
Learning to Recognize Objects by Retaining other Factors of Variation

Jiaping Zhao, Chin-kai Chang, Laurent Itti
University of Southern California

{jiapingz, chinkaic, itti}@usc.edu

Abstract

Most ConvNets formulate object recognition from natu-
ral images as a single task classification problem, and at-
tempt to learn features useful for object categories, but in-
variant to other factors of variation such as pose and il-
lumination. They do not explicitly learn these other fac-
tors; instead, they usually discard them by pooling and nor-
malization. Here, we take the opposite approach: we train
ConvNets for object recognition by retaining other factors
(pose in our case) and learning them jointly with object
category. We design a new multi-task leaning (MTL) Con-
vNet, named disentangling CNN (disCNN), which explicitly
enforces the disentangled representations of object identity
and pose, and is trained to predict object categories and
pose transformations. disCNN achieves significantly bet-
ter object recognition accuracies than the baseline CNN
trained solely to predict object categories on the iLab-20M
dataset, a large-scale turntable dataset with detailed pose
and lighting information. We further show that the pre-
trained features on iLab-20M generalize to both Washing-
ton RGB-D and ImageNet datasets, and the pretrained dis-
CNN features are significantly better than the pretrained
baseline CNN features for fine-tuning on ImageNet.

1. Introduction
Images are generated under factors of variation, includ-

ing pose, illumination etc. Recently, deep ConvNet archi-
tectures learn rich and high-performance features by lever-
aging millions of labelled images. They have achieved
state-of-the-art object recognition performance. Contempo-
rary CNNs, such as AlexNet [15], VGG [25], GoogLeNet
[28] and ResNet [10], pose object recognition as a single
task learning problem, and learn features that are sensitive
to object categories but invariant to other nuisance informa-
tion (e.g., pose and illumination) [26] as much as possible.
To achieve this, current CNNs usually stack several stages
of subsampling/pooling [19] and apply normalization oper-
ations [15, 14] to make representations invariant to small
pose variations and illumination changes. However, as ar-

gued by Hinton et al [12], to recognize objects, neural net-
works should use “capsules” to encode both identity and
other instantiation parameters (including pose, lighting and
shape deformations). In [2, 21], authors argue as well that
image understanding is to tease apart these factors, instead
of emphasizing one and disregarding the others.

In this work, we formulate object recognition as a multi-
task learning (MTL) problem by taking images as inputs
and learning both object categories and other image gener-
ating factors (pose in our case) simultaneously. Thanks to
the availability of both identity and 3D pose labels in the
iLab-20M dataset of 22 million images of objects shot on
a turntable, we use object identity and pose during train-
ing, and then investigate further generalization to other
datasets which lack pose labels (Washington RGB-D and
ImageNet). Contrary to the usual way to learn representa-
tions invariant to pose changes, we take the opposite ap-
proach by retaining the pose information and learning it
jointly with object identities during the training process.

We leverage the power of ConvNets for high perfor-
mance representation learning, and build our MTL frame-
work on it. Concretely, our architecture is a two-streams
ConvNet which takes a pair of images as inputs and pre-
dicts both the object category and the pose transformation
between the two images. Both streams share the same CNN
architecture (e.g., AlexNet) with the same weights and the
same operations on each layer. Each stream independently
extracts features from one image. In the top layer, we ex-
plicitly partition the representation units into two groups,
with one group representing object identity and the other
its pose. Object identity representations are passed down
to predict object categories, while two pose representations
are concatenated to predict the pose transformation between
images (Fig. 1). By explicitly partitioning the top CNN
layer units into groups, we learn the ConvNet in a way such
that each group extracts features useful for its own task and
explains one factor of variation in the image. We refer our
architecture as disentangling CNN (disCNN), with disen-
tangled representations for identity and pose.

During training, disCNN takes a pair of images as in-
puts, and learns features by using both object categories and



pose-transformations as supervision. The goal of disCNN
is to recognize objects, therefore, in test, we take only one
stream of the trained disCNN, use it to compute features
for the test image, and only the identity representations in
top layer are used and fed into the object category layer for
categorization. In other words, pose representations are not
used in test, and the pose-transformation prediction task in
the training is auxiliary to the object recognition task, but
essential for better feature learning.

2. Related work
ConvNets: over the past several years, convolutional

neural networks [19] have pushed forward the state-of-the-
art in many vision tasks, including image classification
[15, 25, 28, 10], object detection [23, 7], image segmen-
tation [4, 20], activity recognition [24, 8], etc. These tasks
leverage the power of CNNs to learn rich features useful
for the target tasks, and [1] show features learned by CNNs
on one task can be generalized to other tasks. We aim to
learn feature representations for different image generating
factors, and we employ ConvNets as our building base.

