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a b s t r a c t 

Dynamic Time Warping (DTW) is an algorithm to align temporal sequences with possible local non-linear 

distortions, and has been widely applied to audio, video and graphics data alignments. DTW is essentially 

a point-to-point matching method under some boundary and temporal consistency constraints. Although 

DTW obtains a global optimal solution, it does not necessarily achieve locally sensible matchings. Con- 

cretely, two temporal points with entirely dissimilar local structures may be matched by DTW. To ad- 

dress this problem, we propose an improved alignment algorithm, named shape Dynamic Time Warping 

(shapeDTW), which enhances DTW by taking point-wise local structural information into consideration. 

shapeDTW is inherently a DTW algorithm, but additionally attempts to pair locally similar structures 

and to avoid matching points with distinct neighborhood structures. We apply shapeDTW to align audio 

signal pairs having ground-truth alignments, as well as artificially simulated pairs of aligned sequences, 

and obtain quantitatively much lower alignment errors than DTW and its two variants. When shapeDTW 

is used as a distance measure in a nearest neighbor classifier (NN-shapeDTW) to classify time series, it 

beats DTW on 64 out of 84 UCR time series datasets, with significantly improved classification accuracies. 

By using a properly designed local structure descriptor, shapeDTW improves accuracies by more than 10% 

on 18 datasets. To the best of our knowledge, shapeDTW is the first distance measure under the nearest 

neighbor classifier scheme to significantly outperform DTW, which had been widely recognized as the 

best distance measure to date. Our code is publicly accessible at: https://github.com/jiapingz/shapeDTW . 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Dynamic Time Warping (DTW) is an algorithm to align tem-

oral sequences, which has been widely used in speech recog-

ition [1] , human motion animation [2] , human activity recogni-

ion [3] and time series classification [4] . DTW allows temporal

equences to be locally shifted, contracted and stretched, and un-

er some boundary and monotonicity constraints, it searches for

 global optimal alignment path. DTW is essentially a point-to-

oint matching algorithm, but it additionally enforces temporal

onsistencies among matched point pairs. If we distill the match-

ng component from DTW, the matching is executed by checking

he similarity of two points based on their Euclidean distance. Yet,

atching points based solely on their coordinate values is unre-

iable and prone to error, therefore, DTW may generate perceptu-

lly nonsensible alignments, which wrongly pair points with dis-

inct local structures (see Fig. 1 (c)). This partially explains why

he nearest neighbor classifier under the DTW distance measure

s less interpretable than the shapelet classifier [5] : although DTW
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oes achieve a global minimal score, the alignment process itself

akes no local structural information into account, possibly result-

ng in an alignment with little semantic meaning. In this paper,

e propose a novel alignment algorithm, named shape Dynamic

ime Warping (shapeDTW), which enhances DTW by incorporating

oint-wise local structures into the matching process. As a result,

e obtain perceptually interpretable alignments: similarly-shaped

tructures are preferentially matched based on their degree of sim-

larity. We further quantitatively evaluate alignment paths against

he ground-truth, and shapeDTW achieves much lower alignment

rrors than DTW. An alignment example by shapeDTW is shown

n Fig. 1 (d). 

Point matching is a well studied problem in the computer vi-

ion community, widely known as image matching. In order to

earch corresponding points from two distinct images taken from

he same scene, a quite naive way is to compare their pixel val-

es. But pixel values at a point lacks spatial neighborhood context,

aking it less discriminative for that point; e.g., a tree leaf pixel

rom one image may have exactly the same RGB values as a grass

ixel from the other image, but these two pixels are not corre-

ponding pixels and should not be matched. Therefore, a routine

or image matching is to describe points by their surrounding im-

ge patches, and then compare the similarities of point descriptors.

http://dx.doi.org/10.1016/j.patcog.2017.09.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.09.020&domain=pdf
https://github.com/jiapingz/shapeDTW
mailto:jiapingz@usc.edu
mailto:justinzo@hotmail.com
mailto:itti@usc.edu
http://dx.doi.org/10.1016/j.patcog.2017.09.020
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Fig. 1. Motivation to incorporate temporal neighborhood structural information into the sequence alignment process. (a) an image matching example: two corresponding 

points from the image pairs are boxed out and their local patches are shown in the middle. Local patches encode image structures around spatial neighborhoods, and 

therefore are discriminative for points, while it is hard to match two points solely by their pixel values. (b) two time series with several similar local structures, highlighted 

as bold segments. (c) DTW alignment: DTW fails to align similar local structures. (d) shapeDTW alignment: we achieve a more interpretable alignment, with similarly-shaped 

local structures matched. 
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Since point descriptors designed in this way encode image struc-

tures around local neighborhoods, they are more distinctive and

discriminative than single pixel values. In early days, raw image

patches were used as point descriptors [6] , and now more power-

ful descriptors like SIFT [7] are widely adopted since they capture

local image structures very well and are invariant to image scale

and rotation. 

Intuitively, local neighborhood patches make points more dis-

criminative from other points, while matching based on RGB pixel

values is brittle and results in high false positives. However, the

matching component in the traditional DTW bears the same weak-

ness as image matching based on single pixel values, since similar-

ities between temporal points are measured by their coordinates,

instead of by their local neighborhoods. An analogous remedy for

temporal matching hence is: first encode each temporal point by

some descriptor, which captures local subsequence structural infor-

mation around that point, and then match temporal points based

on the similarity of their descriptors. If we further enforce tempo-

ral consistencies among matchings, then comes the algorithm pro-

posed in the paper: shapeDTW. 

shapeDTW is a temporal alignment algorithm, which consists of

two sequential steps: (1) represent each temporal point by some

shape descriptor, which encodes structural information of local

subsequences around that point; in this way, the original time se-

ries is converted into a sequence of descriptors. (2) use DTW to

align two sequences of descriptors. Since the first step takes lin-

ear time while the second step is a typical DTW, which takes

quadratic time, the total time complexity is quadratic in the length

of time series, indicating that shapeDTW has similar computa-

tional complexities as DTW. However, compared with DTW and

its variants (derivative Dynamic Time Warping (dDTW) [8] and

weighted Dynamic Time Warping (wDTW) [9] ), it has two clear

advantages: (1) shapeDTW obtains lower alignment errors than

DTW/dDTW/wDTW on both artificially simulated aligned sequence

pairs and real audio signals; (2) the nearest neighbor classifier un-

der the shapeDTW distance measure (NN-shapeDTW) significantly

beats NN-DTW on 64 out of 84 UCR time series datasets [4] . NN-

shapeDTW outperforms NN-dDTW/NN-wDTW significantly as well.

Our shapeDTW time series alignment procedure is shown in Fig. 2 .

Extensive empirical experiments have shown that a nearest

neighbor classifier with the DTW distance measure (NN-DTW) is

the best choice to date for most time series classification prob-

lems, since no alternative distance measures outperforms DTW sig-

nificantly [10–12] . However, in this paper, the proposed temporal

alignment algorithm, shapeDTW, if used as a distance measure un-

der the nearest neighbor classifier scheme, significantly beats DTW.

To the best of our knowledge, shapeDTW is the first distance mea-

sure that outperforms DTW significantly. 
q  
Our contributions are several fold: (1) we propose a tempo-

al alignment algorithm, shapeDTW, which achieves quantitatively

etter alignments than DTW (dDTW, wDTW); (2) Working under

he nearest neighbor classifier as a distance measure to classify 84

CR time series datasets, shapeDTW, under all tested shape de-

criptors, outperforms DTW significantly; (3) shapeDTW provides

 quite generic alignment framework, and users can design new

hape descriptors adapted to their domain data characteristics and

hen feed them into shapeDTW for alignments. 

. Related work 

Since shapeDTW is developed for sequence alignment, here

e first review work related to sequence alignment. DTW is a

ypical sequence alignment algorithm, and there are many ways

o improve DTW to obtain better alignments. Traditionally, we

ould enforce global warping path constraints to prevent patho-

ogical warpings [1] , and several typical such global warping con-

traints include Sakoe–Chiba band and Itakura Parallelogram. Sim-

larly, we could choose to use different step patterns in different

pplications: apart from the widely used step pattern - “symmet-

ic1”, there are other popular steps patterns like “symmetric2”,

asymmetric” and “RabinerJuangStepPattern” [13] . However, how

o choose an appropriate warping band constraint and a suitable

tep pattern depends on our prior knowledge on the application

omains. 

