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Abstract—Time series classification (TSC) arises in many fields and has a wide range of applications. Here, we adopt the bag-of-

words (BoW) framework to classify time series. Our algorithm first samples local subsequences from time series at feature-point

locations when available. It then builds local descriptors, and models their distribution by Gaussian mixture models (GMM), and at last it

computes a Fisher Vector (FV) to encode each time series. The encoded FV representations of time series are readily used by existing

classifiers, e.g., SVM, for training and prediction. In our work, we focus on detecting better feature points and crafting better local

representations, while using existing techniques to learn codebook and encode time series. Specifically, we develop an efficient and

effective peak and valley detection algorithm from real-case time series data. Subsequences are sampled from these peaks and

valleys, instead of sampled randomly or uniformly as was done previously. Then, two local descriptors, Histogram of Oriented Gradients

(HOG-1D) and Dynamic time warping-Multidimensional scaling (DTW-MDS), are designed to represent sampled subsequences. Both

descriptors complement each other, and their fused representation is shown to be more descriptive than individual ones. We test our

approach extensively on 43 UCR time series datasets, and obtain significantly improved classification accuracies over existing

approaches, including NNDTWand shapelet transform.

Index Terms—Time series classification, local descriptor, fisher vector, bag of words

Ç

1 INTRODUCTION

TIME series classification (TSC) has numerous applica-
tions in many fields, including data mining, machine

learning, signal processing, computational biology, etc.
Typical classification approaches can be categorized as
instance-based (e.g., one nearest neighbor classifier with
euclidean distance (NN-Euclidean), or dynamic time warp-
ing distance (NNDTW)), shapelet [1], [2], [3], [4], feature-
based [5], [6], and local pattern-frequency histogram based
methods [6], [7], [8], [9], [10]. Instance-based methods, like
NNDTW, have been successfully used for TSC and shown to
be very hard to beat [11], [12], [13], but they are usually less
interpretable. Shapelet is another promising method for
TSC, and it discovers subsequences that are discriminative
of class membership and provides more interpretable
results, but searching for shapelets on large datasets becomes
time-consuming or even intractable [14]. Feature-based
methods do show promising classification results, but their
capabilities are largely attributed to strong classifiers like
SVM, adaboost and random forest, instead of being due to
better global/local features and representations. Our work
belongs to local pattern-frequency histogram methods, and
we exploit the general Bag-of-Words (BoW) framework.

A typical BoW framework consists of three major steps:
(1) local feature points detection and description, (2) code-
book generation and (3) signal encoding. Afterwards, any
classifier can be trained on signal encodings to do the final

classification. The performance of a BoW framework imple-
mentation depends on all steps. In the computer vision com-
munity, many efforts have been made to improve each step.
Regarding local feature detection and description, successful
feature extractors (e.g., SIFT [15], Space Time Interest Points
(STIPs) [16]) have been developed to detect local feature
points, and manually-crafted descriptors (e.g., Histogram of
Gradients [17], Motion Boundary Histogram (MBH) [18])
have been invented to represent local 2D image patches and
3D visual cuboid patterns around feature points. However,
as reviewed below, fewer developments have been made
with 1D time series descriptors. The next step, codebook
generation, attempts to model the local descriptor space
and to provide a partition in that space. Two typical ways
are K-means and Gaussian Mixture Models (GMM). For the
last step, encoding, there is a large family of research studies;
several representative encoding methods are vector quanti-
zation (hard voting) [19], sparse coding [20] and Fisher
Vector encoding [21]. In this work, we adopt the BoW pipe-
line: we focus on improving the first step: designing better
local feature extractors and descriptors, while using existing
techniques for the second and third steps; specifically, GMM
is used to produce the codebook and Fisher Vector [21] is
employed to encode the time series.

While local feature extractors are well studied in the com-
puter vision community, in the time series community, no
widely used extractors exist yet, such that most methods
sample feature points either uniformly or randomly. In this
paper, we introduce an efficient and effective feature point
extractor, which detects all peaks and valleys, termed as
landmarks, from time series. Afterwards, subsequences cen-
tered on landmarks are sampled. Landmark-based sampling
gives deterministic and phase-invariant subsequences, while
uniform or random sampling are affected by the phase of the
time series [9]. Due to the observation that dense sampling
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outperforms sparse interest-points sampling in image classi-
fication [22] and activity recognition [23], in experiments, we
adopt a hybrid sampling strategy: first sample subsequences
from landmarks, then sample uniformly in “flat” featureless
regions of the signal. In this way, information from both fea-
ture-rich and feature-less intervals is incorporated in the
sampled subsequences. We show experimentally that this
new hybrid sampling strategy outperforms both uniform
and random sampling significantly.

To the best of our knowledge, little recent literature on
time series classification is focused on developing better
local descriptors for local time series subsequences. Com-
monly used local features are often simple, including mean,
variance and slope [6], [8], [9]. However, statistical features
like mean and variance cannot characterize local segment
shapes well. Although slope incorporates shape informa-
tion, it will underfit the shape of local subsequences if the
interval (here, a subsequence is divided into equal-length
non-overlapping temporal intervals and represented as a
sequence of slopes of intervals) is too long, and becomes sen-
sitive to noise if the interval is too short. Symbolic Aggregate
approXimation (SAX) [24] is shown be a good representation
for time series, however, its usage in a BoW framework [25]
creates a large codebook, resulting in high-dimensional
encoding vectors for time series, which inevitably enburdens
downstream classifier training and prediction. Other widely
used and somewhat older time series representations
include Discrete Fourier Transform (DFT) coefficients, Dis-
crete Wavelet Transform (DWT), piecewise linear approxi-
mation (PLA), etc. It is important to clarify that SAX, DFT,
DWT and PLA have been used in general to represent the
whole time series, instead of local subsequences.

In our work, we propose two new local descriptors,
namely Histogram of Oriented Gradients (HOG) of 1D time
series (HOG-1D) and Dynamic time warping-multidimen-
sional scaling (DTW-MDS), which are shown experimen-
tally to be quite descriptive of local subsequence shapes.
These two descriptors have individual advantages: HOG-
1D consists of statistical histograms, therefore is robust to
noise. Moreover, HOG-1D is invariant to y-axis magnitude
shift. While DTW-MDS is sensitive to noise and magnitude
shift, it is more invariant to stretching, contraction and
temporal shifting. Two descriptors thus complement
each other. By fusing them into a single descriptor, the
fused one, HOG-1D+DTW-MDS, combines the benefits of
both descriptors, becomes more descriptive of subsequen-
ces, and thus is more discriminative for classification tasks.
Experimental results show that our fused descriptor outper-
forms existing descriptors, such as DFT, DWT and Zhang’s
[5], [26], significantly on 43 UCR datasets for time series
classification. Here DFT, DWT and Zhang’s are used to rep-
resent local subsequences, instead of the whole time series.
All local descriptors, including our fused one, work under
the same classification pipeline: (1) feature points extraction,
(2) local subsequence representation, (3) time series encod-
ing by Fisher Vector, (4) linear kernel SVM classification. In
addition, we compare TSC performance of our fused
descriptor with two state-of-the-art algorithms, NNDTW
and shapelet transform [2], on 41 UCR datasets, and ours
achieves the best performance on 22 of them (including
ties). Wilcoxon signed rank test on relative accuracy boost

(see Section 4.3 for its definition) shows our fused descriptor
improves relative classification accuracies significantly com-
pared to NNDTW (p < 0:0017) and shapelet transform
(p < 0:0452). Our algorithm performs well on UCR data-
sets, which have fixed length time series instances, however,
our algorithm is also applicable to datasets with variable
length time series instances, since Fisher Vector is essen-
tially a normalized encoder, making encodings largely
invariant to time series length.

Our contributions are several fold: (1) we introduce a
simple but effective feature point extractor, which detects a
set of landmarks from time series; (2) we explicitly design
two local subsequence descriptors, namely HOG-1D and
DTW-MDS, which are descriptive of local shapes and com-
plement each other; (3) we obtain significantly improved
classification accuracies using our fused descriptor when
compared with two competing state-of-the-art TSC algo-
rithms, NNDTW and shapelet transform, and three existing
descriptors, DFT, DWT and Zhang’s, on 43 UCR datasets.
Our algorithm pipeline1 is shown in Fig. 1.

2 PREVIOUS WORK

Time series classification methods can be categorized into
instance-based, shapelets, feature-based and pattern fre-
quency histogram methods.

