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A B S T R A C T

Salient object detection is a fundamental problem in both pattern recognition and image processing tasks.
Previous salient object detection algorithms usually involve various features based on priors/assumptions about
the properties of the objects. Inspired by the effectiveness of recently developed deep feature learning, we
propose a novel Salient Object Detection via a Local and Global method based on Deep Residual Network model
(SOD-LGDRN) for saliency computation. In particular, we train a deep residual network (ResNet-G) to measure
the prominence of the salient object globally and extract multiple level local features via another deep residual
network (ResNet-L) to capture the local property of the salient object. The final saliency map is obtained by
combining the local-level and global-level saliency via Bayesian fusion. Quantitative and qualitative experiments
on six benchmark datasets demonstrate that our SOD-LGDRN method outperforms eight state-of-the-art methods
in the salient object detection.

1. Introduction

Saliency detection attempts to identify the most important and
conspicuous object regions in an image by the human visual and cog-
nitive system. It is a fundamental problem in neural science, psychology
and computer vision. Many computer vision researchers propose com-
putational models to simulate the process of human visual attention or
identify salient objects. Recently, salient object detection had drawn a
large amount of attention in variety of computer vision tasks, such as
object detection [1], person re-identification [2], object retargeting [3],
image retrieval [4,5], video summarization [6] and image deblurring
[7], etc.

Visual saliency can be viewed into different perspectives and con-
trast is one of them. Based on the observation that salient object is al-
ways distinguishing itself from its surroundings, contrast as a prior has
been widely used to detect salient object. According to the range of the
context that the contrast is computed to, it can be further categorized
into local contrast and global contrast methods. The local contrast
based methods usually compute center-surround difference to obtain
the object-of-interest region standing out from their surroundings [8].
Due to the lack of the global information, methods of this category tend

to highlight the boundaries of salient objects and neglect the interior
content of the object. Meanwhile, the global contrast based methods
take the entire image into consideration to estimate the saliency of
every pixel or every image segment, thus the whole salient object is
detected but the details of the object structure are always missing.
There are also some methods proposed to improve the performance of
salient object detection via integrating both local and global-level cues
[9]. The aforementioned methods may work well for low-level saliency,
but they are neither sufficient nor necessary, especially in the cases
when the saliency is also related to the human perception or is task-
dependent.

In order to obtain more accurate semantic features for salient object
detection, deep neural networks have recently been widely used. These
methods include Multisacle Deep Feature (MDF) [10], Deep Image
Saliency Computing via Progressive Representation Learning (DISC)
[11], Local Estimation and Global Search (LEGS) [12], and Encoded
Low level Distance map (ELD) [13]. They utilized high-level features
from the deep convolution neural network (CNN) and demonstrate
superior results over previous works that utilizes only low-level fea-
tures. CNN based methods did show their superiority on deep feature
extraction, but compared to the methods using deep residual network
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(ResNet), there are still some limitations. Specifically for MDF, the
author treats each region as an independent unit in feature extraction
without any shared computation. In addition, this method uses not only
high-level features but also low-level features for complement and en-
hancement when doing salient detection. Due to the fact that CNNs fail
to extract distinguishing features when the textures of salient object
regions are similar to the background. Moreover, since CNN is generally
performed on image patches, only features at local level are extracted,
thus it fails to capture the global relationship of image regions and can’t
maintain the label consistency in a relative large region.

In order to solve these problems, in this paper, we propose a novel
image salient object detection model named Salient Object Detection
via a Local and Global Method Based on Deep Residual Network (i.e.
SOD-LGDRN). Instead of CNN, we apply the deep residual network
(ResNet) to salient object detection, from which more distinctive fea-
tures of the salient objects can be obtained. Different from previous
methods, high-level semantic features are extracted from both local and
global levels via two ResNets, respectively. Features extracted from an
entire image via a global ResNet (ResNet-G) roughly identify the global
concepts of the salient object(e.g. the location, the scale and the size of
the salient object). However, the residual network at the global level
considers the entire image but pays less attention to the local context
information, and this may misinterpret the background as salient re-
gions or lack the subtle structure of a salient object. Hence, local fea-
tures of the image are extracted via local ResNets (ResNet-L) as com-
plements to the global information. By considering deep features at the
local and the global levels simultaneously, we can expect to obtain a
salient object with homogeneously highlighted region and accurate
object boundary.

