
  

 

Smart manufacturing technologies are emerging which com-

bine industrial equipment with Internet-of-Things (IoT) sen-

sors to monitor and improve productivity of manufacturing. 

This allows for new opportunities to explore algorithms for 

predicting machine failures from attached sensor data. This 

paper presents a solution to non-invasively upgrade an existing 

machine with an Inertial Machine Monitoring System (IMMS) 

to detect and classify equipment failure or degraded state. We 

also provide a strategy to optimize the amount, placement loca-

tions, and efficiency of the sensors. In experiments, the system 

collected data from 36 inertial sensors placed at multiple loca-

tions on a 3D printer. Normal operation vs. 10 types of real-

world abnormal equipment behavior (loose belt, failures of 

machine components) were detected and classified by Support 

Vector Machines and Neural Networks. Using under 1 minute 

of recording while running a test print, a recursively discovered 

best subset of 4 to 9 sensors yielded 11-way classification accu-

racy over 99%. Our results suggest that even a small sensor 

network and short test program can yield effective detection of 

machine degraded state and can facilitate early remediation. 

 

I. INTRODUCTION 

Unplanned downtime of machines costs industrial manufac-
turers an estimated $50 billion annually [Emerson, 2017]. 
Equipment failure is the cause of 42 percent of this un-
planned downtime. The results are excessive maintenance, 
time-consuming repair or equipment replacement cost. How-
ever, worst case scenarios can be avoided by upgrading in-
dustrial equipment with smart predictive machine failure sys-
tems. Such systems monitor equipment with a sensor network 
and recognize abnormal machine behavior during run-time. 
In case of an identified failure, the system could schedule on-
demand maintenance service to avoid larger economical 
damage to manufacturers. This is particularly important for 
factory machines, of which more than 90% are not yet net-
work connected, and the vast majority are more than 15-
years-old [Business Insider, 2016]. Upgrading equipment 
with predictive failure systems could save cost and increase 
efficiency and productivity, not only for the manufacturing 
industry. It is predicted that by 2025, the industrial IoT mar-
ket will be worth $11 trillion and predictive maintenance can 
help companies save $630 billion over the next 15 years 
[McKinsey Global Institute Report, June 2015]. Although 
predictive maintenance has the most potential economic im-
pact in factories (e.g. CNC, assembly robots, Laser Cutters, 
Pick-and-Place Machines), there is a wide field of potential 
applications for predictive failure systems. This ranges from 
Transportation (vehicle monitoring, condition-based mainte-
nance of engines ranging from scooters to jumbo jets), Offic-
es (e.g., elevator surveillance), Retail (e.g., commercial wash-
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ing machines), but also could be implemented in high-end 
consumer and hobby products such as espresso machines or 
3D printers. Fig. 1 shows an example. 

 

Figure 1: Sample decisions of a customized Machine 

Monitoring Setting (3D printer with belt-driven print 

head that moves along 3 axes) 

IoT-based, network-connected, and offline machines, could 
all benefit from a predictive machine failure system. What 
are the critical challenges to predicting equipment failure? 
First, abnormal behavior of a machine needs to be detected 
and classified. Critical for the success of this step is the right 
combination of sensor hardware and data processing tech-
nique. Particularly, two types of sensors have proven to be 
valuable for equipment failure detection. First, microphones 
have been used to detect equipment failure with sound vibra-
tions. One example is the Fault Detection and Diagnosis of 
Railway Point Machines. A microphone records moving 
noise of switchblades during operations of railway infrastruc-
ture. Statistical Features are used to detect and classify three 
failure scenarios with an accuracy exceeding 94.1% [1]. Mi-
crophones have also been used for Acoustic Processing for 
Joint Fault Diagnosis of Legged Robots [2]. Microphone-
based approaches mainly focus on sound in the high-
frequency spectrum [3]. Our approach rather focuses on low-
frequency vibrations (up to 25 Hz) which covers the major 
frequency spectrum of motions in linear axis machines. For 
this reason, we decided to design our hardware with a net-
work of Inertial Measurement Units (IMUs). These devices 
are sensor cluster which embed three-axes accelerometers 
and gyroscopes (and sometimes magnetometers). They are 
well suited to capture low-frequency vibrations and motions 
of mechanical machine components. IMU sensor networks 
have been used for many applications including Wind-turbine 
Blade Condition Monitoring [4]. IMU-based approaches have 
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shown to measure deformations of a single linear axis by 5 
μm (linear error) or 15 μrad (angular error) due to axis deg-
radation [5]. A research team from the Chongqing Technolo-
gy and Business University developed a system for fault 
identification and classification in gearboxes. Statistical fea-
tures of inertial vibration data were analyzed in a convolu-
tional neural network to distinguish between 12 discrete gear 
and bearing fault combinations. Although this approach per-
forms well on the selected fault patterns (96.8%), it is limited 
to a number of discrete fault combinations (e.g., single gear 
failure, pair of gears failure). Our approach isolates each fail-
ure as an independent class and thus does not require a ma-
chine failure to occur in a certain combination of multiple 
faults [6]. With IMMS, we are building a universal sensor 
network solution that also uses vibrations as critical signals. 
IMMS is flexible to apply to various machinery, primarily 
focusing on linear and rotational motions. The approach pre-
sented in this paper has a set of unique contributions: (1) a 
robust hardware design to record inertial sensor data from 36 
locations (2) an effective communication protocol to collect 
sensor data at 50 Hz (3) the identification of critical features 
(4) a database with ten recorded failure scenarios (5) a tech-
nique to classify and learn future failure scenarios in a short 
time and (6) a strategy to optimize amount, placement, and 
efficiency of sensors. 

