an illustration of our proposed para-boosting
framework. We first retrieve the saliency maps of 13 state-
of-the-art approaches, and these saliency maps are considered
as input to our para-boosting system. Then, a final saliency
map is predicted based on the score-level fusion schema.
To investigate effectiveness of this framework, we employ
two categories of score level fusion schemes including
transformation-based and learning-based schemes. It is worth
noting that the input to the para-boosting system consists of
only 13 saliency probability maps, which is relatively low
compared to other combination methods (e.g., [28]) which
helps harness overfitting during learning.

A. Visual Features

Without loss of generality, following the discussions
of [14], we choose 13 state-of-the-art models (low-
level feature based: Itti [15], GBVS [18], AIM [20],
HouNips [21], HouCVPR [54], AWS [63], SUN [22],
CBS [25], SalientLiu [19] and SO [64]; High-level feature
based: SVO [30], ST [65], and Judd [28]) based on the
following two criteria.

• The selected models must achieve good prediction
performance individually, and

• The features adopted by selected models must cover a
wide range of features from bottom-up to top-down, so
that our final fusion strategy can adjust to different image
scenarios.

1) Low-Level Features: Based on their own space domain,
these low-level saliency maps can be classified into three
categories:

• Itti [15] and GBVS [18] models construct pixel-based
saliency maps in the spatial domain. Specially, Itti [15]

model calculates a saliency map using color, intensity,
and orientation features in several scales (in total there are
42 feature maps used in this model). GBVS [18] models
saliency as an activation map which uses up to 12 feature
maps as input.

• HouCVPR [54], AIM [20], AWS [63], HouNips [21],
and SUN [22] generate pixel-based saliency maps in
the frequency domain. In particular, HouCVPR [54] and
AWS [63] models compute saliency in the Fast Fourier
transform (FFT) domain. The input features can be one
single map (gray image) or three maps (RGB). AIM [20],
HouNips [21], and SUN [22] models learn a dictionary of
natural scene patches using RGB or DoG (Difference of
Gaussian) channels. They then use RGB maps (3 feature
maps) or DoG maps (12 feature maps) as input.

• SalientLiu [19], SO [64], and CBS [25] are region-
based saliency models. SalientLiu [19] employs a
broad range of features from local multi-scale contrast
to global center-surrounding distributions. Similar to
SalientLiu [19], CBS [25] applies several features such as
color superpixels, closed shape, and center-bias.2 Both of
the two models use at least 3 feature maps as their input.
SO [64] characterizes the spatial layout of image regions
with respect to image boundaries, and optimized saliency
map over multiple low-level cues including spatial layout
of image regions.

2) High-Level Feature: As we mentioned in the Intro-
duction section, some models use semantic information
when building their saliency maps. Among 13 used models,
SVO [30] builds a model that can describe the objectness [31].
This model uses semantic object detection results as well as
saliency prior as input. Similarly, ST [65] uses object prior
and other global measurement to estimate region similarities.
Judd [28] model employs as many as 33 feature maps ranging
from low-level to high-level features to learn a saliency map.

Note that our classification of models based on low- and
high-level features is not crisp. Indeed, several models take
advantage of both types of features (e.g., Judd, CBS).

B. Score-Level Fusion Strategies

Here we propose three types of score-level fusion strategies
applied in para-boosting of saliency detection: 1) Non-learning

2Tendency of observers to preferentially look at the image center.
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based fusing approaches such as transformation based fusion,
2) Learning based fusion approaches using pattern classifiers
and 3) Density based approaches. These approaches fuse
multiple score inputs from different viewpoints, hence it is
worthwhile to test and compare their powers in score fusion.

1) Transformation-Based Fusion: As indicated in [55], the
transformation based rule involves two steps: normalization
and fusing rules. As shown in Fig. 2, our input individual
saliency results is a probability map. We adopt the normaliza-
tion method described in Eq. 1 to normalize each individual
saliency map to have zero mean and unit standard deviation:

s′ = s − μ

σ
(1)

Where μ and σ are the mean and standard deviation (STD)
of input map s. We adopt three different transformation-based
fusion rules that have been reported to have good performance
in biometric recognition systems.