Instance-based methods predict labels of test time series
based on their similarity to the training instances. The most
popular similarity metrics include euclidean distance and
elastic distances, e.g., the dynamic time warping (DTW)
distance. Using a single nearest neighbor, with euclidean
distance (NNEuclidean) or DTW distance (NNDTW), has
demonstrated successful time series label prediction. DTW
allows time series to be locally shifted, contracted and
stretched, and lengths of time series hence need not be the
same. Therefore, DTW usually gives a better similarity
measurement than Euclidean distance, and NNDTW has
been shown to be very hard to beat on many datasets [11].
A number of more complex elastic distance measures have
been proposed, including longest common subsequences
(LCSS) [27], Edit distance with Real Penalty (ERP) [28]
and edit distance on Real Sequence (EDR) [29]. However,
in [30], the authors claimed that no other elastic distance
measure outperforms DTW by a statistically significant
amount, and DTW is the best measure. Instance-based
approaches, like NN-euclidean and NNDTW, are accurate,
but they are less interpretable, since they are based on
global matching and provide limited insights into the tem-
poral characteristics.

Shapelet is a localized time series subsequence, which is
discriminative of class membership, and it was first pro-
posed and used by Ye and Keogh [1] for time series classifi-
cation. The original shapelet algorithm [1] searches for
shapelets recursively, and builds a decision tree using dif-
ferent shapelets as splitting criteria. However, the expres-
siveness of shapelets is limited to binary decision questions.
In [4], the authors proposed logical-shapelets, specifically
conjunctions or disjunctions of shapelets, which are shown
to be more expressive than a single shapelet, and to

1. Code available at: https://github.com/jiapingz/TSClassification
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experimentally outperform the original shapelet algorithm.
The above two algorithms embed shapelet discovery in a
decision tree, while in [2], the authors separate shapelet dis-
covery from classifier by finding the best k shapelets in a
single scan of all time series. The shapelets are used to trans-
form the data, where each attribute in the new dataset rep-
resents the distance of a time series to one of the k shapelets.
Hills et al. demonstrate that the transformed data, in con-
junction with more complex classifiers, produces better
accuracies than the embedded shapelet tree. Since shapelets
are localized class-discriminative subsequences, shapelets-
based methods have increased interpretability than global
instance-based matching. The main drawback is the time
complexity of searching for shapelets, and subsequent
research, e.g., [14], focuses on developing efficient shapelet-
searching algorithms.

Feature-based methods generally consist of two sequen-
tial steps: extract features and train a classifier based on fea-
tures. Typical global features include statistical features, like
variance and mean, PCA coefficients, DFT coefficients, zero-
crossing rate [5]. These features are extracted either from
time domain or from transformed domains, like frequency
domain and principal component space. Afterwards, the
extracted features either go through feature selection proce-
dures to prune less significant ones [5], or are fed directly
into complex classifiers, like multi-layer neural network [31].
Global features lose temporal information, although it is
potentially informative for classification. In [8], the authors
extracted features from intervals of time series, constructed
and then boosted binary stumps on these interval features,
and trained an SVM on outputs of the boosted binary
stumps. In [6], the authors extracted simple interval features
as well, including mean, variance and slope, trained a ran-
dom forest ensemble classifier, and showed better perfor-
mance than NNDTW. Although feature-based methods
have shown promising classification results, their capabili-
ties are largely attributed to strong classifiers such as SVM,

adaboost and random forest, instead of being due to better
global/local features and representations.

Another popular method is based on pattern frequency
histograms, widely known as bag of words. The BoW
approach incorporates word frequencies but ignores their
locations. In time series applications, several recent papers
adopted BoW ideas. Lin et al. [25] first symbolize time series
by SAX, then slide a fixed-sized window to extract a contig-
uous set of SAX words, and at last use the frequency distri-
bution of SAX words as a representation for the time series.
Baydogan et al. [9] propose a similar bag-of-features frame-
work. They sample subsequences with varying lengths ran-
domly, use mean, variance, slope and temporal location t to
represent each subsequence, afterwards utilize random for-
est classification to estimate class probabilities of each sub-
sequence, and finally represent the raw time series by
summarizing the subsequence class-probability distribution
information. They showed superior or comparable results
to competing methods like NNDTW on UCR datasets [4].
Wang et al. [10] adopted a typical bag of words framework
to classify biomedical time series data, and they sample sub-
sequences uniformly and represent them by DWT. Gra-
bocka and Schmidt-Thieme [32] introduce a similar BoW
pipeline to classify time series: they sample subsequences
from time series instances uniformly, learn latent patterns
and membership assignments of each subsequence to those
patterns, and sum up membership assignments of subse-
quences on a time series as the representation of that time
series. Time series representations are then classified by
polynomial kernel SVM. Our work belongs to this category,
but emphasizes detecting better local feature points and
developing better local subsequence representations.

There are two recent papers using local descriptors as
well [33], [34]. In [33], the authors attempt to improve effi-
ciency of traditional DTW computation, to be concrete, they
extract local feature points, match them by their descriptors
and compute the local band constraints (based on matched

Fig. 1. Algorithm pipeline: we adopt a typical BoW framework: (1) local feature extraction and representation; (2) codebook generation; and (3) time
series encoding. The encoded feature vectors are used by any classifier to do the classification. In our work, we focus on detecting better feature
points and obtaining better local representations, while using existing techniques to learn codebook and encode time series. Specifically, we develop
an effective algorithm to detect peaks and valleys from time series, and subsequences are sampled from these feature points (steps 2 and 3). Then,
we introduce two descriptors, Histogram of Oriented Gradients (HOG-1D) and Dynamic Time Warping-Multidimensional Scaling (DTW-MDS), to rep-
resent local subsequences (step 4). Afterwards, we fit the distribution of subsequences descriptors by a K component Gaussian Mixture Model and
encode each time series by a Fisher Vector (FV) (step 5). At last, linear kernel SVM is employed to classify time series based on FV encodings. The
pipeline shows the process for training time series, and test time series Tt go through the same process, and the only difference is in step 5: Tt is
directly encoded as a FV by learned GMMmodel parameters from training (without GMMmodel fitting any more).
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pairs) applicable during the execution of the DTW algo-
rithm. In this way, they only have to compute the accumula-
tive distances within the band, and the DTW computation
efficiency is improved. Our work is different from [33] in
that: our use local descriptors to improve classification accu-
racies, while [33] use local descriptors to improve DTW
computation efficiency. In [34], the authors extract local fea-
tures from multi-variate time series by leveraging meta-
data, and their method for local feature extraction is only
applicable for multi-variate time series data with known
correlations and dependencies among different dimensions.
UCR datasets are univariate time series datasets, and their
method cannot be used here.

3 METHODOLOGY

3.1 Algorithm Overview

We follow the classic bag-of-words pipeline closely to do the
classification. As mentioned, we focus on developing better
local feature extractors and better local subsequence repre-
sentations, while using existing algorithms for the following
steps, specifically, GMM is used to generate the codebook
and Fisher Vector [21] is employed to encode the time series.
We propose a simple but effective feature point extractor,
which robustly detects peaks and valleys from real case time
series, and local subsequences are sampled from these fea-
ture points instead of sampled randomly or uniformly as
previously done. Afterwards, we introduce two descriptors,
namely HOG-1D and DTW-MDS, to represent the local sub-
sequences. Two descriptors have individual advantages and
complement each other, and both capture local shapes well.
Since each subsequence has two descriptors, we can either
use them separately, or fuse them as a single descriptor.
In case of fusion, two descriptors are first ‘2-normalized

and then concatenated to form a new descriptor, i.e., di ¼
½diHOG�1D= k diHOG�1D k2 diDTW�MDS= k diDTW�MDS k2�, where

diHOG�1D and diDTW�MDS are HOG-1D and DTW-MDS

descriptors of the ith subsequence, and di is its concatenated
new descriptor: termed as HOG-1D+DTW-MDS.

To do TSC, we first extract subsequences and represent
them by either (1) HOG-1D, (2) DTW-MDS, or (3) HOG-1D +
DTW-MDS descriptors, then learn a generativeK component
GMM to model the distribution of local descriptors based on
training data, and at last encode each time series by a Fisher
Vector [21]. Subsequently, an SVMclassifierwith linear kernel
is used for training and testing based on the Fisher Vector rep-
resentations of time series. The details of local feature extrac-
tion and representation, codebook generation and global time
series encoding are given in the following sections.