Multitask learning: several efforts have explored multi-
task learning using deep neural networks, for face detection,
phoneme recognition, and scene classification [22, 32, 31,
13]. All of them use a similar linear feed-forward architec-
ture, with all task label layers directly appended onto the
top layer. In the end, all tasks in these applications share
the same representations. More recently, Su et al [27] use a
CNN to estimate the camera viewpoint of the input image.
They pose their problem as MTL by assuming that view-
point estimate is object-class-dependent, and stack class-
specific viewpoint layers onto the top of CNN. Zhao and Itti
[33] formulated object recognition in a CNN-based MTL
framework, and the top layer representations are shared
among tasks as well. Our work differs from the above in
that: we use two-stream CNNs and we explicitly partition
the top layer representation into groups, with each group
representing one task; therefore we have task-exclusive rep-
resentations while in above works, all tasks share the same
top layer representations.

Disentangling: As argued by Bengio [2], one of the key
challenge to understanding images is to disentangle differ-
ent factors, e.g. shape, texture, pose and illumination, that
generate natural images. Reed et al [21] proposed the dis-
entangling Boltzmann Machine (disBMs), which augments
the regular RBM by partitioning the hidden units into dis-
tinct factors of variation and modelling their high-order in-
teractions. In [34], the authors build a stochastic multi-view
perceptron to factorize the face identity and its view repre-
sentations by different sets of neurons, in order to achieve
view-invariant face recognition. Our work is similar to the
above two in that we explicitly partition the representa-
tions into distinct groups to force different factors disentan-

gled; however, our model is deterministic and scales to large
datasets, while the above methods are restricted to small
datasets and often require expensive sampling inferences.

Dosovitskiy et al [6] proposed to use CNN to generate
images of objects given object style, viewpoint and color.
Their model essentially learns to simulate the graphics ren-
dering process, but does not directly apply to image inter-
pretation. Kulkarni et al [16] presented the Inverse Graphics
Network (IGN), an encoder-decoder that learns to gener-
ate new images of an object under varying poses and light-
ing. The encoder of IGN learns a disentangled represen-
tation of transformations including pose, light and shape.
Yang et al [30] proposed a recurrent convolutional encoder-
decoder network to render 3D views from a single image.
They explicitly split the top layer representations of the en-
coder into identity and pose units. Our work is similar to
[16, 30] by using distinct units to represent different fac-
tors, but we differ in that: (1) our architecture is a MTL
CNN which maps images to discrete labels, while theirs are
autoencoders mapping images to images; (2) our model di-
rectly applies to large numbers of categories with complex
images, but [16, 30] only tested their models on face and
chair datasets with pure backgrounds.

Our work is most similar to [1], which shows that freely
available egomotion data of mobile agents provides as good
supervision as the expensive class-labels for CNNs to learn
useful features for different vision tasks. Here, we use
stereo-pairs of images as inputs to learn the camera motions
as well, however, we are different in: (1) our architecture
is a MTL framework, in which the task of camera-motion
(pose-transformation) prediction serves as an auxiliary task
to help object recognition; (2) our network is more flexi-
ble, which could take in both one image or a stereo-pair; (3)
our MTL disCNN learns much better features for object-
recognition than the baseline CNN using only class-label as
supervision, while their single task two-streams CNNs only
learn comparable features.

3. Method
Object identity is here defined to be the identity of one

instance. Distinct instances, no matter whether they belong
to the same class, have different object identities. Object
pose refers to the extrinsic parameters of the camera tak-
ing the image, but given a single natural image taken by
a consumer camera, it is hard to obtain the camera extrin-
sics, therefore the ground-truth object poses are expensive
and sometimes impossible to collect in real cases. Cam-
era extrinsics are known when we render 2D images from
3D models[27], but rendered 2D images are very different
from natural images. Although single camera extrinsics are
hard to get in real cases, the relative translation and ori-
entation (a.k.a camera motion), represented by an essential
matrix E, between a pair of images is relatively easier to



c2c1 c3 c4 c5 fc6 fc7 identity1

object
pose-transform

ation

pose1
L2

w=[1 0]

w=[0 1]

identity2

pose2

w=[1 0]

w=[0 1]

stereo pair share parameters

Figure 1. Architecture of our disentangling CNN (disCNN). dis-
CNN is a two-streams CNN, which takes in an image pair and
learns to predict the object category and the pose transformation
jointly. In experiments, we use AlexNet in both streams to extract
features, and explicitly partition the top layer representations fc7
into two groups: identity and pose. We further enforce two iden-
tity representations to be similar, and one identity representation is
used for object category prediction, and two pose representations
are concatenated to predict the pose transformation.

compute, e.g., for calibrated cameras, first find 8 pairs of
matched points, then use the normalized 8-point algorithm
[9] to estimate. The camera motion between an image pair
captures the pose transformation between objects in the two
images. We use the relative pose transformation between
objects instead of absolute object pose, as supervision. In
the following, we use “pose transformation” and “camera
motion” interchangeably.