• Sum rule: In this rule, the final score output is computed
as the mean of input score sequence:

S = mean(s1, . . . , sn) (2)

where sk indicates each individual score and S is the final
score output.

• Min rule: Here, the final score is the minimum value
among all input scores:

S = min(s1, . . . , sn) (3)

• Max rule: Contrary to the min rule, the final score output
here is the max value among all individual scores:

S = max(s1, . . . , sn) (4)

2) Classification-Based Fusion: We apply two different
types of classifier: linear and non-linear. Linear classifiers
are usually fast in computation while non-linear classifiers
are usually slower but more powerful. We built a training
set by sampling images at eye fixations (i.e., ground truth).
Each sample contains 13 individual saliency probability at
one pixel together with a 0/ + 1 label (i.e., a 13D vector).
Positive samples are taken from the top p percent salient pixels
of the human fixation map and negative samples are taken from
the bottom q percent. Following [28], we chose samples from
the top 5% and bottom 30% in order to have samples that were
strongly positive and strongly negative. Train vectors were
normalized to have zero mean and unit standard deviation.
The same parameters were used to normalize the testing data.

• SVM. Here we train two Support Vector Machines
classifiers using publicly available Matlab versions of
SVM: liblinear and libsvm. We adopted both the linear
kernel (Eq. 5) and non-linear kernel Radial Basis Func-
tion (RBF) (Eq. 6) as they have been shown to perform
well in a broad range of image applications. During
testing, instead of predicting binary labels, we generate
a label whose value is within the range of [0, 1], so that
the final output is a saliency probability map:

K (xi , x j ) = α · x T
i x j (5)

K (xi , x j ) = exp(−γ
∥
∥xi − x j

∥
∥2

2), γ > 0 (6)

where α and γ are the parameters of the kernel
function.

• AdaBoosting. To further investigate the non-linear clas-
sifiers’ capability in fusion, we used AdaBoost algo-
rithm [41], [42], which has been broadly applied in scene
classification and object recognition. AdaBoost combines
a number of weak classifiers ht to learn a strong classifier:

H (x) = sign( f (x)); f (x) =
∑T

t=1
αt ht (x) (7)

where αt is the weight of the tt h classifier. Here, the
number of weak classifiers T is set as 10 to balance
the speed and accuracy. As in SVM, we consider the
real value of H (x) to create a saliency map (i.e., f (x)).
We used the publicly available software for Gentle
AdaBoost and Modest AdaBoost.3

3) Density-Based Fusion:
• Naive Bayesian. Assuming the independence among

different saliency models Mk , then a Naive Bayesian
accumulation model [14] can be built in Eq. 8:

p( x | M1, M2, . . . , MK ) ∝ 1

Z

K
∏

k=1

p( x | Mk) (8)

Here p( x | M1, M2, . . . , MK ) indicates the final fusion
probability for each pixel, and p( x | Mk) is the probability
of each pixel observation from each individual model.
K is the number of models and Z is a normalization
factor. Since a very small value from a single model
will suppress all other models, here we apply a modified
Bayesian accumulation (Eq. 9) to damp the attenuation
power of very small values such as 0:

p( x f
∣
∣ M1, M2, . . . , MK ) ∝ 1

Z

K
∏

k=1

(p( x f
∣
∣ Mk) + 1)

(9)

• General density estimation. Without assuming
independence among saliency models, we propose
to fuse different models based on join density estimation
of their confidence outputs for the final saliency map [66].
Firstly, we classify the training samples into two classes:
non-salient (c0) and salient (c1). Each sample has the
d-dimensional feature vector if there are d different
models. Then, for both the non-salient class c0 and salient
class c1, we estimate their corresponding density function
using Parzen-window density estimation as in Eq. 10:

P(x) = 1

nhd

n
∑

i=1

K (
x − xi

h
) (10)

where, n is the number of observations, h is the
corresponding window width and K (x) is a non-negative
window function or kernel function in the d-dimensional
space:

s.t .
∫

Rd
K (x)dx = 1 (11)

3http://graphics.cs.msu.ru/en/science/research/machinelearning/
adaboosttoolbox
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Fig. 3. Density results with different training sample set, from left to right,
top 5%-bottom 30%, top 30%-bottom 30%, top 30%-bottom 70%.

Finally, the likelihood ratio L = P( x | c1)/P( x | c0) is
employed as the final confidence fusion score.
In the paper, we use the PRTools [67] to perform the
Parzen-window density estimation. We used Gaussian
Kernel and an optimum smoothing parameter h based
on the observations to estimate the density. Furthermore,
during our test trial (Fig. 3), our proposed density model
performs better when we keep top 30%-bottom 30%
samples for training. So, here we choose top 30%-bottom
30% for practical reasons.

III. EXPERIMENTAL RESULTS

A thorough evaluation of different score fusion strategies is
presented in this section. We also compute the human Inter-
Observer (human IO) model as the upper-bound baseline [41].
In this model, we estimate the quality of each subject’s
saliency map result by using the ground truth saliency map
generated by all other subjects. Then we average the individual
measurement score of all subjects.

A. Datasets

We utilize two benchmark datasets. the MIT [28] and
Imgsal [68], which have a broad range of images for the
purpose of fair model comparison. The MIT dataset contains
1003 images collected from Flicker and LabelMe datasets.
The ground truth saliency maps are generated using the eye
fixation data collected from fifteen different human subjects.
Several sample images from the MIT dataset [28] are shown
in Fig. 4. The Imgsal dataset has 235 images collected from
the web. The ground truth saliency maps are produced using
eye fixation data from nineteen naive subjects. Several sample
images from Imgsal dataset [68] are shown in Fig. 5. Images
in this dataset are carefully collected with salient region size
ranging from small, medium to large, including both repeated
and random background clutter patterns.

Fig. 4. Sample images from the MIT dataset.

Fig. 5. Sample images from the Imgsal dataset.

These two datasets cover many image scenarios, ranging
from street view, human face, various objects to synthesized
patterns. Due to this fact, saliency models which perform well
over MIT and Imgsal datasets were expected to perform well
for a large range of image types.

B. Evaluation Metrics

To compare the performance, we show two different
measurements: ROC and Precision-Recall. The ROC curve
and AUC score have been broadly applied in eye fixation
prediction [41], and precision-recall is applied here as a
pair-wise measurement with the ROC curve. A good fusion
model should perform well over all measurement metrics.

• Precision-Recall: The final fusing saliency map is a prob-
ability map with values within [0,1]. Thus, to compare
with ground truth eye fixation map, we generate a binary
saliency map by comparing each value with a threshold.
By varying a threshold within (0 : 0.1 : 1], different
binary saliency maps can be produced. To avoid any bias
over threshold, here we calculate the average precision-
recall curve over all 10 threshold values as our final score.
The calculation of precision and recall follows the Eq. 12
and Eq. 13:

precision = true_posi tive

true_ posi tive + f alse_posi tive
(12)

recall = true_ posi tive

true_ posi tive + f alse_negative
(13)

• ROC and AUC: We calculate the Receiver Operating
Characteristic (ROC) and Area Under ROC Curve (AUC)
results in the form of true positive and false positive
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Fig. 6. Score-level fusion results (image examples from the MIT dataset [28]) and Imgsal [68]). For each image, the fist row shows original image and
fusion results using top 13 models, and the second row shows ground truth and fusion results using top 3 models.