3.2 Feature Points Detector

To the best of our knowledge, existing literature uses regular
constant-step slidingwindow sampling (a.k.a., uniform sam-
pling) or random sampling strategies to extract subsequen-
ces from long time series [9], [10], [25]. In the case of uniform
sampling, a fixed-size window is slid along the temporal
axis with a constant stride and subsequencewithin each slid-
ing window is sampled. In case of random sampling, subse-
quences are extracted from random locations on time series.
There is inevitable randomness in both sampling strategies,

specifically different start sampling points make sampled
subsequences different under the uniform sampling case,
while randomness under random sampling is inherent. This
partially motivates us to design a procedure to make sam-
pled subsequences deterministic. Concretely we propose to
extract temporal feature points first, and then sample subse-
quences from there, if feature points are deterministic, sam-
pled subsequences are fixed each time.

Compared with non-feature points, local feature points
are more descriptive of local shapes, and more robust to
noise. Successful local feature point detectors include the
2D image feature point detector SIFT [15] and 3D spatio-
temporal video feature point detector STIPs [16]. SIFT and
STIPs are widely used for object recognition in 2D images
and activity recognition in videos. Inspired by their great
performance, we introduce a 1D temporal feature point
detector, aiming at reaching downstream higher TSC accu-
racies. The feature point detection makes following steps
invariant, to some extent, to time series phases.

We define temporal feature points to be peaks and val-
leys on time series. Given a time series: T ¼ ðt1; t2; . . . ; tnÞ,
a peak or valley ti on a noise-free time series satisfies:
ðti � ti�1Þ � ðtiþ1 � tiÞ < 0, i.e., its left and right derivatives
change signs. However, this simple criterion for feature
point detection fails to work for real case signals, since there
are many small bumps on signals, and many false positives
are detected as a result. Since valley detection in raw time
series T can be transformed to peak detection in �T , we
will focus on peak detection in raw time series T .

If our algorithm returns ti as a peak when it satisfies
ti > ti�1 and ti > tiþ1, many points found in this way lie on
ascending or descending slopes, which are false peaks. The
challenge is to find ‘better’ local maxima while discarding
‘fake’ ones. To be more selective of peaks, a straightforward
modification is: only if ti > ti�1 þ D and ti > tiþ1 þ D, where
D > 0, then ti is returned as a local peak. The larger D is, the
more selective the algorithm is and the fewer peaks are
returned. In this way, on the contrary, lots of true positives
will be missed when setting D to be large. We can relax the
constraints: ti is returned as a peak if It is larger than one
neighbor by a gapD, we name this algorithm asAlgo1:

Algo1: ti is returned as a peak when it satisfies either (1)
ti > ti�1 þ D and ti > tiþ1 or (2) ti > ti�1 and ti > tiþ1 þ D.

However, Algo1will inevitably miss some true positives.
For example, in Fig. 2, p on two segments are both local
peaks, suppose D1 in two cases are the same, but D2 on the
left segment is much smaller than D2 on the right segment,
then p on the left segment is harder to satisfy the peak con-
dition in Algo1, indicating p on the left segment may not be

Fig. 2. Local maxima: Algo1 will miss some true local optima. p on two
segments are both local peaks, suppose D1 in both cases are the same,
but D2 on the left segment is much smaller than D2 on the right segment,
then p on the left segment is harder to satisfy the peak condition in
Algo1, indicating p on the left segment may be missed.
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returned as peak. We introduceAlgo2, which is guaranteed
to find both peaks found by Algo1 and some true positives
missed by Algo1.

Algo2: Given a real case time series data T ¼ ðt1; t2; . . . ;
tnÞ, only keep temporal points whose left and right deriva-
tives change sign, i.e., ðti � ti�1Þ � ðtiþ1 � tiÞ < 0 and organize
them in the same temporal order as they are in the raw time
series to form a trimmed time series as T 0 ¼ ðt01; t02; . . . ; t0mÞ.
Use T 0as input, return t0i as a peak when t0i satisfies either (1)
t0i > t0i�1 þ D and t0i > t0iþ1 or (2) t

0
i > t0i�1 and t0i > t0iþ1 þ D.

ComparedwithAlgo1, there is a trimming step inAlgo2, and
the following peak extraction process remains the same.

Algo2 is guaranteed to detect peak points detected by Algo1.
Proof: let ð. . . ; A0; A; p; B;B0; . . .Þ be part of raw time series T
as shown in Fig. 2 (the right segment), and assume p is
returned by Algo1 as a peak, then p must satisfy either (1)
p > Aþ D and p > B; or (2) p > A and p > Bþ D. In
either case, ðp�AÞ � ðB� pÞ < 0, i.e., p is a left/right deriv-
ative sign changing point and will be kept in the trimmed
time series T 0. We will show p will be returned by Algo2 as
a peak as well. Case one: if both A and B are sign changing
points, then segment �A� p�B� is also a segment in the
trimmed time series T 0. Then p satisfies either (1) p > Aþ D
and p > B; or (2) p > A and p > Bþ D as well, and
returned byAlgo2 as a peak. Case two: if only one of A and
B is a sign changing point, without loss of generality,
assume A be the sign changing point and kept in T 0 to be
left neighbor of p. Assume the new right neighbor of p is B00,
then B00 is a sign changing point on the right side of B in T .

If B00 � B, then there must be some point bB in the raw time

times T between B and B00, satisfying bB < B and bB < B00,
otherwise B will be a sign changing point. In this case bB is a
sign changing point and would be the right neighbor of p,
contradicting the assumption. Therefore B00 � B. In this
case, p in the trimmed time series T 0 will as well satisfy the
criterion defined in Algo1 and be returned. Case three: both
A and B are non-sign changing points, since this can be
reduced to case two, and we omit its proof.

Algo2 will return more peak points than Algo1. From the
above analysis, the peak condition is easier to be satisfied in
the trimmed time series, resulting in more returned peak
points. A concrete example is: under some magnitude con-
straint of D;D1;D2, p on the left segment of Fig. 2 will be
missed by Algo1, but will be detected byAlgo2 easily.

In practice, we use a slightly modified version ofAlgo2 to
detect peaks, and name the new algorithm as Algo3: after

obtaining a trimmed time series T 0 ¼ ðt01; t02; . . . ; t0mÞ as in
Algo2, return t0i as a peak when t0i satisfies either (1) t0i >

minðt0< iÞ þ D and t0i > t0iþ1 or (2) t0i > t0i�1 and t0i >

minðt0> iÞ þ D. Note inAlgo2, t0i is comparedwith its immedi-

ate left and right neighbors t0i�1 and t0iþ1, while inAlgo3, t0i is
compared to its immediate right (left) neighbor t0iþ1 (t

0
i�1) and

some neighbor minðt0<iÞ (minðt0>iÞ) from its left (right) side.

In the constraint minðt0< iÞ (minðt0> iÞ) denotes some point
residing between t0i and its left (right) closest peak, and hav-
ing the minimum value. Compared with Algo2, Algo3 is
more robust to noise, and easily removes many ‘false peaks’
on ascending or descending slopes (see feature points detec-
tion results in Fig. 3). The only parameter inAlgo3 isD, which
is set to be some ratio of the value range of the time series
instance, i.e., D ¼ � � ðmaxðT Þ �minðT ÞÞ, where 0 < � < 1
(see supplementary materials, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2015.2492558, for
details and run our demo code).

Fig. 3 shows a typical example of feature points detection
byAlgo3 from a noisy time series. Aswe see,Algo3 achieves
both high precision and recall of feature points, i.e., detects
most visually true peaks/valleys while suppressing false
positives. Afterwards, subsequences of fixed length centered
on these landmarks will be extracted. However, in practice,
we exploit a hybrid sampling strategy: in feature-rich
regions, we sample subsequences from landmarks while in
“flat” regions, we sample uniformly. In this way, information
from both feature-rich and feature-less intervals is preserved,
and time series are well characterized by the hybrid-sampled
subsequences. Hybrid sampling is illustrated in Fig. 4. In the
following two sections, we introduce two descriptors, HOG-
1D andDTW-MDS, to represent sampled subsequences.

3.3 HOG-1D Descriptor

Histogramof oriented gradientswas first introduced byDalal
and Triggs [17] for object detection. It is shown that local
object appearances and shapes are well captured by the
distribution of local intensity gradients. Its excellent perfor-
mance for pedestrian detection was empirically demon-
strated. Later on, Klaser and Marszalek [35] generalized
the key HOG concept to 3D spatio-temporal video domain,
and developed histograms of oriented 3D spatio-temporal
gradients (HOG-3D) descriptor. They applied HOG-3D
descriptor to several action datasets, and obtained the state-
of-the-art activity recognition results at that time.