There are several recent works to improve DTW alignment. In

8] , to get the intuitively correct “feature to feature” alignment be-

ween two sequences, the authors introduced derivative Dynamic

ime Warping (dDTW), which computes first-order derivatives of

ime series sequences, and then aligns two derivative sequences

y DTW. Jeong et al. [9] developed weighted DTW (wDTW), which

s a penalty-based DTW. wDTW takes the phase difference be-

ween two points into account when computing their distances.

atista et al. [14] proposed a complexity-invariant distance mea-

ure, which essentially rectifies an existing distance measure (e.g.,

uclidean, DTW) by multiplying a complexity correction factor. Al-

hough they achieve improved results on some datasets by rec-

ifying the DTW measure, they do not modify the original DTW

lgorithm. Lajugie et al. [15] proposed to learn a distance met-

ic, and then align temporal sequences by DTW under this new

etric. One major drawback is the requirement of ground truth

lignments for metric learning, because in reality true alignments

re usually unavailable. Candan et al. [16] proposed to utilize time

eries local structure information to constrain the search of the

arping path. They introduce a SIFT-like feature point detector and

escriptor to detect and match salient feature points from two se-

uences first, and then use matched point pairs to regularize the
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Fig. 2. Pipeline of shapeDTW. shapeDTW consists of two major steps: encode local structures by shape descriptors and align descriptor sequences by DTW. Concretely, we 

sample a subsequence from each temporal point, and further encode it by some shape descriptor. As a result, the original time series is converted into a descriptor sequence 

of the same length. Then we align two descriptor sequences by DTW and transfer the found warping path to the original time series. 
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earch scope of the warping path. Their major initiative is to im-

rove the computational efficiency of Dynamic Time Warping by

nforcing band constraints on the potential warping paths, such

hat they do not have to compute the full accumulative distance

atrix between the two sequences. Our method is sufficiently dif-

erent from theirs in following aspects: first, we have no notion

f feature points, while feature points are key to their algorithm,

ince feature points help to regularize downstream DTW; second,

ur algorithm aims to achieve better alignments, while their al-

orithm attempts to improve the computational efficiency of the

raditional DTW. Petitjean et al. [12] focus on improving the effi-

iency of the nearest neighbor classifier under the DTW distance

easure, but they keep the traditional DTW algorithm unchanged.

Our algorithm, shapeDTW, is different from the above works in

hat: we measure similarities between two points by computing

imilarities between their local neighborhoods, while all the above

orks compute the distance between two points based on their

ingle-point y-values (derivatives). 

Since shapeDTW can be applied to classify time series (e.g., NN-

hapeDTW), we review representative time series classification al-

orithms. Lin et al. [17] use the popular Bag-of-Words to represent

ime series instances, and then classify the representations under

he nearest neighbor classifier. Concretely, it discretizes time series

nto local SAX [18] words, and uses the histogram of SAX words as

he time series representation. Rakthanmanon and Keogh [19] de-

eloped an algorithm to first extract class-membership discrimi-

ative shapelets, and then learn a decision tree classifier based

n distances between shapelets and time series instances. In [20] ,

hey first represent time series using recurrent plots, and then

easure the similarity between recurrence plots using Campana–

eogh (CK-1) distance (PRCD). PRCD distance is used as the dis-

ance measure under the one-nearest neighbor classifier to do clas-

ification. In [21] , a bag-of-feature framework to classify time se-

ies is introduced. It uses a supervised codebook to encode time

eries instances, and then uses random forest classifier to classify

he encoded time series. Grabocka and Schmidt-Thieme [22] first

ncode time series as a bag-of-patterns, and then use polynomial

ernel SVM to do the classification. Zhao and Itti [23] proposed to

t  
rst encode time series by the 2nd order encoding method - Fisher

ectors, and then classify encoded time series by a linear kernel

VM. In their paper, subsequences are sampled from both feature

oints and flat regions. 

shapeDTW is different from above works in that: shapeDTW is

eveloped to align temporal sequences, but can be further applied

o classify time series. However, all above works are developed

o classify time series, and they are incapable to align temporal

equences at their current stages. Since time series classification

s only one application of shapeDTW, we compare NN-shapeDTW

gainst the above time series classification algorithms in the sup-

lementary materials. 

The paper is organized as follows: the detailed algorithm for

hapeDTW is introduced in Section 3 , and in Section 4 we in-

roduce several local shape descriptors. Then we extensively test

hapeDTW for both sequence alignments and time series classifi-

ation in Section 6 , and conclusions are drawn in Section 7 . 

. shape Dynamic Time Warping 

In this section, we introduce a temporal alignment algorithm,

hapeDTW. First we introduce DTW briefly. 

.1. Dynamic Time Warping 

DTW is an algorithm to search for an optimal alignment be-

ween two temporal sequences. It returns a distance measure for

auging similarities between them. Sequences are allowed to have

ocal non-linear distortions in the time dimension, and DTW han-

les local warpings to some extent. DTW is applicable to both uni-

ariate and multivariate time series, and here for simplicity we in-

roduce DTW in the case of univariate time series alignment. 

A univariate time series is a sequence of real values, i.e., T =
(t 1 , t 2 , . . . , t L ) 

T . Given two sequences P and Q of possibly differ-

nt lengths L P and L Q , namely P = (p 1 , p 2 , . . . , p L P ) 
T and Q =

(q 1 , q 2 , . . . , q L Q ) 
T , and let D(P, Q ) ∈ R 

L P ×L Q be an pairwise dis-

ance matrix between sequences P and Q , where D(P, Q ) i, j is

he distance between p i and p j . One widely used pairwise dis-

ance measure is the Euclidean distance, i.e., D(P, Q ) i, j = | p i − q j | .
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The goal of temporal alignment between P and Q is to find

two sequences of indices α and β of the same length l (l ≥
max ( L P , L Q )) , which match index α( i ) in the time series P to in-

dex β( i ) in the time series Q , such that the total cost along the

matching path 

∑ l 
i =1 D(P, Q ) α(i ) ,β(i ) is minimized. The alignment

path ( α, β) is constrained to satisfy boundary, monotonicity and

continuity conditions [24–26] : { 

α(1) = β(1) = 1 

α(l) = L P , β(l) = L Q 
( α(i + 1) , β(i + 1)) − (α(i ) , β(i ) ) ∈ { (1 , 0) , (1 , 1) , (0 , 1) } 

(1)

Given an alignment path ( α, β), we define two warping ma-

trices W 

P ∈ { 0 , 1 } l×L P and W 

Q ∈ { 0 , 1 } l×L Q for P and Q respec-

tively, such that W 

P (i, α(i )) = 1 , otherwise W 

P (i, j) = 0 , and sim-

ilarly W 

Q (i, β(i )) = 1 , otherwise W 

Q (i, j) = 0 . Then the total cost

along the matching path 

∑ l 
i =1 D(P, Q ) α(i ) ,β(i ) is equal to ‖ W 

P ·
P − W 

Q · Q ‖ 1 , thus searching for the optimal temporal matching

can be formulated as the following optimization problem: 

arg min l, W 

P ∈{ 0 , 1 } l×L P , W 

Q ∈{ 0 , 1 } l×L Q ‖ W 

P · P − W 

Q · Q ‖ 1 (2)

Program 2 can be solved efficiently in O( L P ×L Q ) time by a dy-

namic programming algorithm [27] . Various different moving pat-

terns and temporal window constraints [24] can be enforced, but

here we consider DTW without warping window constraints and

taking moving patterns as in (1) . 

Note: in this section, DTW is defined in the case of univariate

time series, therefore is formulated under the � 1 norm ( � 1 norm is

equivalent to � p norm in the scalar space). For a more generalized

definition of DTW under the � p norm, see [28] . 

3.2. shape Dynamic Time Warping 

DTW finds a global optimal alignment under certain con-

straints, but it does not necessarily achieve locally sensible match-

ings. Here we incorporate local shape information around each

point into the dynamic programming matching process, resulting

in more semantically meaningful alignment results, i.e., points with

similar local shapes tend to be matched while those with dissimi-

lar neighborhoods are unlikely to be matched. shapeDTW consists

of two steps: (1) represent each temporal point by some shape de-

scriptor; and (2) align two sequences of descriptors by DTW. We

first introduce the shapeDTW alignment framework, and in the

next section, we introduce several local shape descriptors. 