We briefly describe the implementation of our approach as shown in
Fig. 1. At first, the entire image as input is sent to ResNet-G to extract
global level features thus to generate a saliency map in a global context.
Secondly, a multilevel image segmentation method is employed to
segment the target image into multiple segments, and the segments at
each level are warped and then fed to a ResNet-L to extract local fea-
tures. The obtained local features at multiple level are further used to
estimate the local saliency map. In order to deal with the noise caused
by the image segmentation, we also introduce a spatial coherence re-
finement method to enhance the smoothness of the local saliency map.
At last, the global and the local saliency maps are fused to obtain the
final saliency map via a Bayesian integration method. In summary, our
major contribution is threefold:

(1) A novel salient object detection model is proposed based on the
global and the local semantic features extracted from two deep
residual networks: ResNet-G and ResNet-L.

(2) Features learned from deep residual network are at the first time
extracted and applied to salient object detection.

(3) We proposed the model only uses high-level features for saliency
detection, and the performance can be significantly improved
without using low-level features for complement or refinement.

The rest of the paper is organized as follows. In Section 2, we first
review and evaluate the related work. Then we introduce our proposed
SOD-LGDRN model in Section 3. In Section 4, we conduct experiments
on six public datasets: MSRA-B, PASCAL-S and ECSSD, ASD, SED1 and
THUR15K and then make comparisons with eight state-of-the-art
methods. In the last Section, we present the conclusion and discussion
of the future work.

2. Related work

In this section, we discuss the related work on salient object de-
tection. In addition, we also briefly review deep neural network that are
closely related to this work.

To estimate visual saliency, various methods are proposed and most
of the saliency detection approaches can be generally categorized as
global and local schemes. Local methods measure saliency by com-
puting local contrast and rarity. Itti et al. [14] propose the center-sur-
round scheme to extract low-level features such as color, intensity,
orientation and texture, and use a linear and non-linear combination of
multi-scale saliency map. Hereafter, Ma and Zhang [15] utilize color
contrast in a local neighborhood as a measure of saliency. Goferman
et al. [9] provide a context-aware (CA) method that used three prin-
ciples including local low-level cues, global consideration and visual
representation rules to highlight salient objects along with their con-
texts. However, these methods still have some problems to be solved,
for example, they tend to be more sensitive to the boundaries of salient
objects, but it can’t highlight the object interior uniformly. On the other
hand, global methods generally detect saliency by using holistic con-
trast and color statistics of the entire image. Achanta et al. [16] propose
a frequency tuned method to calculate the image pixel saliency by
subtracting the average color of the image. Cheng et al. [17] compute
image saliency on the basis of color histogram contrast and region
contrast. Xu et al. [18] utilize histograms based global contrast and
spatial coherence to detect saliency. Most of the global contrast
methods depend on color uniqueness when doing global statistics.
However, these methods can be insufficient to capture semantic fea-
tures in a natural image. Besides, they usually ignore the spatial relation
(i.e. spatial weight and distance) between different parts in the images.
Liu et al. [19] propose a set of features from both global and local
perspectives, which are integrated by conditional random field (CRF) to
generate final saliency map. Fareed et al. [20] proposed a salient region
detection algorithm based on sparse representation and graph ranking,
which combined the Gaussian and Bayesian procedures to produce
smooth and precise saliency map. While the combination of global and

Fig. 1. Architecture overview of our proposed deep salient object detection model. The ResNet-G takes the entire image as input and generates global saliency map
Sg . The ResNet-L takes image segments at multiple levels as input and produces the local-level saliency map Sl. The aggregated saliency map S is obtained by fusing Sg

and Sl via a Bayesian integration method. LT denotes to the linear transformation operation.
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local models [21,22] is technically sound, these approaches have two
major problems. First, these methods mainly rely on handcrafted low-
level features which may fail to describe image with clutter background
and object structures. Second, these methods can detect salient objects,
but it can’t highlight semantic features.