Fig. 3. Feature Points Extraction by Algo3: a real-case time series and
peak and valley points (red circles) returned by running Algo3. Visually,
all the true positives are extracted while the false positives are
suppressed.

Fig. 4. Hybrid Sampling: in feature-rich regions, sample from feature
points; in flat regions, sample uniformly. Red circles are detected feature
points, and magenta circles are evenly-spaced points in flat regions.
Subsequences centered around both point types are sampled. The sec-
ond row shows examples of sampled subsequences.
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Based on the success of HOG andHOG-3D, we here intro-
duce a new HOG-1D descriptor for 1D time series data. We
inherit key concepts from HOG, and adapt them to 1D tem-
poral data. Assume a subsequence s ¼ ðp1; p2; . . . ; plÞ of
length l, divided into n constant-length overlapping or non-
overlapping intervals I ¼ fI1; I2; . . . ; Ing, where the cardi-
nality of each interval is j Ii j ¼ c. Within each interval Ii, a
1D histogram of oriented gradients is accumulated over all
temporal points in Ii. Concatenating n interval histograms
forms the descriptor of the subsequence s, and we term it
the HOG-1D descriptor. Fig. 5 shows the generation pro-
cess of HOG-1D descriptor of a sample subsequence. The
statistical nature of histograms makes HOG-1D less sensi-
tive to observation noise, while the concatenation of
sequential histograms captures temporal information well.
When the number of intervals decreases to 1 (i.e., n ¼ 1),
the descriptiveness of HOG-1D is weakened since temporal
information is lost, while when n increases, the cardinality
of each interval will decrease (suppose n intervals do not
overlap), and the HOG of a short interval will become
more sensitive to noise. In practice, setting n ¼ 2; 3 works
well (the influence of the number of intervals on classifica-
tion performances is analyzed in supplementary materials,
available online). In the following, we give implementation
details of HOG computation within each interval.

Given an interval I ¼ ðpt1;pt1þ1; . . . ; pt2Þ with time span
ðt1; t2Þ, the magnitude of gradient at temporal point t ðt1 �
t � t2Þ is calculated as jgtj ¼ js � ðptþ1 � pt�1Þ=ððtþ 1Þ � ðt�
1ÞÞj ¼ js � 12 ðptþ1 � pt�1Þj, and its orientation is arctanðgtÞ,
which lies within ð�90�; 90�Þ. s is a global scaling factor,
accounting for different time series sampling frequencies.
Specifically, for time series sampled at a high frequency,
adjacent observations pt�1 and pt will almost be the same,
making jgtj 	 0 and arctanðgtÞ 	 0� everywhere. Under this
scenario, HOG over interval I will be a spiked distribution,
making HOG-1D unable to distinguish different local
shapes. In practice, s is set such that gradient orientations
distribute within ð�90; 90 degreeÞ approximately evenly
(see the algorithm in the supplementary material, available
online, to search for a). After gradient computation at each
temporal point, the next step is to accumulate gradient votes
within orientation bins, and obtain HOG over bins. The ori-
entation bins are evenly spaced within ð�90; 90 degreeÞ.

Typically, a gradient votes for its two neighboring bins,
and votes are determined bi-linearly in terms of angular dis-
tances from the gradient orientation to the bin centers.
In our experiments, we exploit a kernel smoothed voting
strategy, i.e., a gradient votes for all orientation bins, and
the voting magnitude for the ith bin bi is determined as jgtj�
expf� 1

2 ðarctanðgtÞ � ffðbiÞÞ2=ŝ2g, where ffðbiÞ is the orienta-

tion of bin bi, ŝ is a scale factor indicating the decaying rate
of Gaussian smoothing kernel. HOG-1D is insensitive to
noise and and invariant to y-axis magnitude shift; however,
since magnitude information sometimes benefits TSC, we
introduced another subsequence descriptor, DTW-MDS,
which complements HOG-1D to account for magnitude
shift, as well contraction and stretching distortion.

3.4 DTW-MDS Descriptor

There are dozens of similarity measures for time series, and
the most straightforward measure is the euclidean distance;
however it does not handle distortion and misalignment in
time. DTW is another ubiquitous measure, which accounts
for nonlinear distortions in the temporal dimension. Dozens
of alternative elastic distance measures have been invented,
but experimental tests on forty datasets suggested none of
them consistently beats DTW[30]. In this paper, we choose
DTWas distancemeasure between time series subsequences.

Let sp ¼ ðp1; p2; . . . ; pmÞ and sq ¼ ðq1; q2; . . . ; qnÞ denote
two subsequences of length m and n. Sometimes, a warping
window size4 is further enforced to make temporal indices
of matched points pi and qj satisfy ji� jj � 4. However,
in our experiments, we use DTW without the warping
widow size constraint. Assume there are N subsequences
fs1; s2; . . . ; sNg; by computing pairwise subsequence DTW
distances, we get a N �N symmetric DTW distance matrix
dDTW . In order to use dDTW in the kernel based classifier like
SVM, several attempts have been made to derive kernels
from dDTW , examples include Gaussian dynamic time warp-
ing (GDTW) kernel function Kðsi; sjÞ ¼ expf�gdDTW ðsi; sjÞg
or negative dynamic time warping (NDTW) kernel function
Kðsi; sjÞ ¼ �dDTW ðsi; sjÞ. However, kernel matrices con-
structed by these functions are not positive semi-definite
(PSD), thus, efficacy of SVM cannot be enjoyed by these ker-
nels. Empirical results in [36] showed that SVM with either
GDTW or NDTW kernel has inferior performance in TSC
compared with NNDTW. Some attempts have been made
to construct a PSD kernel matrix from a distance measure
between two time series [37]. The authors considered the
similarity scores spanned by all possible alignments, instead
of just the score of the best alignment, and derived a kernel
out of this formulation. This kernel is shown to be PSD and
can be used in the kernel-based classifiers. However, con-
struction of a valid PSD kernel from some dissimilarity
matrix is unfortunately a non-trivial task. To work around
the difficulty of fixing DTW kernel matrix to be PSD and at
the same time to enjoy the superiority of the DTW distance
measure and the strong performance of SVM, we introduce
the DTW-MDS descriptor for subsequences. Briefly, we
use the multidimensional scaling (MDS) algorithm to find a

layout of N subsequences in space V (V 2 Rh) such that
pairwise subsequence DTW distances dDTW are preserved
as well as possible in V. Then each subsequence is

Fig. 5. HOG-1D descriptor: a subsequence s is shown as green line. At
each temporal point pi on s, centered gradient is estimated, with the blue
arrow indicating its direction and magnitude. The subsequence is divided
into three overlapping intervals, boxed by magenta, red and cyan rectan-
gles. In each interval, a histogram of oriented gradients (HOG) is accu-
mulated over all temporal points in that interval, and shown under that
interval. Concatenation of three HOGs gives the HOG-1D descriptor for
the subsequence s. Gradient orientations lie within ð�90; 90 degreeÞ, and
in this figure eight evenly spaced orientation bins are used, resulting in a
24D HOG-1D descriptor.
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represented by a vector x (x 2 Rh) in V, and x is termed as
the DTW-MDS descriptor.

Given an N �N DTW distance matrix dDTW computed
betweenN subsequences fs1; s2; . . . ; sNg, MDS aims to find a

h dimensional descriptor xiðxi 2 Rh; i ¼ 1; 2; . . . ; NÞ for each
subsequence, such that for each pair of subsequences si and
sj, their euclidean distance k xi � xj k2 in the h dimensional
space satisfies their DTW distance dDTW ðsi; sjÞ as well as
possible. Mathematically, we define representation error
for each pairwise DTW distance as eij ¼k xi � xj k2 �
dDTW ðsi; sjÞ, then MDS minimizes the following normalized
stress:

X ¼ arg min
fx1;x2;...;xNg

1

Z
X

1�i < j�N

e2ij; (1)

where Z is a normalization factor. In practice, we set Z to
the sum of squares of pairwise DTW distances, i.e., Z ¼P

1�i < j�N d2DTW ðsi; sjÞ.
The solution X of problem (1) is an N � h matrix, with

ith row xi being the descriptor for subsequence si. Problem
(1) can be solved in a coordinate descent way: first, deter-
mine an updating order of rows, typically either in random
order, or sequentially (e.g., 1 ! 2 ! � � � ! N ! 1 ! 2 !
� � � ). Then update each row xi by keeping all other rows
xjðj 6¼ iÞ fixed; in this case, problem (1) becomes a quadratic
programming of xi, which is convex and xi can be solved by
the standard Levenberg-Marquardt algorithm. After N iter-
ations, all rows xi ði ¼ 1; 2; . . . ; NÞ are updated once. We
repeat this process and terminate either when reaching the
maximum number of iterations, or when ~xi � ". Fig. 6
shows the process of computing DTW-MDS descriptors.