Given a univariate time series T = (t 1 , t 2 , . . . , t L ) 
T , T ∈ R 

L ,

shapeDTW begins by representing each temporal point t i by a

shape descriptor d i ∈ R 

m , which encodes structural information of

temporal neighborhoods around t i , in this way, the original real

value sequence T = (t 1 , t 2 , . . . , t L ) 
T is converted to a sequence of

shape descriptors of the same length, i.e., d = (d 1 , d 2 , . . . , d L ) 
T , d ∈

R 

L ×m . shapeDTW then aligns the transformed multivariate descrip-

tor sequences d by DTW, and at last the alignment path between

descriptor sequences is transferred to the original univariate time

series sequences. We give implementation details of shapeDTW: 

Given a univariate time series of length L , e.g., T =
(t 1 , t 2 , . . . , t L ) 

T , we first extract a subsequence s i of length l

from each temporal point t i . The subsequence s i is centered on t i ,

with its length l typically much smaller than L ( l � L ). Note we have

to pad both ends of T by � l 2 � with duplicates of t 1 ( t L ) to make

subsequences sampled at endpoints well defined. Now we obtain

a sequence of subsequences, i.e., S = (s 1 , s 2 , . . . , s L ) 
T , s i ∈ R 

l , with

s i corresponding to the temporal point t i . Next, we design shape

descriptors to express subsequences, under the goal that similarly-

shaped subsequences have similar descriptors while differently-

shaped subsequences have distinct descriptors. The shape descrip-

tor of subsequence s naturally encodes local structural information
i 
round the temporal point t i , and is named as shape descriptor

f the temporal point t i as well. Designing a shape descriptor

oils down to designing a mapping function F(·) , which maps

ubsequence s i ∈ R 

l to shape descriptor d i ∈ R 

m , i.e., d i = F(s i ) ,

o that similarity between descriptors can be measured simply

ith the Euclidean distance. Different mapping functions define

ifferent shape descriptors, and one straightforward mapping

unction is the identity function I( ·) , in this case, d i = I(s i ) = s i ,

.e., subsequence itself acts as local shape descriptor. Given a shape

escriptor computation function F(·) , we convert the subsequence

equence S to a descriptor sequence d = (d 1 , d 2 , . . . , d L ) 
T d i ∈ R 

m ,

.e., d = F(S) = ( F(s 1 ) , F(s 2 ) , . . . , F(s L ) ) 
T 

. At last, we use DTW to

lign two descriptor sequences and transfer the warping path to

he original univariate time series. 

Given two univariate time series P = (p 1 , p 2 , . . . , p L P ) 
T , P ∈

 

L P and Q = (q 1 , q 2 , . . . , q L Q ) 
T , Q ∈ R 

L Q , let d 

P = (d P 
1 

, d P 
2 

,

 . . , d P L P ) 
T , d P 

i 
∈ R 

m , d 

P ∈ R 

L P ×m and d 

Q =
(d Q 

1 
, d Q 

2 
, . . . , d Q L Q ) 

T , d Q 
i 

∈ R 

m , d 

Q ∈ R 

L Q ×m be their shape de-

criptor sequences, shapeDTW alignment is equivalent to solve the

ptimization problem: 

rg min l, ˜ W 

P ∈{ 0 , 1 } l×L P , ̃  W 

Q ∈{ 0 , 1 } l×L Q ‖ 

˜ W 

P · d P − ˜ W 

Q · d Q ‖ 1 , 2 (3)

Where ˜ W 

P and 

˜ W 

Q are warping matrices of d 

P and d 

Q ,
nd ‖ · ‖ 1, 2 is the � 1 / � 2 -norm of matrix, i.e., ‖ M p×n ‖ 1 , 2 = 

∑ p 
i =1 

‖
 i ‖ 2 , where M i is the i th row of matrix M . Program 3 is a

ultivariate time series alignment problem, and can be effec-

ively solved by dynamic programming in time O( L P ×L Q ) . The

ey difference between DTW and shapeDTW is that: DTW mea-

ures similarities between p i and q j by their Euclidean distance

 p i − q j | , while shapeDTW uses the Euclidean distance between

heir shape descriptors, i.e., ‖ d P 
i 

− d Q 
j 

‖ 2 , as the similarity mea-

ure. shapeDTW essentially handles local non-linear warping, since

t is inherently DTW, and, on the other hand, it prefers matching

oints with similar neighborhood structures to points with similar

alues. shapeDTW algorithm is described in Algorithm 1 . 

. Shape descriptors 

shapeDTW provides a generic alignment framework, and users

an design shape descriptors adapted to their domain data char-

cteristics and feed them into shapeDTW for alignments. Here we

ntroduce several general shape descriptors, each of which maps a

ubsequence s i to a vector representation d i , i.e., d i = F(s i ) . 

The length l of subsequences defines the size of neighborhoods

round temporal points. When l = 1 , no neighborhood information

s taken into account. With increasing l , larger neighborhoods are

onsidered, and in the extreme case when l = L ( L is the length

f the time series), subsequences sampled from different tempo-

al points become the same, i.e., the whole time series, in which

ase, shape descriptors of different points resemble each other too

uch, making temporal points less identifiable by shape descrip-

ors. In practice, l is set to some appropriate value. But in this sec-

ion, we first let l be any positive integers ( l ≥ 1), which does not

ffect the definition of shape descriptors. In Section 6 , we will ex-

erimentally explore the sensitivity of NN-shapeDTW to the choice

f l . 

.1. Raw-Subsequence 

Raw Subsequence s i sampled around point t i can be directly

sed as the shape descriptor of t i , i.e., d i = I(s i ) = s i , where I(·) is
he identity function. Although simple, it inherently captures the

ocal subsequence shape and helps to disambiguate points with

imilar values but different local shapes. 
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Algorithm 1 shape Dynamic Time Warping. 

Inputs: univariate time series P ∈ R 

L P and Q ∈ R 

L Q ; subsequence 

length l; shape descriptor function F 

shapeDTW: 

1. Sample subsequences: S P ← P, S Q ← Q ; 

2. Encode subsequences by shape descriptors: 

d P ← F( S P ) , d Q ← F( S Q ) ; 

3. Align descriptor sequences d P and d Q by DTW. 

Outputs: 

warping matrices: ˜ W 

P ∗ and 

˜ W 

Q ∗ ; 

shapeDTW distance: ‖ ˜ W 

P ∗ · d P − ˜ W 

Q ∗ · d Q ‖ 1 , 2 
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.2. PAA 

Piecewise aggregate approximation (PAA) is introduced in

29,30] to approximate time series. Here we use it to approximate

ubsequences. Given a l -dimensional subsequence s i , it is divided

nto m ( m ≤ l ) equal-lengthed intervals, the mean value of tempo-

al points falling within each interval is calculated and a vector of

hese mean values gives the approximation of s i and is used as the

hape descriptor d i of s i , i.e., F(·) = PAA, d i = PAA (s i ) . 

.3. DWT 

Discrete Wavelet Transform (DWT) is another widely used tech-

ique to approximate time series instances. Again, here we use

WT to approximate subsequences. Concretely, we use a Haar

avelet basis to decompose each subsequence s i into 3 levels. The

etail wavelet coefficients of all three levels and the approxima-

ion coefficients of the third level are concatenated to form the

pproximation, which is used the shape descriptor d i of s i , i.e.,

(·) = DW T , d i = DW T (s i ) . 

.4. Slope 

All the above three shape descriptors encode local shape in-

ormation inherently. However, they are not invariant to y-shift,

o be concrete, given two subsequences p, q of exactly the same

hape, but p is a y-shifted relative to q , e.g., p = q + � · 1 , where

is the magnitude of y-shift, then their shape descriptors un-

er Raw-Subsequence , PAA and DWT differ approximately by � as

ell, i.e., d(p) ≈ d(q ) + � · 1 . Although magnitudes do help time

eries classification, it is also desirable that similarly-shaped sub-

equences have similar descriptors. Here we further exploit three

hape descriptors in experiments, Slope , Derivative and HOG1D ,

hich are invariant to y-shift. 

Slope is extracted as a feature and used in time series clas-

ification in [21,31] . Here we use it to represent subsequences.

iven a l -dimensional subsequence s i , it is divided into m ( m ≤ l )

qual-lengthed intervals. Within each interval, we employ the total

east square (TLS) line fitting approach [32] to fit a line according

o points falling within that interval. By concatenating the slopes

f the fitted lines from all intervals, we obtain a m -dimensional

ector representation, which is the slope representation of s i , i.e.,

(·) = Slope, d = Slope (s ) . 
i i 
.5. Derivative 

Similar to Slope , Derivative is y-shift invariant as well for shape

epresentation. Given a subsequence s , its first-order derivative se-

uence is s ′ , where s ′ is the first order derivative according to time

 . To keep consistent with derivatives used in derivative Dynamic

ime Warping [8] (dDTW), we follow their formula to compute nu-

eric derivatives. 

.6. HOG1D 

HOG1D is introduced in [33] to represent 1D time series se-

uences. It inherits key concepts from the histogram of oriented

radients (HOG) descriptor [34] , and uses concatenated gradient

istograms to represent shapes of temporal sequences. Similarly to

lope and Derivative descriptors, HOG1D is invariant to y-shift as 

ell. 