Our system is designed to estimate any numeric pose
transformations, but in experiments, we have a limited num-
ber of camera-pairs, with motion between each pair fixed.
Therefore, we could further discretize the pose transforma-
tion using the fact that every image-pair taken under the
same camera-pair has the same pose transformation, and the
number of the camera-pairs determines the number of dis-
crete pose-transformations. In this way, “pose transforma-
tion” estimation is transformed into a classification problem
- classifying which camera-pair took the image-pair, with
the number of labels equal to the number of camera-pairs.

3.1. Network Architecture

Our ultimate goal is to learn object identity representa-
tions for object recognition, but we further simultaneously
learn the object pose transformation as an auxiliary task.
Building a ConvNet that can predict the pose transforma-
tion between a stereo-pair of images is straightforward: the
ConvNet should take the pair as input, after several lay-
ers of convolutions, it produces an output which assigns
a probability to each camera-pair under which that image-
pair could be taken. But note that the image-pair contains
the same object instance taken under different camera view-
points, we wish to learn an object identity representation,

such that the same pair should have as similar object iden-
tity representations as possible.

We build a two-stream CNN architecture shown in Fig.1,
named disentangling CNN (disCNN). Each stream is a Con-
vNet independently extracting features from one image, and
both ConvNets have the same architecture and share the
same weights. Here we use AlexNet [15] as the Con-
vNet, but with faster GPUs one could use VGG [25] and
GoogLeNet [28] as well. After getting fc7 representations,
we explicitly partition the fc7 units into two groups, with
one group representing object identity and the other rep-
resenting object pose in a single image. Since object in-
stances in an image pair are the same, we enforce the two
identity representations to be similar by penalizing their `

2
-

norm differences, i.e. ‖ id1− id2 ‖2, where id1 and id2 are
identity representations of two stereo images. One identity
representation (either id1 or id2) is further fed into object-
category label layer for object-category prediction. Two
pose representations, pose1and pose2, are fused to predict
the relative pose transformation, i.e., under which camera-
pair the image-pair is taken. Our objective function is there-
fore the summation of two soft-max losses and one `2 loss:

L = L(object)+

λ1L(pose transformation)+

λ2 ‖ id1 − id2 ‖2
(1)

We follow AlexNet closely, which takes a 227 × 227
image as input, and has 5 convolutional layers and 2 fully
connected layers. ReLU non-linearities are used after ev-
ery convolutional/fully-connected layer, and dropout is used
in both fully connected layers, with dropout rate 0.5. The
only change we make is to change the number of units
on both fc6 and fc7 from 4096 to 1024, and one half of
the units (512) are used to represent identity and the other
half to represent pose. If we use abbreviations Cn, Fn,
P, D, LRN, ReLU to represent a convolutional layer with
n filters, a fully connected layer with n filters, a pool-
ing layer, a dropout layer, a local response normalization
layer and a ReLU layer, then the AlexNet-type architec-
ture used in our experiments is: C96-P-LRN-C256-P-LRN-
C384-C384-C256-P-F1024-D-F1024-D (we omit ReLU to
avoid cluttering). If not explicitly mentioned, this is the
baseline architecture for all experiments.

Notes: (1) the proposed two-stream CNN architecture is
quite flexible in that: it could either take a single image or
an image-pair as inputs. For a single image input, no pose
transformation label is necessary, while for an image-pair
input, it is not required to have an object-category label.
For a pair of images without the object label, its loss re-
duces to two terms: λ1L(pose− transformation) +λ2 ‖
id1 − id2 ‖2, the soft-max loss of the predicted pose-
transformation and the `2 loss of two identity representa-
tions. Given a single image with a object label, the loss



(a)

Case One Case Two

Case Three Case Four

(b)

Figure 2. Exemplar iLab-20M images and camera pairs. (a) images of the same object instance taken by different cameras under different
rotations, each row is taken under the same camera under different rotations, and each column is taken by different cameras under the same
rotation; (b) camera pairs used in experiments.

incurred by it reduces to only one term: the soft-max loss
of the predicted category label L(object).

(2) Scaling the same image-pair by different scales does
not change its pose transformation label. In our case,
each camera-pair has a unique essential matrix (up to some
scale), and defines one pose-transformation label. By
up/down scaling both images in a pair, the estimated es-
sential matrix differs only by a scale factor. Since the es-
sential matrix estimated from the raw image-pair is already
uncertain up to a scale factor (e.g. using the eight-point
method for estimation [9]), the essential matrix estimated
from the scaled pairs is equivalent to that estimated from
the raw pair. This is useful when objects have large scale
differences: we could scale them differently to make them
have similar scales (see experiments on Washington RGB-
D dataset).

4. Experiments

In experiments, we first show the effectiveness of dis-
CNN for object recognition against AlexNet on both iLab-
20M and Washington RGB-D datasets. We further demon-
strate that the pretrained disCNN on the iLab-20M dataset
learns useful features for object recognition on the Im-
ageNet dataset [5]: a AlexNet initialized with disCNN
weights performs significantly better than a AlexNet initial-
ized with random Gaussian weights.