In the above way, each subsequence si from training time
series is coded by an h dimensional vector xi. However, we
do not see subsequences of test time series during training.
Here, we can use the same framework to encode each test
subsequence. Given a test subsequence bs, we compute
its DTW distance dDTW ðbs; siÞ to each training subsequence
si ðsi 2 StrainÞ, and DTW-MDS descriptor bx of bs can be

obtained by solving the following minimization program:

argmin
x̂

X
si2Strain

fk bx� xi k2 �dDTW ðbs; siÞg2: (2)

This least-square problem can be solved by Levenberg-
Marquardt algorithm as well. In experiments, we set the
maximum number of iterations to 50, and use this as the ter-
mination criterion for both Program 1 and 2.

Solving Program 1 and 2 becomes time and space con-
suming when the number of training subsequences N goes
too large, while in practice, we develop an approximate
algorithm to compute DTW-MDS descriptors, in which
both space consumption and time cost to compute the
DTW-MDS descriptor of a subsequence are independent of
N . The key of our approximation algorithm is to choose R
representative subsequences from N training subsequences,
and first encode R representatives by solving Program 1,
then encode each of the left ðN �RÞ training subsequences
and test subsequences by solving Program 2 (see supple-
mentary materials, available online, for algorithm details).

After transforming pairwise subsequence DTW distances
to descriptors, existing valid kernel functions like RBF
and polynomials are ready to be used in the kernel machine
classifiers (e.g., SVM). Another advantage of DTW-MDS
descriptor is that it can be fused with other features
extracted from the same subsequence. When these features
and DTW-MDS descriptors are complementary to each
other, the merged feature vector has the potential to further
boost the classification accuracy. In our experiments, we
show by fusing DTW-MDS with HOG-1D, better classifica-
tion accuracies on most datasets are obtained.

3.5 Time Series Encoding

After feature point detection, local subsequence extraction
and representation, each time series T̂ is represented by a
set of sampled subsequences fŝ1; ŝ2; . . . ; ŝN̂g, and each

subsequence is described by a descriptor vector (either
HOG-1D, DTW-MDS, or HOG-1D+DTW-MDS) ŷi (ŷi 2 fŷ1;
ŷ2; . . . ; ŷN̂g). Time series encoding aims at figuring out a vec-

tor representation for T̂ , based on its local subsequence
representations fŷ1; ŷ2; . . . ; ŷN̂g. Typical encoding methods

include hard voting-based (e.g., BoW), reconstruction-based
(e.g., LLC [38]) and super vector-based (e.g., Fisher Vector
[21]) approaches. As experimentally demonstrated in [39],
super vector based encoding is more effective than the other
two encodings for action recognition. In our experiments,
we choose to use Fisher Vector encoding [21] for time series.

The Fisher Vector encoding [21] is derived from Fisher
Kernel, which constructs kernels from probabilistic genera-
tive models, in this way, we apply generative models in
a discriminative setting and take benefits of both models.
The construction of the Fisher vector starts by learning a
Gaussian mixture model model from a set of local descrip-
tors X ¼ fx1; x2; . . . ; xNg. The probability density function
of a GMMwithK components is given by:

pðx; uÞ ¼
XK
k¼1

pk �Nðx;mk;SkÞ; (3)

Fig. 6. DTW-MDS descriptor: the first column shows N sampled subse-
quences, the second column shows a N �N symmetric dynamic time
warping distance matrix dDTW , with each entry dij indicating the DTW
distance between subsequence i and j, and the third column shows: by
applying MDS on dDTW , we obtain N vectors in h dimensional space,
with each being the DTW-MDS descriptor of one subsequence.
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where u ¼ ðp1;m1;S1; . . . ;pK;mK;SKÞ is the vector of
parameters in this model, including the component prior

probability pk, the mean mk(2 RD) and the positive definite

covariance matrix Sk(2 RD�D) of each Gaussian compo-
nents. For simplicity, covariance matrices are assumed to be
diagonal, therefore the GMM is fully specified by ð2Dþ 1Þ�
K scalar parameters. Given a set of N local descriptors
X ¼ fx1; x2; . . . ; xNg, the parameters in GMM are learned by
maximal likelihood estimation using Expectation Maximiza-
tion algorithm.

After fitting a GMM model, given a set of descriptors

Ŷ ¼ fŷ1; ŷ2; . . . ; ŷN̂g sampled from some time series T̂ , let gn
k

be the soft assignment of descriptor ŷn to Gaussian compo-

nent k (k 2 f1; 2; . . . ; Kg), define vectors GŶ
m;k and GŶ

s;k as:

GŶ
m;k ¼ 1

N̂ � ffiffiffiffi
pk

p
PN̂

n¼1 g
n
kðŷn�mk

sk
Þ;

GŶ
s;k ¼ 1

N̂�
ffiffiffiffiffiffi
2pk

p PN̂
n¼1 g

n
k

ŷn�mk
sk

� �2
�1

� �
:

(4)

Each of which is D dimensional. The fisher vector of the

set of local descriptors Ŷ is then given by the concatenation

of GŶ
m;k and GŶ

s;k for all K Gaussian components, resulting in

a 2DK vector:

FV Ŷ ¼ �
GŶ

m;1; G
Ŷ
s;1; . . . ; G

Ŷ
m;K; G

Ŷ
s;K

�
; (5)

which is the Fisher Vector of time series T̂ . In our experi-
ments, the local descriptors are either (1) HOG-1D; (2) DTW-
MDS; or (3) HOG-1D + DTW-MDS. GMM is first learned to
fit the distribution of local descriptors from training time
series, then each training time series can be encoded by
Fisher Vector as in Eq. (5). Given a test time series, after sub-
sequence sampling and representation, it is represented by a

set of descriptors Ŷ ¼ fŷ1; ŷ2; . . . ; ŷN̂g, and following Eq. (4)

and Eq. (5), the test time series can be encoded by a Fisher
Vector as well.

Power normalization. As shown in [21], as the number
of Gaussian components K increases, the Fisher Vector
becomes sparser. Dot products are poor measures of simi-
larity on sparse vectors. Therefore, they proposed to power-
normalize each dimension of the raw Fisher Vector by the
same power factor a:

FV N
i ¼ signðFViÞ � jFVija; i 2 f1; 2; . . . ; 2DKg: (6)

In experiments, the power factor a is determined by
cross-validation on training data. Until now, each time

series T has a normalized encoding FV N
T (FV N

T ¼ ½FV N
1 ;

FV N
2 ; . . . ; FV N

2DK �), together with its label, we train a linear
kernel SVM to do the classification.

3.6 Computational Complexity Analysis

Our classification pipeline is composed of sequential steps,
and its time complexity is a sum of time costs at individual
steps. Define notations as follows: let L be the length of a
time series, Ntrain be the number of training time series
instances, l and ntrain be the length and number of sampled

training subsequences, and rtrain be the number of represen-
tative training subsequences (see its definition in Section
3.4). Our pipeline consists of feature point extraction, HOG-
1D computation, DTW-MDS computation, FV encoding and
linear SVM classification, whose time complexities during

training are: OðNtrainLÞ, OðntrainlÞ, Oðr2trainl2Þ þ Oðntrainh
3Þ,

Oðjdjntrain þKn2
trainÞ and OðNtrainÞ, where jdj is the

dimensionality of the subsequence descriptor. Therefore,

the total time cost is: OðNtrainLÞ þ OðntrainlÞþ Oðr2trainl2Þþ
Oðntrainh

3Þ þ Oðjdjntrain þKn2
trainÞ. Since in general ntrain 


Ntrain ntrain 
 rtrain and l; h; jdj are usually small positive
values (e.g., l ¼ 40; h ¼ 20; jdj � 36 in our experiments), the

training time cost is quadratic in ntrain, i.e., Oðn2
trainÞ. In

practice ntrain is usually large, training is done offline.
At test, to classify a time series, let ntest be the number of

extracted subsequences from that time series, then subse-
quence extraction, HOG-1D, DTW-MDS computation,
FV encoding and SVM classification have complexities

OðLÞ, OðntestlÞ, Oðntestrtrainl
2Þ þ Oðntesth

3Þ, OðntestÞ and
Oð1Þ respectively, and the overall test complexity is

Oðntestrtrainl
2Þ þ Oðntesth

3Þ þ OðLÞ, where ntest � L and
l; h; rtrain are small positive values as well, therefore, the test
can be done online.

