
  

 

Emerging wearable technologies offer new sensor placement op-

tions on the human body. Particularly, head-mounted glass-

wear opens up new data capturing possibilities directly from the 

human head. This allows exploring new cyber-robotics algo-

rithms (robotics sensors and human motor plant). Glass-wear 

systems, however, require additional compensation for head mo-

tions that will affect the captured sensor data. Particularly, pe-

destrian dead-reckoning (PDR), activity recognition, and other 

applications are limited or restricted when head-mounted sen-

sors are used, because of possible confusion between head and 

body movements. Thus, previous PDR approaches typically re-

quired to keep the head pointing direction aligned with the walk-

ing direction to avoid positional errors. This paper presents a 

head-mounted orientation system (HOS) that identifies and fil-

ters out interfering head motions in 3 steps. Step 1 transforms 

inertial sensor data into a stable normalized coordinate system 

(roll/pitch motion compensated). Step 2 compares walking pat-

terns before and after a rotating motion. Step 3 eliminates inter-

fering head motions from sensor data by dynamically adjusting 

the noise parameters of the extended Kalman filter. HOS has 

been implemented on a Google Glass platform and achieved high 

accuracy in tracking a person’s path even in the presence of head 

movements (within 2.5% of traveled distance) when tested in 

multiple real-world scenarios. By eliminating head motions, 

HOS not only enables accurate PDR, but also facilitates the task 

for downstream activity recognition algorithms. 

 

I. INTRODUCTION 

The industry for smart personal devices with integrated sen-
sors suitable for position tracking and activity recognition has 
been emerging over the last few years. While this trend began 
first with Smartphones, various devices such as smart watches, 
fitness trackers, and increasingly head-mounted devices are 
now entering the market. Prominent examples are Google 
Glass, Microsoft’s HoloLens and Oculus Rift. These head-
mounted devices are equipped with inertial sensors (IMU). 
While wearing them, the user is constantly recording valuable 
sensor data. This information can be used to make this tech-
nology smarter by performing activity recognition and creat-
ing situation awareness for the device, which can then adapt 
its behavior to the current user activity. This could greatly en-
hance many device applications, e.g., music streaming with 
Google Play Music: for different activities (e.g., working out, 
making food, cleaning the house, or driving a car), the service 
adapts its music offerings; but currently users have to manu-
ally indicate which activity they are engaged in. We showed in 
previous work that head-mounted sensor systems can success-
fully distinguish between many daily activities through online 
analysis and classification of the streaming IMU data, but this 
was when the head was held pointing straight forward [10]. 
Head-mounted devices can also be used to track motions with- 
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out external reference systems in 3D Augmented Reality Vir-
tual Rooms. This allows users to create training simulations, 
exercise in environments or help with home improvement by 
visualizing remodeling projects (e.g., Lowe’s Holoroom), with 
again the current problem that head and body motions may be 
confused.  

Tracking motions and activities is difficult. The head pointing 
direction may not always align with the body orientation, 
which can lead to a wrongly classified activity or a positional 
error in PDR. For this reason, we developed a stabilization al-
gorithm that enables all these applications. To test and validate 
our work, we use PDR as one of the most stringent applica-
tions, and we focus on being able to recover walking direction 
and trajectory over time even as the head occasionally turns 
side to side [figure 1]. 

 

 

Figure 1: Possible head pointing directions (red arrows) 

and walking directions (green arrows). Head-mounted pe-

destrian dead-reckoning systems need to compensate for 

head motions for correct position tracking (green path) 

and to avoid false positional tracking (red path). 
 

PDR has been well studied for various sensor systems and is 
mainly used to supplement other navigation methods. PDR 
systems have been applied to many use-cases with different 
placements of sensors on most body parts (helmet, foot, back-
packs, pockets, wrist, and legs). Most PDR systems work after 
the same principle: Identifying footsteps via accelerometer and 
aligning them to the proper heading direction via orientation 
sensors such as gyroscope and compass. A team of the Univer-
sity of Bremen developed a safety helmet for emergency ser-
vices. IMU sensors and a GPS receiver attached to the helmet 
were used for indoor/outdoor navigation. Errors were as large 
as 5.4% of the total distance travelled with a cumulated model 
step and 2% with a neural network prediction [1] [2]. How-
ever, the helmet needs to be pointed in the direction of walking 
at all times and cannot compensate for head motions [1]. IMU 
sensors have also been attached to shoes in several projects. 