4.1. iLab-20M dataset

The iLab-20M dataset [3] is a controlled, parametric
dataset collected by shooting images of toy vehicles placed
on a turntable using 11 cameras at different viewingpoints.
There are totally 15 object categories with each object hav-
ing 25∼160 instances. Each object instance was shot on
more than 14 backgrounds (printed satellite images), in a
relevant context (e.g., cars on roads, trains on railtracks,

boats on water). In total, 1,320 images were captured for
each instance and background combinations: 11 azimuth
angles (from the 11 cameras), 8 turntable rotation angles,
5 lighting conditions, and 3 focus values (-3, 0, and +3
from the default focus value of each camera). The com-
plete dataset consists of 704 object instances, with 1,320
images per object-instance/background combination, or al-
most 22M images.

Training and test instances: we use 10 (out of 15) object
categories in our experiments (car, f1car, helicopter, plane,
pickup, military car, monster, semi, tank and van), and,
within each category, we randomly choose 3/4 instances as
training and the remaining 1/4 instances for testing. Under
this partition, instances in test are never seen in training.

Image-pairs: we only take images shot under one fixed
lighting condition (with all 4 lights on) and camera focus
(focus = 0), but all 11 camera azimuths and all 8 turntable
rotations as training and test images, equivalent to 88 virtual
cameras on a semi-sphere. In principle, we can take image-
pairs taken under any camera-pairs (e.g. any pair from C2

88

combinations), however, one critical problem is that image-
pairs taken under camera-pairs with large viewpoint differ-
ences have little overlap, which makes it difficult, or even
impossible to predict the pose-transformation (e.g., difficult
to estimate the essential matrix). Therefore, in experiments,
we only consider image-pairs taken by neighboring-camera
pairs. All image-pairs shot under a fixed camera-pair share
the same pose-transformation label, and finally the total
number of pose-transformation labels is equal to the num-
ber of camera-pairs. In experiments, we consider different
numbers of camera-pairs, and evaluate the influence on the
performance of disCNN.

Fig. 2 shows images of one instance shot under differ-
ent cameras and rotations: each row is shot by the same
camera under different turntable rotations, and each col-
umn is shot by different cameras under the same turntable



# of camera pairs 7 11 18 56
AlexNet 79.07 78.89 79.60 79.25
disCNN 81.30 83.66 83.60 83.66

Table 1. Object recognition accuracies (%) of AlexNet and dis-
CNN on the iLab-20M dataset. disCNN consistently outperforms
AlexNet under different numbers of camera pairs, showing the ad-
vantage of jointly learning object identity and its pose. We see as
well: disCNN performs better when more camera-pairs are used,
e.g., the performance of disCNN increases by 2% when≥11 cam-
era pairs are used, compared with 7 camera pairs.

rotation. In experiments, we use different numbers of
camera-pairs as supervision, therefore, only take image-
pairs shot under the chosen camera-pairs as training. Case
one (Fig. 2 (a) topleft): we take two neighboring cam-
eras as one camera-pair (we skip 1 camera, i.e., Ci − Ci+2

is a camera-pair), resulting in 7 camera-pairs, therefore 7
pose-transformation labels. Image pairs taken by the same
camera-pair under different rotations share the same pose-
transformation label. Case two (Fig. 2 (b) topright): two
images taken by one camera under two adjacent rotations
((CiRj , CiRj+1)) can be imagined to be taken by a pair
of virtual cameras, resulting in 11 camera-pairs with 1 pair
referring to one camera under two adjacent rotations. Case
three (Fig. 2 (c) bottomleft): we combine 7 camera-pairs
in case one and 11 camera-pairs in case two, and a total
of 18 camera pairs. Case four (Fig. 2 (d) bottomright):
in addition to take image-pairs taken under neighboring
cameras (the same rotation) and neighboring rotations (the
same camera), we further take diagonal image-pairs taken
under neighboring-cameras and neighboring-rotations (i.e.,
(CiRj , Ci+1Rj+1) and (CiRj+1, Ci+1Rj)). At last we
have 56 camera-pairs. By taking image-pairs from the cho-
sen camera-pairs, we end up 0.42M, 0.57M, 0.99M and 3M
training image-pairs in 4 cases respectively. After training,
we take the trained AlexNet-type architecture out and use
it to predict the object category of a test image. We have a
total of 0.22M test images by split.