NNDTW has a time cost OðNtrainL
2Þ in general;

ShapeletTransform [2] contains time-consuming shapelet

searching, and in general it takes time OðN2
trainL

3Þ.
ShapeletTransform is usually more time-consuming than
our algorithm and NNDTW. Although in general, our algo-
rithm has higher time cost than NNDTW, our time cost at
test is usually much cheaper than that of NNDTW. As the
number of training time series increases, efficiency gain of
our algorithm at test is further enlarged, since our test time
cost is independent ofNtrain.

4 EXPERIMENTAL VALIDATION

We extensively test our feature point extractor and subse-
quence descriptors on 43 UCR time series datasets [40]. All
results reported throughout the experiments are obtained
under the following fixed settings: (1) subsequence length
(l) is set to be 40 (l ¼ 40) on all datasets; (2) stride of sliding
window in the case of uniform sampling is set to be 5
(s ¼ 5); (2) in computing HOG-1D descriptors, each subse-
quence is divided into 2 non-overlapping segments, and
the gradient orientation bins are evenly spaced over
ð�90 90 degreeÞ with the bin number set as 8. Therefore, the
dimensionality of HOG-1D is 16; (3) in computing DTW-
MDS descriptors, DTW distance is calculated without the
warping window size constraint, and the dimensionality h
of DTW-MDS is set to be 20 (h ¼ 20); (4) we use the Bag-of-
Words framework to encode time series, specifically using
GMM clustering to generate codebook and Fisher Vector to
encode time series; (5) we use a linear-kernel SVM classifier
for classification. Two tunable parameters are the number
of components (K) in GMM and the power normalization
factor a, and different datasets have different optimal
parameters. In experiments, K and a on each dataset are set
by cross-validation on training data.

Baseline descriptors. We compare with two widely known
time series representations, Discrete Fourier Transform and
Discrete Wavelet Transform, and another representation
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introduced in [5], [26] (Zhang’s). Although all three repre-
sentations are proposed to represent the whole time series,
here we use them to represent time series subsequences.
(1) DFT: we keep the first half of coefficients, and use
them as the representation for the subsequence. (2) DWT:
we use the Haar wavelet basis and decompose each subse-
quence into three levels. The detail wavelet coefficients of
three levels and the approximation wavelet coefficients of
the third level are concatenated to form the final represen-
tation. (3) Zhang’s: Zhang and Sawchuk [5] augments con-
ventional statistical features with a set of physical features,
the combination of statistical and physical features forms
the representation, for details of the feature sets, please
refer to their paper.

Baseline TSCmethods. We compare with two TSCmethods,
NNDTW and shapelet transform [2]. NNDTW is shown to
be very hard to beat [11], and, in experiments, we use one
nearest neighbor under DTWdistance with the warpingwin-
dow size constraint. Classifiers built on shapelet transform
[2] are shown to bemore accurate than the original tree-based
shapelet classifier [1] on a wide range of datasets. Both
NNDTW and shapelet transform are top ranked TSC meth-
ods, and therefore, they are used as baseline for comparison.

4.1 Hybrid Sampling versus Uniform and Random
Sampling

We compare three different sampling strategies: uniform,
random and the proposed hybrid sampling. We keep the
classification pipeline (local subsequence extraction and
representation + FV time series encoding + linear SVM classi-
fication) fixed, but only change the subsequence sampling
methods. To test whether the superiority of hybrid sampling
is independent of local descriptors, we test six descriptors,
including HOG-1D, DTW-MDS, HOG-1D+DTW-MDS,
DWT, DFT andZhang’s.

Uniform sampling. The stride s of the sliding window is
set be 5 (s ¼ 5), making contiguous windows overlap by
half. For each time series, we randomly choose a start sam-
pling point from ðl=2lÞ (l is the length of subsequence, l ¼ 40
in experiments) and then slide the window at stride s to get
the following subsequences. Since sampled subsequences of
uniform sampling depend on the start sampling point, we
repeat experiments for 10 times, and the mean classification
accuracy is reported.

Random sampling. To make the number of sampled subse-
quences from some time series the same as in uniform sam-
pling, bLsc (where L is the length of the time series and s
denotes the stride of sliding window) subsequences are ran-
domly sampled from each time series. Similarly we repeat
experiments 10 times, and the mean classification accuracy
is reported.

Hybrid sampling. In this case, subsequences are obtained
by (1) sampling from landmark points and (2) uniformly
sampling from flat regions with stride 5 (s ¼ 5). Sampling
from landmark points results in deterministic subsequen-
ces, while uniform sampling introduces some randomness
because of the start sampling point. Since in all 43 UCR
datasets, flat regions take only minimal proportions of a
time series, we do the uniform sampling at flat regions only
once and ignore the impact of randomness. The reported
accuracy is based on one experiment.

The performance of different sampling strategies under the
same descriptor on 43 datasets is shown in Fig. 7. The hybrid
sampling almost consistently outperforms both uniform and
random sampling across different descriptors and different
datasets, and in most cases, the performance gap is quite
huge. Quantitatively, we perform aWilcoxon signed rank test
between performance of hybrid and uniform (random)
sampling, and p-values are listed in Table 1. As seen, hybrid
sampling works significantly better than both uniform and
random sampling (p � 0:01). This is partially attributed to
phase-invariance of landmark-points based sampling, i.e.,
sampling from landmark points makes the sampled subse-
quences independent of phases of time series. This is also due
to the fact that subsequences at feature points represent the
time series better than those from non-feature points. Sam-
pling from landmarking points results in deterministic subse-
quences, decreasing randomness to 0, while uniform and
random sampling contain much randomness, which results
from time series phase shift and sampling initializations.

Since hybrid sampling is shown to be superior to both
uniform and random sampling, all experiments in the fol-
lowing sections use hybrid sampling to get subsequences.

4.2 Complementarity of HOG-1D and DTW-MDS

We qualitatively show the descriptiveness of local shapes of
HOG-1D and DTW-MDS and quantitatively report the clas-
sification accuracies of HOG-1D, DTW-MDS and HOG-1D
+DTW-MDS on 43 UCR datasets.

First we visualize HOG-1D (16D) and DTW-MDS (20D)
descriptors by t-SNE [41]. t-SNE displays high-dimensional
data by giving each data point a location in a 2D or 3D map
and is shown to reveal the manifold structures of high-
dimensional datasets. 2D (or 3D) visualization of t-SNE pre-
serves neighborhood relationship among high-dimensional
points, therefore, the mapped 2D (or 3D) points of similar
descriptors have similar coordinates and are grouped and
displayed proximately, while descriptors from different
manifolds have dissimilar dimension-reduced 2D (or 3D)
coordinates and are displayed in different groups. The 1first
row in Fig. 8 shows 2D t-SNE visualization of HOG-1D and
DTW-MDS descriptors. The plot is generated in four steps:
(1) sample subsequences from time series by hybrid sam-
pling; (2) calculate their descriptors (HOG-1D or DTW-
MDS); (3) use t-SNE to map descriptors to 2D locations; (4)
plot corresponding raw subsequences on their 2D locations.
As we see, subsequences of visually similar shapes are dis-
played proximately, while dissimilar subsequences are spa-
tially separated. This indicates that visually similarly-
shaped subsequences have similar descriptors (HOG-1D
and DTW-MDS), while differently-shaped subsequences
possess different descriptors. t-SNE visualization shows
qualitatively that both HOG-1D and DTW-MDS capture
local subsequence shapes quite well.