II. THE IMMS APPROACH 

1. Robust Hardware Design of the sensor network 

The network consists of two types of modules: The Sensor 
Module [Fig. 2] and the Master Module. The network counts 
36 daisy-chainable Sensor Modules that are connected over 
a bus system to the Master Module. The sensor network is 
split in three independent bus branches to limit bus noise and 
to provide a stable communication speed of 50 Hz [Fig. 3].  

 
Figure 2: Design of the Sensor Modules to capture ma-

chine vibrations 
 

Each Sensor Module consists of an IMU sensor 
(LSM9DS0), to collect gyroscope and accelerometer data. 
The IMU sensor is connected via I2C to an on-board micro-
controller (ATmega328). The Sensor Module operates on 
stabilized 5V (LD1117AS33TR) and powered via the 9V 
supply bus. The RS485 serial communication is half-duplex 
and performed with the SP3485 IC. The IMU measures iner-
tial motions as unsigned int16 (2 bytes), the Sensor Module 
communicates the data bytewise to the Master Board. A total 
of 12 bytes is transmitted (3x acceleration, 3x gyroscope) in 
each measurement cycle.  

The Master Module collects data of all 36 Sensor Modules 
and forwards it to the PC for further processing. We use the 
Arduino Due which is equipped with four UART (Universal 
Asynchronous Receiver-Transmitter) ports as well as a native 
USB port that provides sufficient bandwidth for the transmis-
sion of all sensor data. Three UART ports receive data from 
the three sensor branches (250kHz Baud Rate), while the 
USB port forwards data to the PC (4,000kHz Baud Rate). 

2. Communication Protocol 

Every 20 ms (50Hz), the Master Module collects IMU data of 
all 36 Sensor Modules (432 bytes), adds a measurement 
timestamp (4 bytes), combines all data to a large package 
(436 bytes) and passes it on to the PC. To collect the data 
efficiently, each Sensor Module is programmed with a unique 
ID. In every 20 ms cycle, the Master Module broadcasts a 
measurement command. All Sensors Modules synchronously 
collect IMU data and consecutively send it to the Master in 
ascending ID order. The serial transmission standard is 
RS485. The bus consists of four wires: Two communication 
lines, 9V supply, and GND. 

 