Implementation details: Since we have prepared training
pairs for disCNN, we use the left images of training pairs
as the training data for AlexNet. Therefore AlexNet and
disCNN have the same number of training samples, with
one image in AlexNet corresponding to an image pair in
disCNN (Note: duplicate training images exist in AlexNet).
To do a fair comparison, we train both AlexNet and disCNN
using SGD under the same learning rate, the same number
of training epochs and the same training order within each
epoch. We set λ1 = 1 and λ2 = 0.1 in the objective func-
tion 1 of disCNN. Practically, λ1 and λ2 are set such that the
derivatives of three separate loss terms to the parameters are
at a similar scale. Both AlexNet and disCNN are trained for
20 epochs under 4 cases. The initial (final) learning rate is
set to be 0.01 (0.0001), which is reduced log linearly after

each epoch. The ConvNets are trained on one Tesla K40
GPU using the toolkit [29].
Notes: although disCNN is trained on the stereo pairs, and
AlexNet is only trained on the left images, we have to em-
phasize that: for each stereo-pair, the left image is also the
right image of another stereo-pair, and the right image is
also the left image of some other stereo-pair (see Fig. 2 (b)
for how we prepare the stereo pairs). This means, for the
input stereo-pairs, all right images are actually a shuffled
version of all left images. Therefore, the stereo-pairs do not
contain new images, which do not belong to all left images.
So both disCNN and AlexNet are actually trained on the
same images, and results are comparable.

Results: the object recognition performances are shown
in Table 1. We have the following observations: (1) disCNN
consistently outperforms AlexNet under different numbers
of camera pairs, with the performance gain up to ∼ 4%;
(2) when we have more camera-pairs, the performance gap
between disCNN and AlexNet widens, e.g., ∼ 4% gain un-
der 11,18,56 camera pairs compared with ∼ 2% gain un-
der 7 camera pairs. One potential reason is that when more
camera pairs are used, more views of the same instance are
available for training, therefore, a higher recognition accu-
racy is expected. But as observed, the performances of dis-
CNN flatten when more camera pairs are used, e.g. the same
performance under 18 and 56 camera pairs. One possible
interpretation is: although we have 56 camera pairs, the di-
agonal camera-pairs in the case of 56 pairs do provide new
pose transformation information, since the motion between
a diagonal pair could be induced from motions of two cam-
era pairs in the case of 18 pairs, a horizontal camera pair
and a vertical camera pair.

Qualitative visualizations: Fig. 3 shows k nearest
neighbors of the query image, based on the `2 distances be-
tween their fc7-identity (disCNN, 512D) and fc7 (AlexNet,
1024D) representations. We can see clearly that disCNN
successfully retrieves images of the same instance under
different poses as the nearest neighbors (Fig. 3 (a)). Al-
though in some scenarios (Fig. 3 (b)), AlexNet find differ-
ent images of the same instance as the nearest neighbors, the
retrieved neighbors clearly share similar poses as the query
image. These visualizations show disCNN disentangles the
representations of identity from pose, to some extent.
Additional Notes: we did do experiments on how the
classification accuracy is affected by the size of the fc7
layer using AlexNet: given an AlexNet, we fix the ar-
chitecture except the fc7 size, we set fc7 size to be
16,32,64,128,258,512,1024, train them using 0.67 million
images and evaluate the trained model on 0.22 million test
images. The test accuracy increases as fc7 changes from 16
to 128, and then flattens from 128 all the way to 1024. This
empirical results shows that: in our case to classify 10 cat-
egories, as long as the top layer reaches some size (128 in



disCNN AlexNetquery

(a)

(b)

Figure 3. Examples of k nearest neighbors of query images. Images are represented by fc7-identity (disCNN, 512D) and fc7 (AlexNet,
1024D) features, and then 5 nearest neighbors are searched based on `2 distances in the representation spaces. On each row, the 1st image
is the query image, and the next 5 (the last 5) images are retrieved nearest neighbors by disCNN and AlexNet. In group (a), disCNN
always returns the same instance but under different poses as the nearest neighbors, but AlexNet fails to retrieve the same instance, instead
it returns instances with different identities but similar poses. In group (b), although disCNN fails to retrieve the right instance, it does find
instances with similar shapes to the query image. In this case, AlexNet retrieves the correct instances with the same identity, but again, the
poses of the retrieved images are very similar to the query one. This result shows disCNN disentangles identity from pose, to some extent.

our case), then the network will have the capacity to cate-
gorize 10-class objects, by adding more neurons to fc7 does
not improve the capacity of the network. This experiments
indirectly shows: the superiority of disCNN over AlexNet
is not because of the bottleneck representation of disCNN
(1024D vs 512D in AlexNet).

4.2. Washington RGB-D dataset

The RGB-D dataset [17] depicts 300 common house-
hold objects organized into 51 categories. This dataset was
recorded using a Kinect style 3D camera that records syn-
chronized and aligned 640x480 RGB and depth images at
30 Hz. Each object was placed on a turntable and video
sequences were captured for one whole rotation. For each
object, there are 3 video sequences, each recorded with the
camera mounted at a different height so that the object is
viewed from different angles with the horizon. The dataset
has a total of 250K images from different views and rota-
tions. Two adjacent frames have small motions, therefore
are visually very similar, and in experiments, we pick one
frame from each 5 consecutive frames, resulting in ∼50K
image frames. Since the scale of the datasets does not match
the scale of ConvNets, we adopt the “pretrain-finetuning”
paradigm to do object recognition in this dataset, using the

pretrained ConvNets weights on the iLab-20M dataset as
initializations.