Walking compass with head-mounted IMU sensor 
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The MiPN Project focused on supporting a soldier’s GPS sys-
tem, particularly for indoor tracking. The NavShoe System 
was developed for firefighters or other emergency first re-
sponders. In both cases, the sensor data was merged with GPS 
data for long-term drift compensation. In general, the position 
error for foot-mounted sensors varies between 0.3% - 2% of 
the distance traveled [4] [7], but this requires an additional bat-
tery-powered device on the foot. Smartphone-based indoor 
navigation systems reached 0.19% - 2.92% accuracy depend-
ing on the smartphone’s placement [5] [6] [8]. All tested PDR 
systems only work reliably if the orientation of the sensors 
aligns with the orientation of the walking direction. PDR sys-
tems have also assisted vision systems and decreased posi-
tional error to 0.5%. Navigation applications can be found in 
the tourism industry, particularly guiding tourists through mu-
seums, train and subway stations, and large buildings. Blind or 
visually impaired people could also benefit from a navigation 
assistant [9]. For instance, the Walking Compass tries to iden-
tify walking direction from accelerometer patterns [3]. Results 
show different performances depending on the position the 
smartphone is carried in: Their accuracy is ±5º (palm), ±3º 
(pant pocket), ±8º for swinging-hand. However, errors were 
reported when user vary the phone’s orientation during opera-
tions. Instead of aligning footsteps with the heading, one could 
also double integrate the acceleration. However, due to the 
complex composition of acceleration data (gravitational acc., 
linear acc., coriolis acc., centrifugal acc., static noise, and ac-
celeration bias), double integration is not a suitable technique 
for low-cost IMU sensors since it requires very accurate linear 
acceleration data. Overall, the performance of current PDR 
systems is promising, however, many restrictions apply partic-
ularly for the orientation of the sensors. Short-term errors are 
related to incorrect heading directions [2] that can be caused 
by rotational motions (body, head, arm). Thus most applica-
tions that do not have efficient compensation methods will be 
restricted to keep their sensor orientation in a fixed orientation 
(e.g., perpendicular) to the walking direction [5]. This is why 
no head-mounted PDR system has been presented yet, which 
actively compensates for rotational head-motions and per-
forms comparably to existing PDR systems. The HOS ap-
proach presented here is based on head-mounted IMU data and 
has a head-motion compensation algorithm. This algorithm 
can effectively compensate head-motions as long as they do 
not overlap with rotational body motions. Synchronous rota-
tional movements of head and body lead to a confusion and 
require additional information or complementary sensor data 
(e.g., GPS tracking over time) to recover the correct orienta-
tion information. The HOS approach is described in detail in 
the following sections, and it has a set of unique contributions: 
(1) analysis of head-mounted IMU data during walking and 
head movements, (2) effective segmentation technique of ro-
tational motion sensor data, (3) selection of critical features for 
filter tuning, (4) fusion algorithm with dynamical tuning, (5) 
collection of test scenarios. 
 

II. ANALYSIS OF IMU DATA DURING WALKING ACTIVITY 

To understand the frequency composition of walking, 60 sec-
onds of X-Y plane accelerometer sensor data was recorded. 
During the recording, the head pointed in multiple directions 
within a ±60º range from the walking direction (figure 2). The 
sensor data was then divided into multiple 3 sec windows and 
transformed into the frequency spectrum. Two frequencies 

showed a critical magnitude (figure 3). The frequency value of 
the peaks depends on the walking speed (and frequency of 
footsteps), but can be classified as:  

Side Swinging Peak: Body swings to the right and left side for 
every step taken. The accelerometer will capture the swing 
motion direction change. One full swing sequence requires 
two steps.  

Stepping Peak: Each step generates linear acceleration front-
to-back (in addition to a vertical component). When walking 
with the head straight (aligned with walking direction), steps 
are dominantly recorded by the x axis, while swing is captured 
by the y axis. When walking with the head pointed sideways, 
both x and y axes measure both stepping and swinging. With 
the head turned 90º, the peaks would be measured by the re-
verse axes (swinging by x, stepping by y). 