Figure 3: Wiring architecture of the sensor network. The 

green boxes represent Sensor Modules with unique IDs 
 

3. Identification of critical features 

To reduce the dimension of the sensor data and to prepare it 
for classification, features are extracted from the data. In this 
paper, we are testing our sensor network on a linear axes ma-
chine and only select the accelerometer sensor data for fea-
ture extraction. Accelerometers measure particularly linear 
motions and suit well for machines with movements along 
linear axes. For machines with rotational motions, we rec-
ommend using gyroscope data as well. For our experiments, 
we tested two approaches: (1) Statistical Features and (2) 
Vibration Frequency Diagrams. Statistical Feature Vectors 
represent the sensor data as a vector of length 1008. Each 
vector includes statistical features such as mean, kurtosis, 
skewness, variance, range, min, max, interquartile range, 
median absolute deviation, median, and most frequent value 
of the sensor data. Vibration Frequency Diagrams repre-
sents the sensor data in the frequency domain with the Fast 
Fourier Transformation (FFT). The data is stored in a matrix 
in which the vertical axis represents frequencies in the range 
between 0 and 25 Hz. In consideration of the Nyquist sam-
pling theorem, the maximum measurable vibration is 25 Hz 
(half of the 50 Hz sensor sampling rate). The horizontal axis 
describes the numbers of sliding FFT-windows. Each FFT-
window represents a FFT over sensor data of fixed length. 
The color of each cell in the Diagram describes the vibration 
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frequency occurrence. Brighter colors mean higher occur-
rence (FFT amplitude) [Fig. 4]. 

 
Figure 4: FFT-Diagrams describe vibration frequency 

occurrence over time. A 224 seconds dataset was de-

scribed with 112 FFT-windows of each two-second sensor 

data. This FFT-Diagram l 

scratches on surface  [Table 1]. 

4. Creating an extendable database 

IMMS must have information about the failure scenarios of 
the machine, in advance, to classify them. Therefore, ten fail-
ure or degraded machine state scenarios were created under 
real-world settings, and sample data was recorded and stored 
in the IMMS database. This database can easily be extended 
by recording sensor data of new failure classes. 

5. Classification technique for machine failure 

We tested classifiers with the IMMS database using the 
Matlab Classification Learner App and Neural Network 
Toolbox. Among all supported machine learning algorithms, 
the two best-performing classifiers are compared in detail in 
this paper: (1) A Support-Vector-Machine with six different 
Kernel variations, and (2) a Feedforward Neural Networks 
with various Hidden Layer Sizes. 

6. Optimization Strategy for sensors 

IMMS uses a greedy algorithm to identify the subset of sen-
sors that lead to the best classification result. This algorithm 
was applied to four independent sections of a machine test 
program. This optimization approach provides information 
on required number of installed sensors and placement loca-
tion. It also gives suggestions on how a machine test program 
should be composed for the optimized sensor cluster and can 
be optimized for duration.  

III. THE MEASUREMENT IN DETAIL 

A. Overview 

The architecture of IMMS consists of three major processing 
steps [Fig. 5]. In Step 1, the Master Module collects the IMU 
data of all Sensor Modules, combines it to one large package 
and forwards it with a measurement timestamp to the PC. 
Step 2 prefilters the sensor data and prepares it for feature 
extraction (Statistical Features or FFT Diagrams). All fea-
tures are stored in a feature vector. Step 3 performs classifica-
tion between 11 classes (normal operation + 10 failure sce-
narios). The feature vector is processed by a classifier (Sup-
port Vector Machine or Feedforward Neural Network). 
IMMS outputs the result of the classifier that determines if 
the machine operates properly or shows one of the 10 abnor-
mal behaviors. 

 
Figure 5: Overview of the system architecture 
 

B. Steps in detail 

Collection of IMU data: The Master Module collects 10,800 
raw sensor values per second. For each collection cycle, the 
Master Module broadcasts a measurement command to all 
three sensor branches. Once received, each Sensor Module 
collects and locally stores the latest IMU data in its micro-
controller. After all Sensor Modules processed the measure-
ment command, the transmission process of the IMU data to 
the Master Module begins [Fig. 6]. 
 

 
 

Figure 6: The Master Module initiates a 20ms data col-

lection cycle  
 

All sensor modules have a unique identity (ID), and know 
their place in the transmitting queue, which is being pro-
cessed in ascending ID number. Each Sensor Module is 
counting the number of transmitted bytes in the branch. Once 
it is the turn of the Sensor Module in the queue, it releases the 
data and waits for the next measurement command of the 
Master Module to arrive. Each cycle takes 20 ms. To guaran-
tee a sampling rate of 50 Hz, the Master Board has mecha-
nisms to compensate for transmitting errors. In case the Mas-
ter Module does not receive all 432 bytes (36x12 bytes) of 
sensor data, it stops the cycle after waiting for 15 ms and 
transmits only the received data to the PC. Should the trans-
mission of data between the Master Board and PC last longer 
than 5 ms, it interrupts the transmission and starts a new data 
collection cycle on-time. Missing data is repaired or interpo-
lated during prefiltering in Step 2. 
 