obtained during the calculation of precision-recall. The
ROC curve is drawn as the true positive rate (TPR)
vs. false positive rate (FPR), and the area under this
curve (AUC) indicates how well the saliency map
matches with human fixations:

T P R = true_posi tive

true_posi tive + f alse_negative
(14)

F P R = f alse_posi tive

f alse_posi tive + true_negative
(15)

1) Average Performance: For fusion methods involving
training, such as the classifier based and general density based
approaches, we followed a cross-validation procedure. Both
the MIT [28] and Imgsal [68] datasets are combined first and
then the combination is divided into 5 parts. Each time we
trained the model over 4 parts and tested it on the remaining
part. Results are then averaged over all partitions. First, we
compare the performance of individual models and then fusion
models.

C. Model Comparison

Figs. 6 and 7 illustrate sample images along with individual
saliency maps and results of our fusion saliency model.
Fig. 8 shows average Precision-Recall (PR) and ROC curves
of different models over the MIT [28] and Imgsal [68]
datasets. It is clear that most of our proposed para-boost
strategies outperform individual models. To summarize and

better highlight the gap between models and humans, we draw
the AUC score on the MIT and Imgsal datasets in Fig. 9. In this
figure, as different human subjects may have different opinions
on salient regions, we further perform cross-validation on all
human eye fixation data, resulting in HIO (human IO) model,
which serves as our performance upper-bound as humans
usually highly agree with each other.

In Fig. 9, fusion strategies such as gentle adaboost (Gboost),
modest adaboost (Mboost), linear SVM (LSVM), nonlinear
SVM (NLSVM), Naive Bayesian (Bayes), sum and general
density (density) either outperform or strongly compete with
any individual saliency model. Particularly, linear SVM and
modest adaboost (Mboost) are top contenders among all the
para-boosting strategies and are closest models to the Human
IO model. It further proves that linear SVM and modest
adaboost show their advantages in providing better generaliza-
tion capability and resistance to overfitting compared to other
prediction models. It is worthwhile to point out that linear
SVM outperforms non-linear SVM. Rather than the non-linear
relationship between input raw features (e.g. color, position)
and fixation prediction, the relationship between the model-
fused prediction and the individual prediction model should
be linear, it is more reasonable to apply a linear regression
prediction model to boost performance.

Among all score level fusion models, the learning based
methods such as Gboost, Mboost, LSVM, NLSVM and den-
sity outperform Naive Bayes and Sum, which are non-learning
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Fig. 7. Examples of saliency detection results of single models are shown in row 3 through 7 (image example from the MIT dataset [28]) and Imgsal [68]).
Saliency maps generated by our proposed fusion strategies are given in row 8 through 10. (groundtruth denotes ground-truth eye fixation map).

fusing strategies. The reason is that both Bayes and Sum
fusion rules assume independence among individual models,
but infact independence assumption among models is hard
to achieve as many saliency models share similar feature
sets. Hence, a prediction error caused by certain features
can be collapsed over several individual models and further
corrupt final prediction results. Thus, a general integration
strategy without independence assumption, such as density,
outperforms Bayes and Sum.

Note that not all fusion approaches outperform the indi-
vidual models. For example, Min and Max fusion strategies
perform lower than several individual models. This is mainly
because these fusion strategies introduce a bias regarding
different model outputs. Specifically, Max fusion has strong
bias on the model with a maximum confidence score while
neglecting scores from other models. Moreover, the density
fusing approach requires sufficient training data to obtain an
accurate or reasonable density estimation function, hence its

performance is not as stable as other learning based fusing
approaches.