 

Figure 2: X/Y axis detect swinging and stepping in differ-

ent magnitude depending on head orientation. 

 

Figure 3: Frequency Spectrum of walking activity with 

head turned in multiple orientations. 
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III. THE MEASUREMENT DETAIL 

A.  Overview 

HOS records IMU data at 50 Hz. The Google Glass platform 
provides the accelerometer data as well as an orientation esti-
mator for Roll and Pitch. The architecture is structured around 
the 3 major processing steps summarized in figure 4. 

 
Figure 4: Overview of the system architecture 
 

Step 1 pre-filters sensor data and transforms it into a stable 
normalized coordinate system to compensate for roll and pitch 
changes. This is necessary to measure the accelerometer data 
in a stabilized X/Y plane. Step 2 identifies walking patterns 
among the accelerometer axis x and y. A step recognition al-
gorithm determines the step duration from the walking patterns 
by detecting peaks in the acceleration that correspond to foot-
falls. Head motions can be identified by changes in the walk-
ing pattern described by a confidence parameter. Step 3 uses 
this parameter to eliminate gyroscope data from head-motions. 
The result of the 3 steps is the yaw angle which describes the 
heading direction of the pedestrian. If combined with step 
counts of Step 2, the position of a person can be tracked. 

B. Steps in Detail 

Step 1: Compensation for Roll and Pitch Motions 
In this step, the raw IMU sensor data of the Google Glass plat-
form is first pre-filtered (offset compensated to minimize gyro 
drift). Then, the data is transformed into the normalized coor-
dinate system. This transformation is necessary to measure 
two critical types of sensor data during walking independently 
of the actual head orientation [10].  

(1) The angular velocity ωz around the z-axis (vertical axis, 
perpendicular to the ground plane) which is used to calculate 
the heading direction 𝜑. 

(2) The acceleration ax and ay along the x and y axis (in the 
plane parallel to the ground plane) which is used to calculate 
the confidence parameter Cgyro for the gyroscope data. 

The transformation is accomplished by two equations (1) (3), 
where a is a 3x1 vector representing the accelerometer sensor 
data and ω is a 3x1 vector representing the angular velocities. 

𝐚𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 𝐑𝐚
−𝟏 ∙ 𝐚𝑠𝑒𝑛𝑠𝑜𝑟 (1) 

𝐑𝐚 = 𝐑𝒙(𝜙)𝐑𝒚(𝜃) = [

cos(𝜃) 0 −sin(𝜃)

sin(𝜃)sin(𝜙) cos(𝜙) cos(𝜃)sin(𝜙)

sin(𝜃)cos(𝜙) −sin(𝜙) cos(𝜃)cos(𝜙)
] (2) 

𝛚𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 𝐑𝛚
−𝟏 ∙ 𝛚𝑠𝑒𝑛𝑠𝑜𝑟  (3) 

𝐑𝛚 = [

1 0 −sin(𝜃)

0 cos(𝜙) sin(𝜙)cos(𝜃)

0 −sin(𝜙) cos(𝜙)cos(𝜃)
] (4) 

Note that this formulation using Euler Angles suffers from a 
singularity at 𝜃 = ±90° which is not an issue here because it 
relates to an unrealistic head pose. The IMU data is now com-
pensated for roll and pitch motions. Only the normalized z-
axis of the IMU is aligned with the gravity vector. The normal-
ized x- and y- axis measure sensor data without any gravity 
component. In this gravity-compensated coordinate system, 
the sensor data is now used for the walking pattern analysis. 

Step 2: Walking Pattern Analysis 
The HOS-Filter measures changes in the walking pattern as 
captured in the accelerometer data. These changes are used to 
calculate a confidence parameter on how much the HOS-Filter 
can trust the gyroscope data. This confidence parameter is the 
only critical feature to evaluate a detected rotational motion. 