Training and test sets: [17] provided 10 partition lists
of training/test. They use leave-one-out to partition: ran-
domly choose 1 instance within a category as test, and use
the remaining instances as training. Due to the training time
limitation, we evaluate performances using the first 3 parti-
tions and report the mean accuracies. We use the provided
object masks to crop the objects from the raw frames and
resize them to the size 227×227. Since objects are located
at the image center, by first cropping and then rescaling an
image-pair does not change the pose-transformation of the
raw pair.

Camera pairs: similarly we take different numbers of
camera-pairs and evaluate influence on the performances.
In one video sequence, every frame-pair with a fixed tem-
poral gap could be imagined to be taken under a vir-
tual camera-pair, thus all such pairs share the same pose-
transformation label. As an example, two pairs, Fi − Fi+∆

and Fj − Fj+∆, whose temporal gap between frames are
both ∆, then they have the same pose-transformation la-
bel. One ∆ defines one camera-pair, and in experiments,
we let ∆ = {5, 10, 15, 20}. Case one: we take image-
pairs with ∆ = {5} from each video sequence, and all these



# of camera pairs 3 6 9 12 # of camera pairs 3 6 9 12
AlexNet
(scratch) 71.2 72.8 72.1 72.9

AlexNet
(AlexNet-iLab20M) 76.2 77.3 79.9 79.6

disCNN
(scratch) 75.0 75.1 77.0 78.6 disCNN

(AlexNet-iLab20M) 78.9 80.8 81.5 82.7

Table 2. Object recognition accuracies (%) of AlexNet and disCNN on the Washington RGB-D dataset. The left (right) table shows
performance comparisons between disCNN and AlexNet trained from scratch (from the pretrained AlexNet features on the iLab-20M
dataset). As seen, by fine-tuning CNNs from features learned on iLab-20M, large performance gains are achieved, e.g. ∼ 4.5%(∼ 5.5%)
for disCNN (AlexNet). This shows features learned from iLab-20M are effective for, and generalizable to object recognition in the RGB-
D dataset. Results from both tables shows disCNN outperforms AlexNet by ∼ 3.5% (scratch) and ∼ 2% (fine-tune), which shows the
advantage of our disentangled architecture. Furthermore, when the number of camera pairs increases, the performances of disCNN increase
as well.

(a)

(b) (c) (d)
Figure 4. Learned filters and between-class `2 distances. (a) and (b) show the learned filters of disCNN trained from scratch, and disCNN
fine-tuned from the pretrained AlexNet on the iLab-20M dataset; (c) and (d) show the between-class `2 distances of fc7 representations
from AlexNet (1024D) and disCNN (512D). Training disCNN from scratch learns only color blobs (a). (c,d) shows visually that disCNN
representations have smaller within category distances and larger between category distances. The ratio between the mean between-
category distance and the mean within-category distance is 7.7/5.7 for disCNN/AlexNet.

pairs could be thought as taken by one virtual camera pair,
therefore have the same pose-transformation label. Since
we have 3 video sequences, finally all pairs have in total 3
pose-transformation labels, thus equivalently 3 virtual cam-
era pairs; Case two: take image-pairs with ∆ = {5, 10},
end in 6 camera pairs; Case three: ∆ = {5, 10, 15}, end
in 9 camera-pairs; case four: ∆ = {5, 10, 15, 20}, end in
12 camera-pairs. The total number of training image pairs
under each case is 67K, 99K and 131K respectively. The
number of test images in all cases is 6773.

Implementation details: we use the same training set-
tings as in iLab-20M experiments to train AlexNet and dis-
CNN, i.e., the same learning rates (start from 0.01, end with
0.0001, with rate decreasing log linearly), the same number
of training epochs (15), and the same training order within
each epoch. We set λ1 = 1 and λ2 = 0.05 in experiments.

Results: we do two comparisons: first compare dis-
CNN (AlexNet) trained from scratch against from the pre-
trained weights on the iLab-20M dataset, then compare dis-
CNN against AlexNet, both fine-tuned from the pretrained

CNN features on iLab-20M. Results are shown in Table
2, our observations are: (1) disCNN (AlexNet) trained by
fine-tuning the pretrained AlexNet features on the iLab-
20M wins over disCNN (AlexNet) trained from scratch by
∼ 4.5%(∼ 5.5%), and their fine-tuned performances are
better than the published accuracies, 74.7%, in [17] by a
large margin. This shows the features learned from the
iLab-20M dataset generalize well to the RGB-D dataset; (2)
disCNN outperforms AlexNet in both cases, either trained
from scratch or from the pretrained AlexNet features, which
shows the superiority of the disentangling architecture over
the linear chain, single task CNNs; (3) similarly, we observe
that the performance of disCNN increases as the number
of camera pairs increase. We further compute `2 distances
between categories using fc7-identity (disCNN, 512D) and
fc7 (AlexNet, 1024D) representations, and plot them in
Fig. 4. Visually the off diagonal elements in disCNN
are brighter and the diagonal elements are darker, show-
ing smaller within-category distances and larger between-
category distances.