In experiments, we divide a subsequence into 2 non-

verlapping intervals, compute gradient histograms (under 8 bins)

n each interval and concatenate two histograms as the HOG1D de-

criptor (a 16D vector) of that subsequence. We refer interested

eaders to Zhao and Itti [33] for computation details of HOG1D.

e have to emphasize that: Zhao and Itti [33] introduce a global

caling factor σ and tune it using all training sequences; but here,

e fix σ to be 0.1 in all our experiments, therefore, HOG1D com-

utation on one subsequence takes only linear time O(l) , where

 is the length of that subsequence. See our published code for

etails. 

.7. Compound shape descriptors 

Shape descriptors, like HOG1D , Slope and Derivative , are invari-

nt to y-shift. However, in the application of matching two subse-

uences, y-magnitudes may sometimes be important cues as well,

.g., DTW relies on point-wise magnitudes for alignments. Shape

escriptors, like Raw-Subsequence , PAA and DWT , encode magni-

ude information, thus they complement y-shift invariant descrip-

ors. By fusing pure-shape capturing and magnitude-aware descrip-

ors, the compound descriptor has the potential to become more

iscriminative of subsequences. In the experiments, we generate

ompound descriptors by concatenating two complementary de-

criptors, i.e., d = (d A , γ d B ) , where γ is a weighting factor to bal-

nce two simple descriptors, and d is the generated compound

escriptor. 

. Alignment quality evaluation 

Here we adopt the “mean absolute deviation ” measure used in

he audio literature [35] to quantify the proximity between two

lignment paths. “Mean absolute deviation ” is defined as the mean

istance between two alignment paths, which is positively pro-

ortional to the area between two paths. Intuitively, two spatially

roximate paths have small between-areas, therefore low “Mean

bsolute deviation ”. Formally, given a reference sequence P, a tar-

et sequence Q and two alignment paths α, β between them,

he Mean absolute deviation between α and β is calculate as:

(α, β) = A (α, β) / L P , where A (α, β) is the area between α and

and L P is the length of the reference sequence P . Fig. 3 shows

wo alignment paths α, β , blue and red curves, between P and

 . A (α, β) is the area of the slashed region, and in practice, it is

omputed by counting the number of cells falling within it. Here a

ell ( i, j ) refers to the position ( i, j ) in the pairwise distance matrix

(P, Q ) ∈ R 

L P ×L Q between P and Q . 
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Fig. 3. “Mean absolute deviation ”, which measures the proximity between alignment 

paths. The red and blue curves are two alignment paths between sequences P and 

Q , and “Mean absolute deviation ” between these two paths is measured as the area 

of the slashed region divided by the length of the reference sequence. (For inter- 

pretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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6. Experimental validation 

We test shapeDTW for sequence alignment and time series

classification extensively on 84 UCR time series datasets [4] and

the Bach10 dataset [36] . For sequence alignment, we compare

shapeDTW against DTW and its other variants both qualitatively

and quantitatively: specifically, we first visually compare align-

ment results returned by shapeDTW and DTW (and its variants),

and then quantify their alignment path qualities on both synthetic

and real data. Concretely, we simulate aligned pairs by artificially

scaling and stretching original time series sequences, align those

pairs by shapeDTW and DTW (and its variants), and then evaluate

the alignment paths against the ground-truth alignments. We fur-

ther evaluate the alignment performances of shapeDTW and DTW

(and its variants) on audio signals, which have the ground-truth

point-to-point alignments. For time series classification, since it is

widely recognized that the nearest neighbor classifier with the dis-

tance measure DTW (NN-DTW) is very effective and is hard to

beat [10,37] , we use the nearest neighbor classifier as well to test

the effectiveness of shapeDTW (NN-shapeDTW), and compare NN-

shapeDTW against NN-DTW. We further compare NN-shapeDTW

against six other state-of-the-art classification algorithms in the

supplementary materials. 

6.1. Sequence alignment 

We evaluate sequence alignments qualitatively in

Section 6.1.2 and quantitatively in Sections 6.1.3 and 6.1.4 . We

compare shapeDTW against DTW, derivative Dynamic Time Warp-

ing (dDTW) [8] and weighted Dynamic Time Warping (wDTW)

[9] . dDTW first computes derivative sequences, and then aligns

them by DTW. wDTW uses a weighted � 2 distance, instead of the

regular � 2 distance, to compute distances between points, and the

weight accounts for the phase differences between points. wDTW

is essentially a DTW algorithm. Here, both dDTW and wDTW are

variants of the original DTW. Before the evaluation, we briefly

introduce some popular step patterns in DTW. 

6.1.1. Step pattern in DTW 

Step pattern in DTW defines the allowed transitions between

matched pairs, and the corresponding weights. In both Pro-

grams 2 (DTW) and 3 (shapeDTW), we use the default step pat-

tern, whose recursion formula is D (i, j) = d(i, j) + min { D (i − 1 , j −
1) , D (i, j − 1) , D (i − 1 , j) } . In the following alignment experiments,
e try other well-known step patterns as well, and we follow

he naming convention in [13] to name these step-patterns. Five

opular step-patterns, “symmetric1”, “symmetric2”, “symmetric5”,

asymmetric” and “rabinerJuang”, are listed in Fig. 4 . Step-pattern

a), “symmetric1”, is the one used by shapeDTW in all the follow-

ng alignment and classification experiments, and we will not ex-

licitly mention that in following texts. 

.1.2. Qualitative alignment assessment 

We plot alignment results by shapeDTW and DTW/dDTW, and

valuate them visually. shapeDTW under 5 shape descriptors,

aw-Subsequence , PAA , DWT , Derivative and HOG1D , obtains simi-

ar alignment results, here we choose Derivative as a representative

o report results, with the subsequence length set to be 30. Here,

hapeDTW, DTW and dDTW all use step pattern (a) in Fig. 4 . 

Time series with rich local features: time series with rich lo-

al features, such as those in the “OSUleaf” dataset (bottom row in

ig. 5 ), have many bumps and valleys; DTW becomes quite brit-

le to align such sequences, since it matches two points based on

heir single-point y-magnitudes. Because single magnitude value

oes not incorporate local neighborhood information, it is hard for

TW to discriminate a peak point p from a valley point v with

he same magnitude, although p and v have dramatically differ-

nt local shapes. dDTW bears similar weakness as DTW, since it

atches points bases on their derivative differences and does not

ake local neighborhood into consideration either. On the contrary,

hapeDTW distinguishes peaks from valleys easily by their highly

ifferent local shape descriptors. Since shapeDTW takes both non-

inear warping and local shapes into account, it gives more per-

eptually interpretable and semantically sensible alignments than

TW (dDTW). Some typical alignment results of time series from

eature rich datasets “OSUleaf” and “Fish” are shown in Fig. 5 . 

.1.3. Simulated sequence-pair alignment 

We simulate aligned sequence pairs by scaling and stretching

riginal time series. Then we run shapeDTW and DTW (and its

ariants) to align the simulated pairs, and compare their alignment

aths against the ground-truth. In this section, shapeDTW is run

nder the fixed settings: (1) fix the subsequence length to be 30,

2) use Derivative as the shape descriptor and (3) use “symmetric1”

s the step-pattern. 

Aligned-pairs simulation algorithm: given a time series T of

ength L , we simulate a new time series by locally scaling and

tretching T . The simulation consists of two sequential steps: (1)

caling: scale T point-wisely, resulting in a new time series ˆ T =
 � S, where S is a positive scale vector with the same length as T ,
nd � is a point-wise multiplication operator; (2) stretching: ran-

omly choose α percent of temporal points from 

ˆ T , stretch each

oint by a random length τ and result in a new time series T ′ .
 

′ and T are a simulated alignment pair, with the ground-truth

lignment known from the simulation process. The simulation al-

orithm is described in Algorithm 2 . 

One caveat we have to pay attention to is that: scaling an in-

ut time series by a random scale vector can make the result-

ng time series perceptually quite different from the original one,

uch that simulated alignment pairs make little sense. Therefore, in

ractice, a scale vector S should be smooth, i.e., adjacent elements

n S cannot be random, instead, they should be similar in magni-

ude, making adjacent temporal points from the original time se-

ies be scaled by a similar amount. In experiments, we first use a

andom process, which is similar to Brownian motion, to initial-

ze scale vectors, and then recursively smooth it. The scale vec-

or generation algorithm is shown in Algorithm 2 . As seen, adja-

ent scales are initialized to be differed by at most 1 (i.e., s (t +
) = s (t) + sin ( π × randn ) ), such that the first order derivatives are
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Fig. 4. Five step patterns. Numbers on transitions indicate the multiplicative weight for the local distance d ( i, j ). Step-pattern (a) “symmetric1” is the default step pattern for 

DTW and (b) gives more penalties to the diagonal directions, such that the warping favors stair-stepping paths. Step patterns (a) and (b) obtain a continuous warping path, 

while step patterns (c), (d) and (e) may result in skipping elements, i.e., some temporal points from one sequence are not matched to any points from the other sequence, 

and vice versa. 