To accomplish step 2, the transformed gyroscope is used to 
identify moments of rotational motions. These timestamps are 
split at segmentation points, then analyzed in a Gyroscope Ac-
tivity Zone and an Observation Zone. 
Segmentation Points: The segmentation points (red big arrow 
in figure 5 and 6) are segmented by a necessary minimum peak 
height (absolute value) of normalized gyroscope data as well 
as necessary minimum peak distance.  
Gyroscope Activity Zone: The gyroscope activity zone is an 
isolation zone around the segmentation point that involves gy-
roscope activity and must not be used for evaluation of the 
walking pattern. The algorithm extracts a time-window around 
a segmentation point until the normalized gyroscope data falls 
below a set threshold. The gyroscope activity zone only tells 
us if the gyroscope captured a rotational motion. It does not 
tell us if the head direction or the walking direction changed. 

Figure 5: Walking a straight line with changing head 

pointing direction. Gyroscope activities with a peak 

threshold will be captured (red arrow) and the gyroscope 

activity zone segmented (green area) 
 

Observation Zone: The observation zone is necessary to eval-
uate the walking pattern before and after the gyroscope activity 
zone. It will create the most critical feature to calculate the 
“confidence” level of gyroscope data. Two fixed-length obser-
vation zones are extracted, one before (B) and one after (A) a 

Figure 6: The Peak Ratio will be observed before (B) and 

after (A) the Gyroscope Activity Zone and will provide 

valuable information if the walking pattern changed 
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gyroscope activity zone (figure 6). These observation zones 
are up to 180 samples large (3.6 sec), they are compared to 
each other and analyzed for similarity. The similarity is shown 
as a confidence parameter (1 = highest similarity, 0 = no sim-
ilarity). The larger the similarity, the less likely a head motion 
occurred, since the alignment of the head to the walking pat-
tern remains unchanged between A and B. To calculate the 
similarity, we need to first measure the Peak Ratio Pratio. 

Peak Ratio 𝑃𝑟𝑎𝑡𝑖𝑜 =
𝑃𝑋1

𝑃𝑋2
 (5) 

This value is calculated by diving the magnitude of PX1 by PX2. 
Both parameters PX1 and PX2 represent the two critical magni-
tude peaks of the FFT-transformed accelerometer data window 
of the x-axis in the normalized coordinate system. Dividing 
PX1 by PX2 works amplifying on the final Peak Ratio. Once one 
magnitude increases (PX1 or PX2), the other one declines (PX2 

or PX1). The Peak Ratio represents the ratio between swinging 
and stepping activity and is directly related to the head point-
ing direction relative to the walking direction. Depending on 
the head angle, the peak ratio changes accordingly (figure 7). 

Figure 7: Calculation Example for Peak Ratio with Head 

Straight and Head Sideways 

Next, peak ratio data of the observation zones are selected. 

This data is necessary to evaluate the walking pattern before 

and after the gyroscope activity zone. For both zones, the ex-

pected value μ and the standard deviation σ are calculated and 

used to calculate the confidence parameter. This parameter 

describes the trust in the gyroscope data. The confidence pa-

rameter equation is derived from [11] and approximates the 

intersection area of the two Gaussian Bell curves. The confi-

dence parameter is calculated with the Complementary Error 

Function erfc. The max confidence is 1 for a max intersection 

area. The min confidence is 0 for no intersection area. 

Confidence Parameter 𝐶𝑔𝑦𝑟𝑜 = erfc (
|𝜇1 − 𝜇2|

√2 ∙ (𝜎1
2 + 𝜎2

2)
) 

 

(6) 

Step 3: Fusion Algorithm 
The system uses a fusion algorithm to combine IMU measure-
ment data (accelerometer, gyroscope) with the derived fea-
tures: step size (assuming const. 71.6 cm length), walking ve-
locity (step size / step duration), and the confidence parameter 
(figure 9). The confidence parameter is the only feature to 
evaluate if the gyroscope data is counted as a head motion or 
not. If the gyroscope detects a rotational motion, the system 
dynamically adjusts the measurement noise matrix. For this 
step, the confidence parameter plays an important role since it 
describes the ‘trust’ in the gyroscope data. A large parameter 
expresses high trust (no head motions). Barely or no intersec-
tion show low ‘trust’ into the gyroscope data. This information 
will then be used for the Extended Kalman Filter Fusion Algo-
rithm (figure 9).  