The fact that the learning based fusing schema outperforms
others indicates the value of using human eye fixation data
in guiding saliency map prediction. It is well known that
saliency not only is related to objective features such as color
and shape, but it is also influenced by different contexts [33].
To illustrate this, we show an example in Fig. 10 where the two
images in the first row show the same clown in pink pants.
The second row shows fixation heat maps as well as maps
from several state-of-the-art models such as Judd, GBVS, and
Saliency Tree algorithm. Our predicted saliency maps using
the learning method are shown in the last row. From the second
row, it is clear that, according to the context change, the same
clown’s saliency degree has increased. This kind of “context
influence on object’s saliency” can not be captured without
learning from human fixation data. Furthermore, saliency
detectors, such as GBVS, and Saliency Tree do not perform
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Fig. 8. Average precision-recall and ROC curves of all saliency fusion strategies (results collapsed on both the MIT and imgsal datasets). For better viewing
purpose, here we show recall [0.1, 0.8] in (a), and false positive rate [0, 0.5] in (b). a) Precision-recall. b) ROC.

Fig. 9. Average AUC score on the MIT and Imgsal datasets.

very well if only given “low-level” features, such as color,
location, gradient histogram. This is because similar objects
produce highly correlated “low-level” features, which could
only confuse a classifier in a different “context” scenario. On
the other hand, “high-level” features, such as in our individual
prediction models, are especially good at representing this
“context” relationship as these models are designed to describe
a local area with its surroundings. Hence, our fusion based
strategies excel in capturing the “context” aspects. In Fig. 10,
last row, it is clear that our learning based para-boosting
model successfully captures the context influence, and adjusts
the saliency degree of the clown in pink pants accordingly.
This example provides the basic motivation behind our para-
boosting model, and explains its good performance.

1) Model Choice and Comparison: A natural question
regarding our late fusing schema is that how many individual
models are needed to achieve good performance? Is it true
that the more, the better? To explore the answer, we push our
proposed para-boosting schema to its limit, that is, reducing
as many individual models as possible while keeping similar
performance. It turns out that decreasing the number of models
to 3 does not affect learning based para-boost strategy very
much while non-learning based schema are affected drasti-
cally. We thus choose the top 3 performing models among
our 13 testing models: GBVS [18], SVO [30], and Judd [28].

The PR and ROC curves as performance comparison
between fusing all models and the top 3 individual models
are shown in Fig. 11. Generally speaking, non-learning based
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Fig. 10. Illustration of image context’s influence on objects (image example
from the MIT database). The clown in pink pants has different saliency degree
as image context changes from left to right. first row: Original images, second
row: Ground truth saliency map overlaid with original image, third, fourth and
fifth row: Judd, GBVS and Saliency Tree saliency map overlaid on the original
image, last row: Our learning based para-boost schema (linearSVM) saliency
map overlaid on the original image. This result indicates that our proposed
schema, using fixation data for learning, captures the influence of changing
context on the same object.

fusing methods are less consistent than learning based meth-
ods. Non-learning based methods such as Bayes, Min, Max
and Sum, using the top 3 models outperform fusing all models
since selecting the top 3 models helps exclude the dominant
influence brought in by relatively worse performed models.
Unlike non-learning based fusing methods, learning based
fusion techniques such as Gboost, Mboost, LSVM, NLSVM
and Density demonstrate similar performance when fusing the
top 3 models and all models as the learning procedure can
block inferior individual models’ influence. This comparison
indicates that a dimensionality reduction operation is possible
while retaining the performance.

Furthermore, the mean average precision (mAP) and AUC
of 13 and 3 models are reported in Table I over the MIT

TABLE I

SALIENCY PREDICTION RESULTS OF FUSION METHODS USING
ALL 13 (1ST ROWS) AND THE TOP 3 MODELS (2ND ROWS)

USING mAP AND AUC SCORES ON THE MIT DATASET

dataset [28]. For non-learning based approaches, significant
AUC improvement (from 0.7229 to 0.8759 for Min rule, from
0.8192 to 0.8664 for Max rule, and from 0.8251 to 0.8865 for
Naive Bayesian) is observed, while learning based methods
show no obvious difference. Besides, Linear SVM is more
stable than other fusing methods in terms of mAP and AUC
variance (LSVM-13: mAP as 78.57% and AUC as 0.8910;
LSVM-3: mAP as 78.71% and AUC as 0.8728) and Modest
Adaboost (MBoost-13: mAP as 65.27% and AUC as 0.8837;
MBoost-3: mAP as 66.85% and AUC as 0.8860).