Fig. 5. Alignments between time series with rich local features. Time series at the top and bottom row are from “Fish”(train-165, test-1) and “OSUleaf”(test-114, test-134) 

datasets respectively. In each pair of time series, temporal points with similar local structures are boxed out by rectangles. Perceptually, shapeDTW aligns these corresponding 

points better than both DTW and dDTW. 

Algorithm 2 Simulate alignment pairs. 

Simulate an alignment pair: 

Inputs: a time series instance T ; scale vectorrange [ a b] , smoothing 

iterations �; stretching percentage α, stretching amount τ

1. simulate a scale vector S; 

2. scale T point-wisely, ˆ T ← T � S; 

3. stretching α percent of points from 

ˆ T by a random amount τ , 

resulting in a simulated time series T ′ . 

Outputs: T ′ 

Simulate a scale vector: 

Inputs: length L , iteration �, range [ a b] 

1. Initialize : {
s (1) = randn 

s (t + 1) = s (t) + sin ( π × randn ) , t ∈ { 1 , 2 , . . . , L − 1 } 
2. smoothing : 

while iteration < �

a. set the cumulative sum up to t as the scale at t: {
s (1) ← s (1) 

s (t + 1) ← s (t + 1) + s (t) , t ∈ { 1 , 2 , . . . , L − 1 } 
b. squash scale at t into the range [ −1 , 1] : 

s (t) ← sin ( s (t) ) , t ∈ { 1 , 2 , . . . , L } 
end 

3. squash elements in the scale vector S into range [ a b] by linear 

scaling. 

Outputs: a scale vector S = { s (1) , s (2) , . . . , s (L ) } 
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ounded and initialized scale vectors do not change abruptly. Ini-

ialized scale vectors usually have local bumps, and we further re-

ursively utilize cumulative summation and sine-squashing, as de-

cribed in the algorithm, to smooth the scale vectors. Finally, the

moothed scale vectors are linearly squashed into a positive range

 a b ]. 

After non-uniformly scaling an input time series by a scale vec-

or, we obtain a scale-transformed new sequence, and then we ran-

omly pick α percent of points from the new sequence and stretch

ach of them by some random amount τ . Stretching at point p by

ome amount τ is to duplicate p by τ times. 

Aligned-pairs simulation: using training data from each UCR

ataset as the original time series, we simulate their alignment

airs by running Algorithm 2 . Since there are 27,136 training time

eries instances from 84 UCR datasets, we simulate 27,136 aligned-

airs in total. We fix most simulation parameters as follows:

 a b] = [0 . 5 1] , � = 5 , τ = { 1 , 2 , 3 } , and the stretching percentage

is the only flexible parameter we will vary, e.g., when α = 15% ,

ach original input time series is on average stretched by 30% (in

ength). Typical scale vectors and simulated alignment pairs are

hown in Fig. 6 . The scale vectors are smooth and the simulated

ime series are both scaled and stretched, compared with the orig-

nal ones. 

Alignment comparison between shapeDTW and DTWs: we

lign simulated time series pairs by running shapeDTW and

TWs (including DT W/dDT W/wDT W), and compare alignment

aths against the ground-truth in terms of “Mean Absolute Devi-

tion ” scores. DTW and dDTW are parameter-free, but wDTW has

ne tuning parameter g (see Eq. (3) in their paper), which controls

he curvature of the logistic weight function. However in the case

f aligning two sequences, g is impossible to be tuned and should

e pre-defined by experiences. Here we fix g to be 0.1, which is

he approximate mean value of the optimal g in the original paper.

or the purpose of comparing the alignment qualities of different

lgorithms, we use the default step pattern, (a) in Fig. 4 , for both

hapeDTW and DTW/dDTW/wDTW, but we further evaluate effects

f different step-patterns in the following experiments. 
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Fig. 6. Alignments between simulated time series pairs. (a) simulated scale vectors: they are smooth and squashed to the range [0.5 1.0]; (b) a simulated alignment pair: 

generated by artificially scale and stretch the original time series; (c) dDTW alignment: run dDTW to align the simulated pair; (d) ground truth alignment; (e) shapeDTW 

alignment. The plot on the right shows alignment paths of dDTW, shapeDTW and the ground-truth, visually the alignment path of shapeDTW is closer to the ground-truth, 

and quantitatively, shapeDTW has 1.1 alignment errors in terms of “Mean Absolute Deviation ” score, compared with 4.7 of dDTW. 

Fig. 7. Alignment quality comparison between shapeDTW and DTW/dDTW/wDTW, 

under the step pattern “symmetric1”. As seen, as the stretching amount increases, 

the alignment qualities of both shapeDTW and DT W/dDT W/wDT W drop. However, 

shapeDTW consistently achieves lower alignment errors under different stretching 

amounts, compared with DTW, dDTW and wDTW. 
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We simulate alignment pairs by stretching raw time series by

different amounts, 10%, 20%, 30%, 40% and 50%, and report the

alignment qualities of shapeDTW and DTW/dDTW/wDTW under

each stretching amount in terms of the mean of “Mean Abso-

lute Deviation ” scores over 27,136 simulated pairs. The results are

shown in Fig. 7 , which shows shapeDTW achieves lower align-

ment errors than DTW / dDTW / wDTW over different stretching

amounts consistently. shapeDTW almost halves the alignment er-

rors achieved by dDTW, although dDTW already outperforms its

two competitors, DTW and wDTW, by a large margin. 

Effects of different step patterns: choosing a proper step

pattern is a traditionally way to improve sequence alignments,

and it usually needs domain knowledge to make the right

choice. Here, instead of choosing an optimal step pattern, we run

DTW/dDTW/wDTW under all 5 step patterns in Fig. 4 and com-

pare their alignment performances against shapeDTW. Similar as

the above experiments, we simulate aligned-pairs under different

amounts of stretches, report alignment errors under different step

patterns in terms of the mean of “Mean Absolute Deviation ” scores

over 27,136 simulated pairs, and plot the results in Fig. 8 . As seen,

different step patterns obtain different alignment qualities, and in

our case, step patterns, “symmetric1” and “asymmetric”, have sim-

ilar alignment performances and they reach lower alignment er-

rors than the other 3 step patterns. However, shapeDTW still wins

DTW/dDTW/wDTW (under “symmetric1” and “asymmetric” step-

patterns) by some margin. 

From the above simulation experiments, we observe dDTW (un-

der the step patterns “symmetric1” and “asymmetric”) has the

closest performance as shapeDTW. Here we simulate aligned-pairs

with on average 30% stretches, run dDTW (under “symmetric1”
tep pattern) and shapeDTW alignments. shapeDTW has lower

Mean Absolute Deviation ” scores on 56 datasets, and the mean

f “Mean Absolute Deviation ” on 84 datasets of shapeDTW and

DTW are 1.68/2.75 respectively, indicating shapeDTW achieves

uch lower alignment errors. This shows a clear superiority of

hapeDTW to dDTW for sequence alignment. 

The key difference between shapeDTW and DT W/dDT W/wDT W

s that whether neighborhood is taken into account when mea-

uring similarities between two points. We demonstrate that tak-

ng local neighborhood information into account (shapeDTW) does

enefit the alignment. 

.1.4. MIDI-to-audio alignment 

We showed the superiority of shapeDTW to align synthesized

lignment pairs, and in this section, we further empirically demon-

trate its effectiveness to align audio signals, which have ground-

ruth alignments. 

The Bach10 dataset [36] consists of audio recordings of 10

ieces of Bach’s Chorales, as well as their MIDI scores and the

round-truth alignment between the audio and the MIDI score.

IDI scores are symbolic representations of audio files, and by

ligning symbolic MIDI scores with audio recordings, we can do

usical information retrieval from MIDI input-data [38] . Many pre-

ious work used DTW to align MIDI to audio sequences [26,36,38] ,

nd they typically converted MIDI data into audios as a first step,

nd the problem boils down to audio-to-audio alignment, which is

hen solved by DTW. We follow this convention to convert MIDI to

udio first, but run shapeDTW instead for alignments. 

Each piece of music is approximately 30 seconds long, and in

xperiments, we segment both the audio and the converted au-

io from MIDI data into frames of 46ms length with a hopsize of

3ms, extract features from each 46ms frame window, and in this

ay, the audio is represented as a multivariate time series with the

ength equal to the number of frames and dimension equal to the

eature dimensions. There are many potential choices of frame fea-

ures, but how to select and combine features in an optimal way

o improve the alignment is beyond the scope of this paper, we

efer the interested readers to Kirchhoff and co-workers [26,35] .

ithout loss of generality, we use Mel-frequency cepstral coeffi-

ients (MFCCs) as features, due to its common usage and good per-

ormance in speech recognition and musical information retrieval

39] . In our experiments, we use the first 5 MFCCs coefficients. 