 

Figure 9: Fusion Algorithm to combine IMU Data with 

derived features. 

A Constant Velocity / Constant Angular Velocity Model 
(CVω–Model) was developed. The model is described with 
two state dynamics equations. The first is called the state tran-
sition model. This equation calculates the system state vector 
xk by the system’s dynamic function f(xk-1,uk-1) with uk-1 as the 
control vector and added process noise ωk-1. The second equa-
tion describes the observation model. The observation vector 
zk is calculated by the measurement function h(xk) and the 
measurement error source vk. The Extended Kalman Filter 
uses two steps to fuse the sensor data: The prediction step and 
the update step. 

(1) Prediction Step 

The state estimate x of the pedestrian includes the positional 
information x and y, the heading angle 𝜑, and the absolute ve-
locity v. The CVω-Model does not require the heading angle 
𝜑 to be constant. This model only assumes that the angular 
velocity ω (turning rate of the pedestrian), will stay constant. 
In addition the absolute velocity is measured via the step de-
tection and as well remains constant in the CVω-Model. The 
following equation describes the implementation of the sys-
tem’s dynamic function f(xk-1,uk-1). 

𝑥𝑘 =

[
 
 
 
 
𝑥
𝑦
𝜑
𝑣
𝜔]

 
 
 
 

𝑘|𝑘−1

=

[
 
 
 
 
𝑥
𝑦
𝜑
𝑣
𝜔]

 
 
 
 

𝑘−1|𝑘−1

−

[
 
 
 
 
𝑣𝑇𝑐𝑜𝑠(𝜑)

𝑣𝑇𝑠𝑖𝑛(𝜑)
𝜔𝑇
0
0 ]

 
 
 
 

 

 

(7) 

 

 

 

Figure 8: The confidence parameter approximates the in-

tersection area of the two Gaussian Bell Curves. Both 

curves represent the Observation Zone before and after 

the gyroscope activity. 
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(2) Update Step 

The first part of the update step is calculating the innovation 
ỹ𝑘 by subtracting the predicted measurement h(x) from the 
sensor measurement. 

�̃�𝑘 = [

𝑟
𝑟

𝑇
𝜔𝑔𝑦𝑟𝑜

]

𝑘

− [
√(𝑣𝑇𝑐𝑜𝑠(𝜑))2 + (𝑣𝑇𝑠𝑖𝑛(𝜑))2

𝑣
𝜔

]

𝑘|𝑘−1

 

 

(8) 

The measurement noise matrix R of the fusion filter is dy-
namic. It is adjusted in every update cycle with the confidence 
parameter Cgyro of the gyroscope data. Since the noise level 
should decrease with increasing confidence parameter and 
vice versa, Cgyro needs to be subtracted from 1. It is multiplied 
with a tuning factor k to adjust its range for the fusion filter. 

𝐃𝐲𝐧𝐚𝐦𝐢𝐜 𝐍𝐨𝐢𝐬𝐞 𝐌𝐚𝐭𝐫𝐢𝐱:           𝑹 = 𝑹𝒔𝒕𝒂𝒕𝒊𝒄 + 𝑹𝒅𝒚𝒏𝒂𝒎𝒊𝒄   (9) 

Dynamic component:  𝑅𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = [

0 0 0
0 0 0
0 0 𝑘 ∙ (1 − 𝐶𝑔𝑦𝑟𝑜)

] 

 

(10) 

Static component: 𝑅𝑠𝑡𝑎𝑡𝑖𝑐 = [

𝜎𝑚𝑟
2 0 0

0 𝜎𝑚𝑣
2 0

0 0 𝜎𝑚𝜔
2

] 

 

(11) 

If the belief Cgyro in the gyroscope data is high (EKF noise is 

low), the fusion filter will trust the gyroscope data and vali-

date gyroscope activity as changes in the walking direction. If 

the trust in Cgyro is low (EKF noise is high), the fusion filter 

will consider the gyroscope data related to head-motions and 

will not take it into account. The output of the Extended Kal-

man Filter is a vector of five entries including the position and 

heading angle of the pedestrian. 