For more direct illustration, examples of fusing saliency
map the top 3 and 13 models are shown in Fig.6. The
individual model results are shown in Fig. 12 for compar-
ison purposes. The saliency map results further echo our
previous analysis that learning-based fusing approaches, such
as linear SVM (LSVM), non-linear SVM (NLSVM), Gentle
adaboost (Gboost) and Modest adaboost (Mboost) are more
stable in saliency map generation while non-learning based
fusing approaches show great variance.

It is worthwhile to point out that the performance of learning
strategy remaining the same as the reduced set of selected
models conveys important information. Fusion of our manually
selected the top 3 models is supposed to be good since it
discards the influence of weak models. Thus, the similar
performance indicates that our score-level fusion model has the
capability of distinguishing “good” and “bad” models through
learning.

2) Model Consistency on Image Samples: To further inves-
tigate fusion models’ strengths and weaknesses, in Fig. 13, we
illustrate the most and the least consistent images for which
our fusion models agree with Human IO. It can be seen that
our fusion models work well when there is a clear salient
object, and fall short at images without well-defined visual
attention spot. This is reasonable as different models may
produce different maps for the last case, hence fusing them
may not achieve a more focused saliency region in the final
saliency map.
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Fig. 11. Performance comparison of different choice of model selection (results collapsed on both the MIT and imgsal dataset). For better viewing purpose,
here we show recall [0.1, 0.8] in (a), and false positive rate [0, 0.5] in (b). a) Precision-recall. b) ROC.

Fig. 12. Saliency map results of individual models (image example from the MIT dataset [28]).

TABLE II

AUC RANKING OF EXAMPLE IMAGES IN FIG. 7 (LSVM: LINEAR SVM, Mboost: MODEST AdaBoost)

Besides, sample saliency maps from top 5 individual models
and fusion results of the top 3 methods are shown in Fig. 7,
and the corresponding model rankings are shown in Table II.
These sample images cover from street scene and people
to simple patterns image. It can be seen that our proposed
approach shows superiority over other models for different

image types. Saliency maps from fusing models are more con-
centrated and focused comparing to results of each individual
model. According to AUC and ROC curves reported for each
individual image, the fusing results are closer to the ground
truth, which indicates that our score level fusion model reduces
the gap between the proposed model and Human IO model.
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Fig. 13. Highest AUC score and lowest AUC score images for three fusion
methods using all 13 models in the MIT database. Generally, least consistent
images (lowest AUC score) are more cluttered.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we proposed different score-level fusion strate-
gies including transformation based, classification based, and
probability density based fusion schemes for combining state-
of-the-art saliency prediction models. Experimental results
indicate that our score-level fusion strategies outperform
state-of-the-art individual models and score closeset to the
performance of the human inter-observer model. Furthermore,
through extensive comparison, we showed that our proposed
fusion techniques show good performance over a broad range
of images, and enriched the applicability range by fusing
different individual saliency models. Note that our proposed
fusion techniques are general and as more discovered predic-
tive models can be combined to construct a strong model.

We also discussed the performance of fusing top indi-
vidual saliency models and the most comprehensive set of
fusion techniques for saliency prediction. It is proven that
our proposed fusion strategy excels the state-of-the-art work
as it intelliegntly combines advantages of different individ-
ual saliency prediction models. Especially, classifiers which
are designed for better generalization and less over-fitting
purposes, such as modest adaboost, show their power over
other learning models. For future work, we aim to explore
the possibility of adaptive selection of individual models to
achieve better performance. Furthermore, given one fusion
strategy, it would be valuable to analyze its weakness and how
its performance can be enhanced by adding new individual
saliency models.
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