 

Feature Extraction 

In this paper, we record datasets of 224 seconds per class. 
This amount is equal 1.2M data points of accelerometer data. 
We reduce the amount of sensor data significantly by ex-
tracting features in two ways: (1) Extracting statistical fea-
tures from the dataset reduces the sensor data to 1008 data 
points. (2) FFT Feature Diagrams varies depending on the 
FFT-window size. The amount of data points for FFT dia-
grams ranges from 350 (16 sec window) to 28,000 (0.2 sec 
window). To proceed with classification, FFT Feature Dia-
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grams of size [N x M] will be converted into one-
dimensional FFT Feature Vectors of length N x M. 
 

 

Classification 
IMMS uses the extracted feature vector to detect and classify 
a potential machine failure. Two of all tested classifier tech-
niques showed particularly promising results on the given 
IMMS dataset and were further explored: First, we trained a 
Support-Vector-Machine (SVM). This classifier tends to per-
form well for classification tasks in high dimensions. We 
tested 6 different Kernel types: Linear, Quadratic, Cubic, 
Fine Gaussian, Medium Gaussian, and Coarse Gaussian. 
Second, we used a Feedforward Neural Network. The Hidden 
Layer was modified and tested for sizes between 1  100 
Hidden Neurons. The output of the Network contained 11 
Neurons, one for each possible outcome class [Fig. 7]. 

 
Figure 7: The architecture of the Feedforward Neural 

Network 
 

IV. TEST RESULTS 

A. Test Machine 

To record real-world performance data, a linear axis 3D 
Printer was equipped with 36 IMMS Sensor Modules. The 
sensors were placed in 3D-printed holders and epoxy-glued 
on the machine [Fig. 8].  

 

Figure 8: The testing machine is a 3D printer with mo-

tions along three linear axes 
 

Locations and orientations of sensors are selected randomly 
but include all moving components of the machine (X, Y, 

and Z axis). First, the 3D Printer was operated in normal 
operation to record regular operation sensor data. Then, 
components were altered and modified to create sensor data 
of 10 common machine failure scenarios [Figure 9, Table 1]. 
 

 

Figure 9: Altered machine components to record data of 

failure classes (as listed in Table 1)  
 

For our experiments, we chose failure scenarios that not only 
occurred on 3D Printers, but can be found on many linear 
axes equipment with prices ranging from low-cost consumer 
equipment to expensive industrial machines. This includes 
machines for additive and subtractive manufacturing (e.g. 
CNC, Router, 3D Printers), cutting (e.g. Waterjet, Laser Cut-
ter), or pick-and-place (e.g. electronic component placement 
machines). 

 
Table 1: Common failure scenarios of a 3D Printer 

B. Test Program 

We composed and installed a test program for IMMS on the 
3D printer to create motions along all linear axes with vary-
ing speed and length. The total runtime is 224 seconds, but 
the program can be described to pass four characteristic sec-
tions, each with a length of 56 sec [Fig. 10]. 

96



  

 
Figure 10: Test Program of 224 sec split into 4 sections. 

Each color shows the data of individual Sensor Modules 
 
 

The four sections can be described with a set of unique mo-
tion directions and frequencies [Table 2]. 
 

 
Table 2: Composition of a machine program to cover 

various frequencies and motion directions 
 
 

The total collected sensor data for the test program is 4.88 
Mbytes. For each of the 11 classes, the test program was rec-
orded 30 times over multiple days and in varying failure or-
der. With a total of 330 test program recordings, we created a 
data package of 1.61 Gbytes. For our experiments, we are 
only using accelerometer data (0.81 Gbytes). The accelera-
tion data was prefiltered, normalized and stored in double-
precision format (8 bytes per number) which created a total 
amount of 3.21 Gbytes acceleration data. This data package 
was split in 2/3 training data and 1/3 testing data. 

C. Performance Tests 

Classification Test (Statistical Features) 

In our first experiment, we analyzed the performance of sta-
tistical features. Two scenarios were tested: (1) Data from all 
36 Sensors and (2) Data from four sensors, of which three 
were attached to moving machine components (X, Y, Z axis) 
and one was placed on the inner metal case. 
For scenario (1), the Coarse Gaussian Kernel performed best 
with 27.3% error among all SVM classifiers. The Feedfor-
ward Neural Network achieved a similar result. For scenario 
(2) the overall performance error of SVM and Neural Net-
work increased. This is an indication that sensors attached to 
moving machine components are not sufficient to properly 
classify all failure scenarios [Table 3]. 
 