Then we quantitatively show classification performances
of three descriptors. Two plots in the second row in Fig. 8
show classification performances between HOG-1D+DTW-
MDS and HOG-1D (DTW-MDS). Most points lie above
the diagonal, showing better performance of the fused
descriptor than either HOG-1D or DTW-MDS. By running a
Wilcoxon signed-rank test between the classification accura-
cies of HOG-1D+DTW-MDS and HOG-1D (DTW-MDS), we
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get p-values 6:7 � 10�7(1:5 � 10�5), which shows the fused
descriptor outperformed both HOG-1D and DTW-MDS
significantly (p � 0:01). The classification error rates of three

descriptors are listed in Table 3. The better performance
demonstrates that the fused descriptor takes advantages
of individual descriptors, becomes more descriptive of

Fig. 7. Performance comparison of hybrid, uniform and random sampling strategies, across different descriptors and different datasets. We test six
different descriptors, including HOG-1D, DTW-MDS, HOG-1D+DTW-MDS, DWT, DFT, and Zhang’s, on 43 UCR time series datasets under three dif-
ferent sampling methods. Performance accuracies of different descriptors are obtained under BoW encoding and linear kernel SVM pipelines. As
visually seen in the plot, hybrid sampling works almost consistently better than uniform and random sampling by a large gap, both across different
descriptors and across different datasets. Quantitatively, we run Wilcoxon signed rank test between performance of hybrid and uniform (random)
sampling, p-values are listed in Table1, indicating hybrid sampling outperforms both uniform and random sampling significantly (p < 0:01).

TABLE 1
Wilcoxon Signed Rank Test between Performances of Hybrid and Uniform (Random) Sampling

Hybrid versus Uniform

descriptors HOG-1D DTW-MDS HOG-1D+DTW-MDS Zhang’s DFT DWT
p-values(�1.0e-7) .2933 .1648 .3632 .6840 .1834 .3631

Hybrid versus Random

descriptors HOG-1D DTW-MDS HOG-1D+DTW-MDS Zhang’s DFT DWT
p-values(�1.0e-7) .2365 .1120 .1834 .1967 .1385 .1648

Under the Wilcoxon signed rank test, the null hypothesis is that performance differences between hybrid and uniform (random) sampling come from a distribution
whose median is 0 at 1 percent significance level. Since all p-values are much smaller than 0.01, showing that the null hypothesis is rejected strongly. This indi-
cates hybrid sampling outperforms both uniform and random sampling in a statistically significant way.
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subsequences, and thus is more discriminative for classifica-
tion tasks. In fact, HOG-1D and DTW-MDS are complemen-
tary to each other: HOG-1D is more robust to noise, and
invariant to y-axis magnitude shift; while DTW-MDS is sen-
sitive to noise and magnitude shift, but it is more stretching,
contraction and temporal shifting invariant.

4.3 Comparison with Other Descriptors and the
State-of-the-Art Algorithms

We compare our fused descriptor HOG-1D+DTW-MDSwith
three other subsequence descriptors: DFT, DWTandZhang’s
[5], [26]. Additionally, we will compare with two state-of-
the-art TSC algorithms: NNDTWand shapelet transform [2].

Fig. 8. Complementarity of HOG-1D and DTW-MDS descriptors. HOG-1D is invariant to y-axis shift and insensitive to noise, while DTW-MDS is
more contraction, stretching and translation invariant. The fusion of two descriptors benefits from their individual advantages, and outperforms each
separate descriptor on most of the UCR datasets. Two plots in the first row show t-SNE [41] visualization of HOG-1D and DTW-MDS descriptors of
246 subsequences. As we see from both plots, similar shaped subsequences are displayed proximately, indicating both descriptors capture shapes
very well (Here, different subsequence colors are independent of t-SNE, but just for visual comfortability. 246 subsequences are k-means clustered
into 10 clusters, with a random color assigned for each cluster). Two plots in the second row show performance comparisons between HOG-1D
+DTW-MDS and HOG-1D (DTW-MDS). On most datasets, the fused descriptor outperforms each separate one. By running Wilcoxon signed rank
test, p-value between the fused and HOG-1D (DTW-MDS) is 6:7 � 10�7 and 1:5 � 10�5, showing fused descriptor performs significantly better.

Fig. 9. Comparison with the state of the art TSC algorithms. We compare with two state-of-the-art algorithms: NNDTW (with warping window con-
straints) and shapelet transform [2]. The performance of our fused descriptor HOG-1D+DTW-MDS is obtained under BoWencoding and linear kernel
SVM classification. The first two plots show performance comparisons between HOG-1D+DTW-MDS and NNDTW (Shapelet Transform), and as
being observed, HOG-1D+DTW-MDS performs better on most datasets. The 3rd plot shows the number of datasets on which each algorithm wins
(including ties) the other two, and ours gets the best performance on 22 out of 41. A Wilcoxon signed rank test shows that our method improves rela-
tive classification accuracies significantly compared to NNDTW (p < 0:0017) and shapelet transform (p < 0:0452).
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Four local descriptors. As mentioned, we use the Bag-of-
Words classification pipeline, hybrid sampling + local
subsequence representation + Fisher Vector time series
encoding + linear SVM classification, for 4 different local
subsequence descriptors. Two tunable parameters, K in
GMM and the power normalization factor a, are determined

by cross-validation on training data, and classification per-
formance on test data is reported.

Two state-of-the-art algorihtms. (1) NNDTW: we use DTW
with warping window constraints as the distance measure
and the label of the nearest neighbor as the predicted label for
the test time series. Instead of running NNDTW again, we
import results fromUCR time series website [40]; (2) Shapelet
Transform[2]: in the original paper, authors only tested on 29
UCR datasets, while they provided full results on their web-
site [42]. Again,we directly import results from their website.

Beforehand, we define a terminology: Relative accuracy
boost. It is defined to be the ratio between the boosted
accuracy by HOG-1D+DTW-MDS and the original accu-
racy, i.e., rAi

b ¼ ðAi
HOG�1DþDTW�MDS �Ai

bÞ=Ai
b, where rAi

b is
the relative accuracy boost of algorithm b on dataset i

(b 2{DFT, Zhang’s, NNDTW, shapelet transform, DWT}),

TABLE 2
Wilcoxon Signed Rank Test on Relative Accuracy

Boost by HOG-1D+DTW-MDS

signrank test on relative accuracy boost by HOG-1D+DTW-MDS

methods DFT Zhang’s NNDTW shapelet transform DWT
p-values 5.2e-8 5.2e-8 0.0017 0.0452 6.2e-4

Under the significance level 5 percent, all five algorithms have significant rela-
tive accuracy boosts (p < 0:05).