 

IV. TEST RESULTS 

A. Performance Tests of HOS 

Two types of tests were performed on a university campus 

parking lot. The first test includes a basic case test evaluating 

the performance of three base scenarios. The second test in-

cludes a more diverse testing setup with multiple base scenar-

ios combined. Each test scenario was repeated three times. 

We analyzed a total of 12 datasets. We are particularly inter-

ested in the short-term detection since of the nature of PDR 

systems assisting GPS systems and other navigation systems 

that provide a long-term stability. 

B. Basic Case Testing 

HOS was tested with datasets of 30 sec of one subject. Each 
dataset counts around 50 steps describing a specific case. In 
the case testing, the success rate of the Filter Algorithm was 
tested for every case independently. 

Setup: The performance of HOS was first tested on 3 basic 
cases (figure 10): Case 1 (Walking straight line, no head di-
rection change), Case 2 (Walking straight line, with head di-
rection change), and Case 3 (Walking with turn, no head di-
rection change). 

 

Figure 10: Three basic case scenarios (Red Arrow: Head 

pointing direction, Green Arrow: Walking Direction) 

 

 

Results 

Case 1 and Case 3 – no head motions involved 

For Case 1 and Case 3, the results are expected to be similar to 
current PDR systems, since the head pointing direction aligned 
with the walking directions at all times. Like previous PDR 
systems we measure error as a percentage of distance traveled 
(figure 11). When a walking direction change occurred, the fil-
ter algorithm successfully validated the rotational activity as a 
change in walking direction and took all rotational motions 
into account. 

Case 2 – head motions involved 

For Case 2, the filter algorithm successfully detected head-mo-
tions and disregarded the gyroscope activity. Standard PDR 
systems would fail in this case scenario since the change in the 
head pointing direction would have been validated as a change 
in the walking direction. The error for standard PDR systems 
would increase depending on the heading angle error Δ𝜑: 

PDR Error =  √2 ∙ (1 − cos (∆𝜑) 

 

(12) 
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Figure 11: Results of the Basic Case Testing. (*) PDR er-

ror from system in [1] [2] [5] [6] [8]. 

 

C. Mixed Case Testing 

Setup 

HOS was tested with three datasets containing data of a walk-
ing subject of 30 sec. Each dataset counts 50 steps (35 meters) 
and is a combination of multiple base cases (figure 12). In the 
scenarios, the success rate of the Filter Algorithm was tested.  

Figure 12: Motion sequence for mixed case testing 
  

Results 
 

 
Figure 13: Combination of Case 1, Case 2, and Case 3. The 

blue path represents the walking path, the white arrows 

are the head pointing directions. The red markers show 

head motion activity, the green marker represents a walk-

ing direction change 
 

HOS successfully identified and filtered the head-motion from 
the recorded data (figure 13). HOS performed an error lower 
than 2.5% of the traveled distance. Standard PDR systems 
would have already gained an error of approximately 9.1 me-
ters due to the left head turn which would have been misclas-
sified as a left body turn. Since this error would further grow 
over time, navigation would not be possible (figure 14).  

 

Figure 14: Results of Mixed Case Testing (*) PDR error 

from system in [1] [2] [5] [6] [8]. 

V. FUTURE IMPROVEMENTS AND CONCLUSION 

We have shown that interfering head motions can be success-

fully detected and compensated for in PDR applications. 

However, in real-world scenarios, head rotations and body ro-

tations may occur at the same time or head motions could be 

unrecognized when performed gradually over a longer time. 

For this work, the walking pattern provided critical infor-

mation about whether a head-motion occurred. To do motion 

tracking performed by both head and body at the same time, 

more features besides the confidence parameter (e.g. rota-

tional acceleration may exhibit different patterns during head 

turns and body turns) need to be extracted from the sensor 

data and walking pattern. These features would need to be 

tested on many subjects who are both walking and moving 

their head in unconstrained real-world situations. In addition, 

head tracking can be performed during many activities. In fu-

ture research, we will focus on showing that the HOS algo-

rithm is also suitable for different activities with recurring pat-

terns such as jogging, running, biking, and skating. By provid-

ing a valuable approach for PDR from a head-mounted sensor 

system, we hope that HOS made a contribution to the devel-

opment of navigation methods via wearable technology. 
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