After MIDI-to-audio conversion and MFCCs feature extraction,

IDI files and audio recordings are represented as 5-dimensional

ultivariate time series, with approximately length L ≈ 1300. A

ypical audio signal, MIDI-converted audio signal, and their 5D

FCCs features are shown in Fig. 9 . We align 5D MFCCs sequences
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Fig. 8. Align sequences under different step patterns. We align sequence-pairs by DTW/dDTW/wDTW under 5 different step patterns ( Fig. 4 ), “symmetric1”, “symmetric2”, 

“symmetric5”, “asymmetric” and “rabinerJuang”, and compare their alignment errors against those obtained by shapeDTW. As seen, different step patterns usually reach 

different alignment results, which shows the importance of choosing an appropriate step pattern adapted to the application domain. In our case, “asymmetric” step pattern 

achieves slightly lower errors than “symmetric1” step pattern (under DTW, wDTW and dDT W), however, shapeDT W consistently wins DT W/dDT W/wDT W under the best 

step pattern - “asymmetric”. 

Fig. 9. Align audio and midi-2-audio sequences. (a) top: the audio waveform of the Chorale ’05-DieNacht’ and its 5D MFCCs features; bottom: the converted audio waveform 

from the MIDI score of the Chorale ’05-DieNacht’ and its corresponding 5D MFCCs features; (b) alignment paths: align two MFCCs sequences by DTW, dDTW and shapeDTW, 

and the plot shows their alignment paths, together with the ground-truth alignment. As seen, the alignment paths of dDTW and shapeDTW are closer to the ground-truth 

than that of DTW. (c) “Mean Absolute Deviation ” from the ground truth alignment: on 9 (10) out of 10 chorales, shapeDTW achieves smaller alignment errors than dDTW 

(DTW), showing that shapeDTW outperforms DT W/dDT W to align real sequence pairs as well. 
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y shapeDTW: although shapeDTW is designed for univariate time

eries alignments, it naturally extends to multivariate cases: first

xtract a subsequence from each temporal point, then encode sub-

equences by shape descriptors, and in this way, the raw multi-

ariate time series is converted to a descriptor sequence. In the

ultivariate time series case, each extracted subsequence is multi-

imensional, having the same dimension as the raw time series,

nd to compute the shape descriptor of a multi-dimensional subse-

uence, we compute shape descriptors of each dimension indepen-

ently, concatenate all shape descriptors, and use it as the shape

epresentation of that subsequence. 

We compare alignments by shapeDTW against DTW/dDTW, and

ll of them use the “symmetric1” step pattern. The length of sub-

equences in shapeDTW is fixed to be 20 (we tried 5,10, 30 as well

nd achieved quite similar results), and Derivative is used as the

hape descriptor. The alignment qualities in terms of “Mean Ab-

olute Deviation ” on 10 Chorales are plotted in Fig. 9 . To be con-

istent with the convention in the audio community, we actually

eport the mean-delayed-second between the alignment paths and

he ground-truth. The mean-delayed-second is computed as: divid-

ng “Mean Absolute Deviation ” by the sampling rate of the audio

ignal. shapeDTW outperforms dDTW/DTW on 9/10 MIDI-to-audio

lignments. This shows taking local neighborhood information into

ccount does benefit the alignment. 
v  
.2. Time series classification 

We compare NN-shapeDTW with NN-DTW on 84 UCR time se-

ies datasets for classification. Since these datasets have standard

artitions of training and test data, we experiment with these

iven partitions and report classification accuracies on the test

ata. 

In the above section, we explore the influence of different

teps patterns, but here both DTW and shapeDTW use the widely

dopted step pattern “symmetric1” ( Fig. 4 (a)) under no temporal

indow constraints to align sequences. 

NN-DTW : each test time series is compared against the train-

ng set, and the label of the training time series with the minimal

TW distance to that test time series determines the predicted

abel. All training and testing time series are z-normalized in

dvance. 

shapeDTW : we test all 5 shape descriptors. We z-normalize

ime series in advance, sample subsequences from the time

eries, and compute 3 magnitude-aware shape descriptors,

aw-Subsequence , PAA and DWT , and 2 y-shift invariant shape de-

criptors, Slope and HOG1D . Parameter setting for 5 shape descrip- 

ors: (1) The length of subsequences to be sampled around tem-

oral points is fixed to 30, as a result Raw-Subsequence descrip-

or is a 30D vector; (2) PAA and Slope uses 5 equal-lengthed inter-

als, therefore they have the dimensionality 5; (3) As mentioned,
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Fig. 10. Classification accuracy comparisons between NN-DTW and NN-shapeDTW on 84 UCR time series datasets. shapeDTW under 4 shape descriptors, Raw-Subsequence , 

PAA , DWT and HOG1D , outperforms DTW on 64/63/64/61 datasets respectively, and Wilcoxon signed rank test shows shapeDTW under all descriptors performs significantly 

better than DTW. Raw-Subsequence ( PAA and DWT as well) outperforms DTW on more datasets than HOG1D does, but HOG1D achieves large accuracy improvements on more 

datasets, concretely, HOG1D boosts accuracies by more than 10% on 18 datasets, compared with on 12 datasets by Raw-Subsequence . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Performance comparisons between the fused descriptor HOG1D+DWT and 

individual ones HOG1D / DWT . HOG1D+DWT outperforms HOG1D / DWT on 66/51 

(out of 84) datasets, and statistical hypothesis tests show the improvements are 

significant. 
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HOG1D uses 8 bins and 2 non-overlapping intervals, and the scale

factor σ is fixed to be 0.1. At last HOG1D is a 16D vector represen-

tation. 

NN-shapeDTW : first transform each training/testing time series

to a shape descriptor sequence, and in this way, original univari-

ate time series are converted into multivariate descriptor time se-

ries. Then apply NN-DTW on the multivariate time series to predict

labels. 

NN-shapeDTW vs. NN-DTW : we compare NN-shapeDTW, un-

der 4 shape descriptors Raw-Subsequence , PAA , DWT and HOG1D ,

with NN-DTW, and plot their classification accuracies on 84

datasets in Fig. 10 . shapeDTW outperforms (including ties) DTW

on 6 4/63/6 4/61 ( Raw-Subsequence / PAA / DWT / HOG1D ) datasets, and

by running the Wilcoxon signed rank test between performances

of NN-shapeDTW and NN-DTW, we obtain p-values 5 . 5 · 10 −8 / 5 . 1 ·
10 −7 / 4 . 8 · 10 −8 / 1 . 7 · 10 −6 , showing that shapeDTW under all 4 de-

scriptors performs significantly better than DTW. Compared with

DTW, shapeDTW has a preceding shape descriptor extraction pro-

cess, and approximately takes time O(l · L ) , where l and L is the

length of subsequence and time series respectively. The second

step of shapeDTW is a typical DTW, and runs in O(l · L 2 ) . The to-

tal time complexity of shapeDTW is O(l · L 2 ) , while running DTW

to align 1D time series takes time O(L 2 ) . By trading off a slight

amount of time and space, shapeDTW brings large accuracy gains. 

Since PAA and DWT are approximations of Raw-Subsequence ,

and they have similar performances as Raw-Subsequence under

the nearest classifier, we choose Raw-Subsequence as a representa-

tive for following analysis. Raw-Subsequence loses on 20 datasets,

on 18 of which it has minor losses ( < 4%), and on the other 2

datasets, “Computers” and “Synthetic-control”, it loses by 10% and

6.6%. Time series instances from these 2 datasets either have high-

frequency spikes or have many abrupt direction changes, making

them resemble noisy signals. Possibly, comparing the similarity of

two points using their noisy neighborhoods is not as good as using

their single coordinate values (DTW), since temporal neighborhood

may accumulate and magnify noise. 