4.3. ImageNet

ImageNet has millions of labeled images, and training a
ConvNet on a large dataset from pretrained models against
from scratch has been shown to have insignificant effects
[11, 18]. In order to show that the pretrained disCNN
on the iLab-20M datasets learns useful features for object
recognition, we fine-tune the learned weights on ImageNet
when only a small amount of labeled images are available.
We fine-tune AlexNet using 5, 10, 20, 40 images per class
(5K,10K,20K and 40K training images in total) from the
ILSVRC-2010 challenge. AlexNet is fine-tuned under three
scenarios: (1) from scratch (random Gaussian initializa-
tion), (2) from pretrained AlexNet on iLab-20M, (3) from
pretrained disCNN on iLab-20M, and top-5 object recogni-
tion accuracies are presented in Table 3. When we pretrain
AlexNet and disCNN on the iLab-20M dataset, we use the
AlexNet with the number of neurons on the last two fully
connected layers reset to 4096.

Results: (1) when only a limited number of labeled im-
ages are available, fine-tuning AlexNet from the pretrained
features on the iLab-20M dataset performs much better than
training AlexNet from scratch, e.g., the relative improve-
ment is as large as ∼ 460% when we have only 5 sam-
ples per class, and the improvement decreases when more
labeled images are available, but we still gain ∼ 25% im-
provements when 40 labeled images per class are available.
This clearly shows features learned on the iLab-20M dataset
generalize to ImageNet. (2) fine-tuning from the pretrained
disCNN on iLab-20M performs even better than from the
pretrained AlexNet on iLab-20M, and this shows that dis-
CNN learns even more effective features for general object
recognition than AlexNet. These empirical results show
the advantage of our disentangling architecture to the tra-
ditional single task linear architecture.

# of images/class 5 10 20 40
AlexNet
(scratch) 1.47 4.15 16.45 25.89

AlexNet
(AlexNet-iLab20M) 7.74 12.54 19.42 28.75

AlexNet
(disCNN-iLab20M) 8.21 14.19 22.04 30.19

Table 3. Top-5 object recognition accuracies (%) on the test set of
ILSVRC-2010, with 150 images per class and a total of 150K test
images. First, fine-tuning AlexNet from the pretrained features on
the iLab-20M dataset clearly outperforms training AlexNet from
scratch, which shows features learned on the iLab-20M dataset
generalizes to ImageNet as well. Second, fine-tuning from the
pretrained disCNN-iLab20M performs even better than from the
pretrained AlexNet-iLab20M, which shows our disentangling ar-
chitecture learns even better features for object recognition than
AlexNet.

5. Conclusions

In this paper, we design a multi-task learning ConvNet
to learn to predict object categories. Unlike traditional
ConvNets for object recognition, which is usually a single
task architecture and learns features sensitive to the cur-
rent task (i.e., object category) but invariant to other fac-
tors of variation as much as possible (e.g., pose), disCNN
retains all image generating factors of variation (object cat-
egory and pose transformation in our case), and learn them
simultaneously by explicitly disentangling representations
of different factors. Experiments on the large scale iLab-
20M dataset show that features learned by disCNN out-
performs features learned by AlexNet significantly for ob-
ject recognition. If we fine tune object recognition on the
ImageNet dataset using pretrained disCNN and AlexNet
features, disCNN-pretrained features are consistently bet-
ter than AlexNet-pretrained features. All experiments show
the effectiveness of our disentangled training architecture.

As shown in [1], features learned using egomotion as su-
pervision are useful for other vision tasks, including object
recognition, and the egomotion-pretrained features compare
favorably with features learned using class-label as supervi-
sion. In our paper, we further showed that when our model
has access to both object categories and camera motions, it
learns even better features than using only class-label as su-
pervision. One possible explanation is: although egomotion
learns useful features for object recognition, it does not nec-
essarily guarantee that feature representations of different
instances of the same class are similar since egomotion does
not has access to any class-label information. In our work,
we showed, by feeding ConvNets with additional class la-
bels, the feature learning process are further guided toward
the direction that objects of the same class tend to have spa-
tially similar representations.
Acknowledgement: This work was supported by the Na-
tional Science Foundation (grant numbers CCF-1317433
and CNS-1545089), the Intel Corporation, and the Office of
Naval Research (N00014-13- 1-0563). The authors affirm
that the views expressed herein are solely their own, and do
not represent the views of the United States government or
any agency thereof.