TABLE 3
Error Rates of Different Algorithms on UCR Time Series Datasets

datasets HOG-1D DTW-MDS DFT Zhang’s NNDTW Shapelet
Transform

DWT HOG-1D+
DTW-MDS

50words 0.419 0.455 0.622 0.536 0.242 – 0.386 0.402
Adiac 0.297 0.355 0.570 0.422 0.391 0.435 0.322 0.320
Beef 0.467 0.400 0.367 0.467 0.467 0.167 0.467 0.367
CBF 0.057 0.000 0.029 0.287 0.004 0.003 0.000 0.000
ChlorineConcentration 0.335 0.285 0.449 0.433 0.350 0.300 0.259 0.307
CinC-ECG-torso 0.275 0.327 0.474 0.365 0.070 0.154 0.323 0.249
Coffee 0.000 0.107 0.179 0.179 0.179 0.000 0.000 0.000
Cricket-X 0.351 0.249 0.510 0.362 0.236 0.218 0.223 0.195
Cricket-Y 0.359 0.223 0.438 0.382 0.197 0.236 0.187 0.205
Cricket-Z 0.323 0.218 0.436 0.385 0.180 0.228 0.190 0.185
DiatomSizeReduction 0.065 0.036 0.085 0.023 0.065 0.124 0.039 0.016
ECG200 0.130 0.100 0.210 0.120 0.120 – 0.090 0.060
ECGFiveDays 0.017 0.103 0.139 0.059 0.203 0.001 0.020 0.012
FaceAll 0.159 0.075 0.436 0.331 0.192 0.263 0.095 0.082
FaceFour 0.102 0.034 0.273 0.136 0.114 0.057 0.034 0.034
FacesUCR 0.228 0.094 0.464 0.314 0.088 0.087 0.128 0.090
Gun-Point 0.013 0.020 0.147 0.067 0.087 0.020 0.007 0.007
Haptics 0.536 0.536 0.614 0.568 0.588 0.523 0.516 0.471
InlineSkate 0.615 0.665 0.695 0.680 0.613 0.615 0.673 0.551
ItalyPowerDemand 0.116 0.036 0.095 0.096 0.045 0.048 0.093 0.070
Lightning2 0.180 0.098 0.230 0.148 0.131 0.344 0.180 0.148
Lightning7 0.260 0.205 0.438 0.301 0.288 0.260 0.219 0.205
MALLAT 0.058 0.046 0.178 0.090 0.086 0.060 0.050 0.035
MedicalImages 0.304 0.236 0.424 0.305 0.253 0.396 0.251 0.230
MoteStrain 0.104 0.130 0.216 0.236 0.134 0.109 0.118 0.090
OSULeaf 0.116 0.161 0.351 0.318 0.384 0.285 0.136 0.120
OliveOil 0.100 0.167 0.267 0.233 0.167 0.100 0.167 0.167
SonyAIBORobotSurface 0.072 0.047 0.276 0.251 0.305 0.067 0.017 0.042
SonyAIBORobotSurfaceII 0.171 0.091 0.255 0.329 0.141 0.115 0.049 0.084
StarLightCurves 0.039 0.048 0.091 0.096 0.095 0.024 0.060 0.040
SwedishLeaf 0.090 0.074 0.366 0.184 0.157 0.093 0.048 0.061
Symbols 0.074 0.071 0.155 0.231 0.062 0.114 0.076 0.036
Trace 0.000 0.000 0.000 0.000 0.010 0.020 0.000 0.000
Two-Patterns 0.010 0.045 0.253 0.367 0.001 0.059 0.046 0.004
TwoLeadECG 0.008 0.022 0.067 0.115 0.132 0.004 0.005 0.007
WordsSynonyms 0.555 0.534 0.688 0.619 0.252 0.403 0.475 0.483
fish 0.274 0.063 0.389 0.360 0.160 0.023 0.097 0.034
synthetic-control 0.097 0.007 0.080 0.403 0.017 0.017 0.007 0.007
uWaveGestureLibrary-X 0.309 0.367 0.479 0.527 0.227 0.216 0.316 0.280
uWaveGestureLibrary-Y 0.440 0.474 0.580 0.594 0.301 0.303 0.448 0.399
uWaveGestureLibrary-Z 0.369 0.398 0.522 0.526 0.322 0.273 0.376 0.321
wafer 0.001 0.009 0.046 0.027 0.005 0.002 0.001 0.001
yoga 0.192 0.240 0.379 0.324 0.155 0.195 0.235 0.182

The lowest error rate on each dataset is highlighted in bold font (HOG-1D and DTW-MDS are excluded for performance comparison).
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Ai
b and Ai

HOG�1DþDTW�MDS are the accuracy of algorithm b

and reference algorithm HOG-1D+DTW-MDS on dataset i.
Since shapelet transform [42] does not provide classifica-

tion accuracies on two datasets—‘50words’ and ‘ECG200’,
all the comparisons (including plots in Fig. 9 and p-values
in Table 2) in this section are reported on the remaining 41
datasets. The left two plots in Fig. 9 show performance
comparisons between HOG-1D+DTW-MDS and NNDTW
(Shapelet Transform), and most points still lie above the
diagonal, showing better performances of our algorithm.
The right plot shows the number of datasets on which each
algorithm wins (including ties) the other two. As shown, on
22 out of 41 datasets, HOG-1DþDTW-MDS wins both
NNDTW and Shapelet Transform. By running a Wilcoxon
signed rank test on the relative accuracy boost of NNDTW
(shapelet transform), we obtain p-values 0.0017 (0.0452),
which indicates the relative accuracy boost by HOG-
1DþDTW-MDS is significant (p < 0:05).

We do Wilcoxon signed rank test on relative accuracy
boost of five algorithms, and report the p-values in Table 2.
Under the significance level 5 percent, the relative accuracy
boost by HOG-1D+DTW-MDS is significant for all five
algorithms.

Texas Sharpshooter Fallacy. although our algorithm outper-
forms other algorithms according to the Wilcoxon signed
rank test, knowing this is not useful unless we can tell in
advance onwhich problems itwill bemore accurate, as stated
in [11]. In this section we use the Texas sharpshooter plot [11]
to show when our algorithm has superior performance on
the test set as predicted from performance on the training set,
compared with NNDTW.We run leave-one-out cross valida-
tion on training data to measure the accuracies of HOG-1D
+DTW-MDS and NNDTW, and we calculate the expected
gain: accuracy(HOG-1D+DTW-MDS)/accuracy(NNDTW).
We thenmeasure the actual accuracy gain using the test data.
The results are plotted in Fig. 10. Most points (88:4 percent)
fall in the TP and TN regions, indicating we can confidently
predict that our algorithm will be superior/inferior to
NNDTW. There are only five points falling in the FP region,
but as seen they just representminor losses or gains.

For consistency with convention in reporting error rates
in TSC problems, we document error rates of eight algo-
rithms in Table 3. The lowest error rate on each dataset is
highlighted in bold font (HOG-1D and DTW-MDS are
excluded from performance comparison).

4.4 Empirical Time Complexity

A practical and important issue is the efficiency of the pro-
posed algorithm. As analyzed theoretically, in general our
algorithm has a higher time complexity than NNDTW. How-
ever, the majority of our time cost is during training (usually
not a problem as it is done offline), while during test, our
algorithm is usually much more efficient than NNDTW,
especially when the training data is large. We compare
empirical running time of three different algorithms, includ-
ing ours, NNDTW and NN-DTW-DDTW, on 43 UCR data-
sets. Here, NN-DTW-DDTW is the nearest neighbor classifier
under the fused distance metric, i.e., ðDTW; b �DDTW Þ,
where DDTW is derivative Dynamic time warping [43] and b
is a weighting factor between two metrics, tuned by

cross-validation on training data. We report running time
using the following machine: Ubuntu 12.04 64-bit, Intel i7
CPU 960, eight cores, 12G RAM, matlab2015a. As seen in
Fig. 11, although in general our algorithm has higher time
cost (including training and test) than NNDTW and NN-
DTW-DDTW, we are more efficient during test, which is
important for real-time prediction.

4.5 Sensitivity Analysis

The above results are reported under a fixed parameter set-
ting, however, the performance robustness to different
parameter settings is important for an algorithm. In the sup-
plementary materials, available online, we evaluate the per-
formance sensitivity of our pipeline to each parameter, and
do the evaluation under the philosophy that: vary one
parameter at a time while maintaining other parameters
fixed. Extensive experiments show that our algorithm per-
forms well under wide ranges of subsequence lengths l,
strides s and DTW-MDS dimensionalities h, and therefore
is largely insensitive to them. We demonstrate as well that
(1) dense sampling with a small stride outperforms sparse
sampling with a large stride; (2) hybrid sampling outper-
forms both uniform and random sampling; (3) Fisher Vector
encoding is superior to the ordinary Bag-of-words fre-
quency encoding. See supplementary materials, available
online, for detailed results.

5 CONCLUSIONS

In this work, we focus on developing better local feature
extractors and better local subsequence descriptors of time
series data. We introduced a simple but effective feature
point detector from real case time series data, proposed to
sample subsequences both from feature points and flat
regions, and experimentally showed this hybrid sampling
method performed significantly better than traditional uni-
form and random sampling. Further more, two novel
descriptors, HOG-1D and DTW-MDS, are developed to rep-
resent local subsequences. Experimental results show that
both descriptors are quite descriptive of local subsequence
shapes and complementary of each other, and the fused
descriptor outperformed individual descriptors significantly.

Fig. 10. Texas Sharpshooter plot: HOG-1D+DTW-MDS versus NNDTW.
TP: true positive (our algorithm was expected from the training data
to outperform NNDTW, and it actually did on the test data). TN: true neg-
atives, FP: false positives, FN: false negatives. Each dot is one UCR
dataset (43 dots total). Our algorithm performed on the test set as pre-
dicted from the training performance in nearly 90 percent of the datasets
(38 out of 43 dots are in the TP or TN regions).
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We tested our fused descriptor extensively on 43 standard
UCR time series datasets, compared with two state-of-the-art
competing algorithms, NNDTWand shapelet transform, and
three other local subsequence descriptors, including DFT,
Zhang’s and DWT, and experimental results showed our
fused descriptor performs significantly better than all com-
peting algorithms and local descriptors. To the best of our
knowledge, the feature point detector and two local descrip-
tors are first introduced here.

Since our system is essentially a Bag-of-Words pipeline,
the temporal information in the time series is not encoded
by its Fisher Vector representation. In the case when the
temporal or the phase information is important to distin-
guish time series from different classes, we could enhance
the representation of each subsequence by its temporal
span, and then process the modified subsequence descrip-
tors by our proposed pipeline.
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