HOG1D loses on 23 datasets, on 18 of which it has minor

losses ( < 5%), and on the other 5 datasets, “CBF”, “Computers”,

“ItalyPowerDemand”, “Synthetic-control” and “Wine”, it loses by

7.7%, 5.6%, 5.3%, 14% and 11%. By visually inspecting, time series

from “Computers”, “CBF” and “Synthetic-control” are spiky and

bumpy, making them highly non-smooth. This makes the first-

order-derivative based descriptor HOG1D inappropriate to repre-

sent local structures. Time series instances from ’ItalyPowerDe-

mand’ have length 24, while we sample subsequences of length

30 from each point, this makes HOG1D descriptors from differ-

ent local points almost the same, such that HOG1D becomes not

discriminative of local structures. This makes shapeDTW infe-
 H  
ior to DTW. Although HOG1D loses on more datasets than Raw-

ubsequence , HOG1D boosts accuracies by more than 10% on 18

atasets, compared with on 12 datasets by Raw-Subsequence . On

atasets “OSUleaf” and “BirdChicken”, the accuracy gain is as high

s 27% and 20%. By checking these two datasets closely, we find

ifferent classes have membership-discriminative local patterns

a.k.a shapelets [5] ), however, these patterns differ only slightly

mong classes. Raw-Subsequence shape descriptor can not capture

hese minor differences well, while HOG1D is more sensitive to

hape variations since it calculates derivatives. 

Both Raw-Subsequence and HOG1D bring significant accuracy

ains, however, they boost accuracies to different extents on the

ame dataset. This indicates the importance of designing domain-

pecific shape descriptors. Nevertheless, we show that even by us-

ng simple and dataset-independent shape descriptors, we still ob-

ain significant improvements over DTW. Classification error rates

f DTW, Raw-Subsequence and HOG1D on 84 datasets are docu-

ented in Table 1 . 

Superiority of Compound shape descriptors : as mentioned in

ection 4 , a compound shape descriptor obtained by fusing two

omplementary descriptors may inherit benefits from both de-

criptors, and becomes even more discriminative of subsequences.

s an example, we concatenate a y-shift invariance descrip-

or HOG1D and a magnitude-aware descriptor DWT using equal

eights, resulting in a compound descriptor HOG1D + DWT =
( HOG1D , DWT ) . Then we evaluate classification performances of

 descriptors under the nearest neighbor classifier, and plot the

omparisons in Fig. 11 . HOG1D+DWT outperforms (including ties)

OG1D / DWT on 66/51 (out of 84) datasets, and by running the

ilcoxon signed rank hypothesis test between performances of

OG1D+DWT and HOG1D ( DWT ), we get p-values 5 . 5 · 10 −5 /0.0034,
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Table 1 

Error rates of NN-DTW and NN-shapeDTW (under descriptors Raw-Subsequence and HOG1D ) on 84 UCR datasets. Underscored rates are those that shapeDTW 

has improved the accuracies by over 10%. 

Classification error rates on 84 UCR datasets 

datasets DTW Raw-Subsequence HOG1D datasets DTW Raw-Subsequence HOG1D 

50words 0.310 0.202 0.242 MedicalImages 0.263 0.254 0.264 

Adiac 0.396 0.335 0.269 MiddlePhalanxOutlineAgeGroup 0.250 0.260 0.260 

ArrowHead 0.297 0.194 0.177 MiddlePhalanxOutlineCorrect 0.352 0.240 0.250 

Beef 0.367 0.400 0.267 MiddlePhalanxTW 0.416 0.429 0.429 

BeetleFly 0.300 0.300 0.200 MoteStrain 0.165 0.101 0.110 

BirdChicken 0.250 0.250 0.050 NonInvasiveFatalECG-Thorax1 0.209 0.223 0.219 

Car 0.267 0.117 0.133 NonInvasiveFatalECG-Thorax2 0.135 0.110 0.140 

CBF 0.003 0.016 0.080 OliveOil 0.167 0.133 0.100 

ChlorineConcentration 0.352 0.355 0.355 OSULeaf 0.409 0.289 0.132 

CinC-ECG-torso 0.349 0.248 0.209 PhalangesOutlinesCorrect 0.272 0.235 0.261 

Coffee 0.0 0 0 0.036 0.036 Phoneme 0.772 0.761 0.736 

Computers 0.300 0.400 0.356 Plane 0.0 0 0 0.0 0 0 0.0 0 0 

Cricket-X 0.246 0.221 0.208 ProximalPhalanxOutlineAgeGroup 0.195 0.234 0.210 

Cricket-Y 0.256 0.226 0.226 ProximalPhalanxOutlineCorrect 0.216 0.192 0.206 

Cricket-Z 0.246 0.205 0.208 ProximalPhalanxTW 0.263 0.282 0.275 

DiatomSizeReduction 0.033 0.039 0.069 RefrigerationDevices 0.536 0.549 0.507 

DistalPhalanxOutlineAgeGroup 0.208 0.223 0.233 ScreenType 0.603 0.611 0.525 

DistalPhalanxOutlineCorrect 0.232 0.247 0.228 ShapeletSim 0.350 0.328 0.028 

DistalPhalanxTW 0.290 0.277 0.290 ShapesAll 0.232 0.163 0.112 

Earthquakes 0.258 0.183 0.258 SmallKitchenAppliances 0.357 0.363 0.301 

ECG200 0.230 0.140 0.100 SonyAIBORobotSurface 0.275 0.261 0.193 

ECG50 0 0 0.076 0.070 0.071 SonyAIBORobotSurfaceII 0.169 0.136 0.174 

ECGFiveDays 0.232 0.079 0.057 Strawberry 0.060 0.059 0.051 

FaceAll 0.192 0.217 0.238 SwedishLeaf 0.208 0.128 0.085 

FaceFour 0.170 0.102 0.091 Symbols 0.050 0.031 0.039 

FacesUCR 0.095 0.034 0.081 synthetic-control 0.007 0.073 0.153 

FISH 0.177 0.051 0.051 ToeSegmentation1 0.228 0.171 0.101 

FordA 0.438 0.316 0.279 ToeSegmentation2 0.162 0.100 0.138 

FordB 0.406 0.337 0.261 Trace 0.0 0 0 0.010 0.0 0 0 

Gun-Point 0.093 0.013 0.007 TwoLeadECG 0.096 0.078 0.006 

Ham 0.533 0.457 0.457 Two-Patterns 0.0 0 0 0.0 0 0 0.001 

HandOutlines 0.202 0.191 0.206 UWaveGestureLibraryAll 0.108 0.046 0.058 

Haptics 0.623 0.575 0.562 uWaveGestureLibrary-X 0.273 0.224 0.263 

Herring 0.469 0.375 0.500 uWaveGestureLibrary-Y 0.366 0.309 0.358 

InlineSkate 0.616 0.587 0.629 uWaveGestureLibrary-Z 0.342 0.314 0.338 

InsectWingbeatSound 0.645 0.533 0.584 wafer 0.020 0.008 0.010 

ItalyPowerDemand 0.050 0.037 0.103 Wine 0.426 0.389 0.537 

LargeKitchenAppliances 0.205 0.184 0.160 WordsSynonyms 0.351 0.245 0.260 

Lighting2 0.131 0.131 0.115 WordSynonyms 0.351 0.245 0.260 

Lighting7 0.274 0.178 0.233 Worms 0.536 0.503 0.475 

MALLAT 0.066 0.064 0.062 WormsTwoClass 0.337 0.293 0.287 

Meat 0.067 0.067 0.100 yoga 0.164 0.133 0.117 
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Fig. 12. Texas sharpshoot plot between Raw-Subsequence / HOG1D and DTW on 

84 datasets. TP: true positive (our algorithm was expected from the train- 

ing data to outperform NNDTW, and it actually did on the test data). TN: 

true negatives, FP: false positives, FN: false negatives. There are 87%/86% points 

( Raw-Subsequence / HOG1D vs. DTW) falling in the TP and TN regions, which indi- 

cates we can confidently predict that our algorithm will be superior/inferior to 

NNDTW. 

6

 

howing the compound descriptor outperforms individual de-

criptors significantly. We can generate compound descriptors by

eighted concatenation, with weights tuned by cross-validation on

raining data, but this is beyond the scope of this paper. 