References
[1] P. Agrawal, J. Carreira, and J. Malik. Learning to see by

moving. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 37–45, 2015. 2, 5

[2] Y. Bengio. Learning deep architectures for ai. Foundations
and trends R© in Machine Learning, 2(1):1–127, 2009. 1, 2

[3] A. Borji, S. Izadi, and L. Itti. ilab-20m: A large-scale con-
trolled object dataset to investigate deep learning. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2016. 4.1



[4] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille. Semantic image segmentation with deep con-
volutional nets and fully connected crfs. arXiv preprint
arXiv:1412.7062, 2014. 2

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 248–255. IEEE, 2009. 4

[6] A. Dosovitskiy, J. Tobias Springenberg, and T. Brox. Learn-
ing to generate chairs with convolutional neural networks. In
CVPR, pages 1538–1546, 2015. 2

[7] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. In CVPR, pages 580–587, 2014. 2

[8] G. Gkioxari, R. Girshick, and J. Malik. Contextual action
recognition with r* cnn. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 1080–1088,
2015. 2

[9] R. Hartley and A. Zisserman. Multiple view geometry in
computer vision. Cambridge university press, 2003. 3, 3.1

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. arXiv preprint arXiv:1512.03385,
2015. 1, 2

[11] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath,
et al. Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. Sig-
nal Processing Magazine, IEEE, 29(6):82–97, 2012. 4.3

[12] G. E. Hinton, A. Krizhevsky, and S. D. Wang. Transforming
auto-encoders. In Artificial Neural Networks and Machine
Learning–ICANN 2011, pages 44–51. Springer, 2011. 1

[13] Y. Huang, W. Wang, L. Wang, and T. Tan. Multi-task deep
neural network for multi-label learning. In Image Processing
(ICIP), 2013 20th IEEE International Conference on, pages
2897–2900. IEEE, 2013. 2

[14] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015. 1

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012. 1, 2, 3.1

[16] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum.
Deep convolutional inverse graphics network. In Advances in
Neural Information Processing Systems, pages 2530–2538,
2015. 2

[17] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical
multi-view rgb-d object dataset. In Robotics and Automa-
tion (ICRA), 2011 IEEE International Conference on, pages
1817–1824. IEEE, 2011. 4.2

[18] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,
521(7553):436–444, 2015. 4.3

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998. 1, 2

[20] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3431–3440, 2015. 2

[21] S. Reed, K. Sohn, Y. Zhang, and H. Lee. Learning to disen-
tangle factors of variation with manifold interaction. In Pro-
ceedings of the 31st International Conference on Machine
Learning (ICML-14), pages 1431–1439, 2014. 1, 2

[22] M. L. Seltzer and J. Droppo. Multi-task learning in deep neu-
ral networks for improved phoneme recognition. In Acous-
tics, Speech and Signal Processing (ICASSP), 2013 IEEE In-
ternational Conference on, pages 6965–6969. IEEE, 2013. 2

[23] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,
and Y. LeCun. Overfeat: Integrated recognition, localization
and detection using convolutional networks. arXiv preprint
arXiv:1312.6229, 2013. 2

[24] K. Simonyan and A. Zisserman. Two-stream convolutional
networks for action recognition in videos. In Advances
in Neural Information Processing Systems, pages 568–576,
2014. 2

[25] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014. 1, 2, 3.1

[26] S. Soatto, A. Chiuso, and P. Chaudhari. Visual represen-
tations: Defining properties and deep approximations. In
International Conference on Learning Representations, vol-
ume 3, 2016. 1

[27] H. Su, C. R. Qi, Y. Li, and L. J. Guibas. Render for cnn:
Viewpoint estimation in images using cnns trained with ren-
dered 3d model views. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 2686–2694,
2015. 2, 3

[28] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1–9, 2015. 1, 2, 3.1

[29] A. Vedaldi and K. Lenc. Matconvnet: Convolutional neu-
ral networks for matlab. In Proceedings of the 23rd Annual
ACM Conference on Multimedia Conference, pages 689–
692. ACM, 2015. 4.1

[30] J. Yang, S. E. Reed, M.-H. Yang, and H. Lee. Weakly-
supervised disentangling with recurrent transformations for
3d view synthesis. In Advances in Neural Information Pro-
cessing Systems, pages 1099–1107, 2015. 2

[31] C. Zhang and Z. Zhang. Improving multiview face detection
with multi-task deep convolutional neural networks. In Ap-
plications of Computer Vision (WACV), 2014 IEEE Winter
Conference on, pages 1036–1041. IEEE, 2014. 2

[32] Z. Zhang, P. Luo, C. C. Loy, and X. Tang. Facial landmark
detection by deep multi-task learning. In Computer Vision–
ECCV 2014, pages 94–108. Springer, 2014. 2

[33] J. Zhao and L. Itti. Improved deep learning of object category
using pose information. In arXiv preprint arXiv:1607.05836,
2016. 2

[34] Z. Zhu, P. Luo, X. Wang, and X. Tang. Multi-view percep-
tron: a deep model for learning face identity and view rep-
resentations. In Advances in Neural Information Processing
Systems, pages 217–225, 2014. 2