 
Table 3: Failure Classification via Statistical Features 

Classification Test (FFT Features) 

First, FFT-feature vectors from various FFT-diagram sizes 
were created. FFT-windows ranged from 0.2 sec. (Diagram 
dim. 25x1120) to 16 sec. (Diagram dim.: 25x14).  
The SVM classifier achieved best results (4.5% error) using 
the Coarse Gaussian Kernel with 0.5 sec windows. Linear, 
Quadratic, and Cubic Kernels performed lower and scored 
slightly below 10% error. Fine and Medium Gaussian Kernel 
stayed above 25% error and are not listed in [Fig. 11]. 

 
Figure 11: Performance of the SVM Classifier using FFT 

Features for various window sizes 

The best performing window size for the Forward Neural 
Network is between 0.5 sec - 4 sec. The classifier achieved 
errors ranging between 0.7% - 0.0%. The 2 sec window with 
either 28, 31, 36, 38 or 42 Neurons in the Hidden Layer was 
best performing [Fig. 12]. 
 

 
Figure 12: Feedforward Neural Network classification 

error using various window sizes 

In summary, it turns out that the Feedforward Neural Net-
work is superior over the SVM classifier for window sizes of 
8 sec and shorter [Table 4]. 
 

 
Table 4: Best performing SVM and Feedforward Neural 

Network parameters 
 

Optimization Strategy 
In this experiment, the goal is to find a subset of highest 
performing sensors. Therefore, a greedy algorithm is used to 
eliminate the least performing sensors. We temporarily re-
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move one sensor from a set of N sensors and measure the 
classification performance of the subset N-1. A total of N 
subsets need to be tested. The temporarily removed sensor of 
the best performing subset will be eliminated, because it 
contributes least to the classification success. The algorithm 
starts with N = 36 and is repeated until N = 1. This greedy 
algorithm might not strictly give us the best performing sub-
set of sensors because we are only eliminating one sensor at 
a time. However, the algorithm generates u-shaped perfor-
mance curves [Fig 13]. When initially removing sensors 
from the set, the performance continuously improves until a 
turning point is reached. At this point, the greedy algorithm 
minimized the error and all redundant sensors have been 
removed (e.g. sensors with redundant vibration measure-
ments, because of similar placement location). After passing 
the turning point, the error increases again. This is because 
valuable sensor data is now being removed that is necessary 
for reliably distinguishing between failure scenarios. The 
experiment was performed on sections (half duration, quar-
ter duration) and the whole test program. The Feedforward 
Neural Network was used with a best performing hidden 
layer size of 42 Neurons. 
 

 
 

Figure 13: Applying a Greedy Algorithm to find the best 

performing subset of sensors. Section 4 is not displayed, 

since it only reached a performance of 7.65% error 
 
 
 

 
Table 5: Classification results of best performing subsets 
 

 

This optimization strategy shows that machine failures can 
reliably be detected by a small subset of sensors (four to 
nine). Below is a picture showing the placement location of 
the subset sensors of section 3 [Fig 14]. We observed that 
sensors of the best performing subset are commonly found 
on the inside and outside of the sheet-metal case of the 3D 
printer, but not necessarily on moving components. It also 
turned out that the highest performing sections of the test 
program contained combined motions over all machine axes. 
This observation should be considered when designing fur-
ther machine testing programs. This experiment also proved 
that sufficient performance can be achieved with test pro-

grams lasting less than 1 minute. Because our neural net-
work is very small, it could easily run on a low-cost embed-
ded processor. 
 
 

 
Figure 14: The subset of best performing sensors consists 

of sensors placed on the outside case (5 red arrows), in-

side case (3 white arrows) and the lid (1 orange arrow). 
 
 

V. CONCLUSION 

IMMS showed that inertial sensor networks can be success-

fully used to reliably detect and classify between 10 machine 

failures or degraded states of operation. With an increasing 

number of IoT sensors entering the manufacturing floor, 

predictive maintenance of industrial equipment guarantees 

higher efficiency and productivity. By providing valuable 

failure classification and early detection of machine degrada-

tion, we hope that IMMS made a contribution to the devel-

opment of smart monitoring systems to help minimizing 

machine downtime. 
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