Texas Sharpshooter plot: although NN-shapeDTW performs

etter than NN-DTW, knowing this is not useful unless we can

ell in advance on which problems it will be more accurate,

s stated in [14] . Here we use the Texas sharpshooter plot

14] to show when NN-shapeDTW has superior performance on

he test set as predicted from performance on the training set,

ompared with NN-DTW. We run leave-one-out cross validation

n training data to measure the accuracies of NN-shapeDTW

nd NN-DTW, and we calculate the expected gain: accuracy(NN-

hapeDTW)/accuracy(NN-DTW). We then measure the actual ac-

uracy gain using the test data. The Texas Sharpshooter plots

etween Raw-Subsequence / HOG1D and DTW on 84 datasets are

hown in Fig. 12 . 87%/86% points ( Raw-Subsequence / HOG1D ) fall in

he TP and TN regions, which means we can confidently predict

hat our algorithm will be superior/inferior to NNDTW. There are

espectively 7/7 points falling inside the FP region for descriptors

aw-Subsequence / HOG1D , but they just represent minor losses, i.e.,

ctual accuracy gains lie within [0.9 1.0]. 

f  

l  
.3. Sensitivity to the size of neighborhood 

In the above experiments, we showed that shapeDTW outper-

orms DTW both qualitatively and quantitatively. But we are still

eft with one free-parameter: the size of neighborhood, i.e., the
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Fig. 13. Performances of shapeDTW are insensitive to the neighborhood size. The green stairstep curve shows dataset-wise test accuracies of NN-DTW, and the box plot 

shows performances of NN-shapeDTW under the shape descriptor Raw-Subsequence . On each dataset, we plot a blue box with two tails: the lower and upper edge of each 

blue box represent 25th and 75th percentiles of 20 test accuracies (obtained under different neighborhood sizes, i.e., 5, 10, 15, ... , 100) on that dataset, with the red line 

inside the box marking the median accuracy and two tails indicating the best and worst test accuracies. On 36 out of 42 datasets, the median accuracies of NN-shapeDTW 

are larger than accuracies obtained by NN-DTW, and on 33 datasets, even the worst performances by NN-shapeDTW are better than NN-DTW. All these statistics show 

shapeDTW works well under wide ranges of neighborhood sizes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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length of the subsequence to be sampled from each point. Let

t i be some temporal point on the time series T ∈ R 

L , and s i be

the subsequence sampled at t i . When | s i | = 1 , shapeDTW (un-

der the Raw-Subsequence shape descriptor) degenerates to DTW;

when | s i | = L, subsequences sampled at different points become al-

most identical, make points un-identifiable by their shape descrip-

tors. This shows the importance to set an appropriate subsequence

length. However, without dataset-specific domain knowledge, it is

hard to determine the length intelligently. Here instead, we explore

the sensitivity of the classification accuracies to different subse-

quence lengths. We conduct experiments on 42 old UCR datasets. 

We use Raw-Subsequence as the shape descriptor, and NN-

shapeDTW as the classifier. We let the length of subsequences to

vary from 5 to 100, with stride 5, i.e., we repeat classification ex-

periments on each dataset for 20 times, and each time set the

length of subsequences to be 5 × i , where i is the index of experi-

ments ( 1 ≤ i ≤ 20 , i ∈ Z). The test accuracies under 20 experiments

are shown by a box plot ( Fig. 13 ). On 33 out of 42 datasets, even

the worst performances of NN-shapeDTW are better than DTW, in-

dicating shapeDTW performs well under wide ranges of neighbor-

hood sizes. 

6.4. Comparison with the state-of-the-art time series classification 

algorithms 

As shown in [10–12,37,40] , 1NN classifier with the ordinary

DTW distance as the similarity measure (1NN-DTW) is very hard

to beat. As further shown in [4,40] , 1NN-DTW with a warping

window set through cross validation works even better than 1NN-

DTW without warping window constraints. In this section, we set

1NN-DTW (with the optimal warping window set through cross-

validation) as the baseline, and evaluate other time series classifi-

cation algorithms. For consistency and reproducibility, we directly

use 1NN-DTW (with the optimal warping window tuned) classifi-

cation accuracies published on the UCR time series website. 

For our algorithm, 1NN-shapeDTW, we run under the fol-

lowing settings: (1) set the subsequence length to 30; (2) use

Raw-Subsequence as the shape descriptor; (3) run DTW without

the warping window constraints. 1NN-shapeDTW wins/draws the

baseline on 62 datasets (out of 84), and the signed rank Wilcoxon

test returns p-values 0.0012, showing significant accuracy improve-

ment over 1NN-DTW (with the optimal warping window tuned). 
We further compare our algorithm to 19 state-of-the-art algo-

ithms surveyed in [40] and one additional algorithm in [23] . In

40] , every algorithm is compared with the baseline by comput-

ng two scores: the percentage of the datasets it wins over 1NN-

TW and the mean of the classification accuracy differences (see

able 4 in [40] ). Our algorithm beats 1NN-DTW on 73.81% datasets,

ith the mean accuracy difference 2.55%. The algorithm in [23] ,

OW-local, wins 1NN-DTW on 71.43% datasets, with the mean dif-

erence 3.72%. From Table 4 in Bagnall et al. [40] , we thus out-

erform 14 of the 20 algorithms (19 algorithms in [40] and one

lgorithm in [23] ). We don’t outperform all 20, but we believe we

till have merits: our algorithm is a simple NN classifier with no

arameter to tune, while other algorithms improve accuracy using

omplicated data preprocessing (e.g., Fourier transform, symboliza-

ion, feature crafting) and complicated classifiers (e.g., random for-

st, neural network, ensemble method). To be specific, the top 4

ethods that perform better than ours, COTE [41] , EE [42] , BOSS

43] and ST [44] , are all ensemble classifiers: e.g., COTE involves

ooling 35 classifiers into a single ensemble. Our method is a sin-

le classifier, and on some datasets it does not perform as well

s these 4 ensemble classifiers; however, compared with ensem-

les, our method is more interpretable and is more time efficient.

or the other two winning methods [23,45] , both of them consists

f two sequential steps: time series representation and SVM clas-

ification. First of all, both of them use the advanced classifier -

VM, which involves hyperparameter tuning, while ours uses the

NN classifier, with no hyperparameter to tune. Second, both al-

orithms have to preprocess the time series and represent it by a

eature vector, in which process they have to manually design and

raft features. However, our algorithm 1NN-shapeDTW under the

aw-Subsequence descriptor significantly outperforms the baseline

ut with no feature-crafting. 

.5. More comparison between shapeDTW and DTW variants 

In Section 6.2 , we showed 1NN-shapeDTW outperforms 1NN-

TW significantly. Here we further compare our algorithm against

NN-dDTW and 1NN-wDTW for time series classification. We

gain run 1NN-shapeDTW by setting the subsequence length

o 30 and using Raw-Subsequence as the shape descriptor for

he subsequence. 1NN-shapeDTW wins/draws 1NN-dDTW/1NN-

DTW on 52/56 (out of 84) datasets, the mean accuracy (and its

tandard deviation) for 1NN-shapeDTW/1NN-dDTW/1NN-wDTW
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s 0.7771(0.16)/0.7447(0.17)/0.7402(0.17), and the Wilcoxon signed

ank test between 1NN-shapeDTW and 1NN-dDT W/1NN-wDT W

eturns p-values 0.03/0.007, showing our algorithm outperforms

oth 1NN-dDTW and 1NN-wDTW significantly. 

There are two consecutive steps to compute sequence-to-

equence distance: find the alignment and then compute the cu-

ulative point-to-point distance along the alignment path. To

ompare 1NN-shapeDTW with 1NN-DT W/1NN-wDT W/1NN-dDT W

n a more controlled way, we only use shapeDTW and DTW

ariants to search the alignment path, and then we use the

ame method to calculate the cumulative point-to-point dis-

ance along the alignment path. To be concrete, we compute

he point-to-point distance along the alignment path as in

hapeDTW, i.e. compute point-to-point distance by the Euclidean

istance between their Raw-Subsequence descriptors. The mean

ccuracy (and its standard deviation) for 1NN-shapeDTW, 1NN-

TW, 1NN-dDTW and 1NN-wDTW are 0.7771(0.16), 0.7540(0.17),

.7681(0.17) and 0.7584(0.16); 1NN-shapeDTW wins/draws 1NN-

TW/1NN-dDTW/1NN-wDTW on 59/48/59 (out of 84) datasets,

nd the signed rank test between 1NN-shapeDTW and 1NN-

TW/1NN-dDTW/1NN-wDTW returns p-values 0.0 02/0.694/0.0 07.

ll these shows: (1) 1NN-shapeDTW is only different from 1NN-

TW/1NN-dDTW/1NN-wDTW in the first alignment step, but still

utperforms 1NN-DTW/1NN-wDTW significantly; although 1NN- 

hapeDTW does not win 1NN-dDTW significantly, it does boost

he mean accuracy by ∼ 0.9%; all these indirectly demonstrate

he superior alignment quality of shapeDTW; (2) just by replac-

ng the point-to-point distance calculation, we improve the per-

ormance of 1NN-DTW/1NN-dDTW/1NN-wDTW by ∼ 2%, showing

hat point-to-point similarity is better measured by their surround-

ng shapelets. 

. Conclusion 

We have proposed an new temporal sequence alignment al-

orithm, shapeDTW, which achieves quantitatively better align-

ents than DTW and its variants. shapeDTW is a quite generic

ramework as well, and uses can design their own local subse-

uence descriptor and fit it into shapeDTW. We experimentally

howed that shapeDTW under the nearest neighbor classifier ob-

ains significantly improved classification accuracies than NN-DTW.

herefore, NN-shapeDTW sets a new accuracy baseline for further

omparison. 
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