Deep neural networks have recently achieved many successes in
computer vision tasks, including image classification [23,24], object
detection [25–27] and semantic segmentation [28,29], etc. The succeed
stem from the expressibility and capacity of deep architectures that
facilitates learning complex features and models to account for inter-
acted relationship directly from training examples. Due to the deep
neural network mainly takes image patches/regions as inputs, they tend
to fail to capture long range label dependencies in the scene parsing
(i.e. saliency detection). In order to solve this problems, Zhao et al. [30]
model the semantic features of salient objects and propose a multi-task
deep saliency detection model based on a convolutional neural net-
work. Wang et al. [12] propose a novel saliency detection algorithm
using deep neural network combined with local estimation and global
search. We propose to utilize deep ResNet in both global and local
perspectives for salient objects detection, where the ResNet-G takes the
entire image as input and generates global saliency map and the Re-
sNet-L estimates local saliency of each pixel. Compared with previous
work, our method outperforms previous methods that use only low-
level features.

3. The framework of our SOD-LGDRN method

In this section, we present the proposed SOD-LGDRN method in
detail. The pipeline of SOD-LGDRN is illustrated in Fig. 1. We model the
complete framework of salient object detection with two deep ResNets:
ResNet-G and ResNet-L. The ResNet-G takes the original image as input
and generates semantic features globally. Since features extracted at the
global level can not accurately describe the detailed structure of the
salient object, we consider using the ResNet-L to extract local features
as a complementary to the global information. Besides, in order to deal
with the noise caused by the image segmentation, a spatial coherence
method is integrated in the ResNet-L as a smoothing step.

3.1. Global-level saliency map

Global-level Feature Extraction In order to extract the global level
semantic features of the image, we take the entire image as the input of
the deep ResNet-G. Specifically, for each pixel in image I, a global-level
feature is obtained via a feature extractor ϕg which is implemented by
ResNet-G. Examples of the learned convolutional features are illu-
strated in Fig. 2. Fig. 2(a) is an input image and Fig. 2(b) illustrates the
learned convolutional filters in the first layer, which capture color,
contrast, edge and corner information in a local region. Fig. 2(c),
Fig. 2(d) show the outputs of the 50th and the 150th layers, from which
we can see that different levels of salient parts are highlighted at dif-
ferent levels of feature maps. (Better viewed at high resolution.) Then,
for each feature, we apply a linear transformation that assigns a cor-
responding saliency score to the pixel, which can be expressed as:

= + = …SG I w ϕ I b i N( ) ( ) , 1,2, ., ,i g i
T

g i g i, , (1)

where wg i, and bg i, represent the weights and biases of detector, and the
values of these parameters are obtained by performing a linear trans-
formation. Here, N is the pixel number of the original image I and Ii is
the ith pixel. By this way, we can obtain a saliency map SG. Although the
saliency map generated via the deep ResNet-G can highlight the entire
salient regions, it suffers two problems: (1) the generated saliency map
on global level may be difficult to distinguish between the foreground
and background; (2) when the background region is heavily cluttered, it
can’t preserve the subtle structure of salient objects. The reasons di-
rectly leading to the above two problems are the lack of consideration
of the neighboring local information when extracting global-level fea-
tures.

SLCI Smoothing In order to solve these problems, we use the su-
perpixel-based local context information (SLCI) method [11] to pre-
serve the boundary of the salient object when generating a global-level
saliency map. Given an image I, we first use the Simple Linear Iterative
Clustering segmentation method (SLIC) [31] to segment I into M su-
perpixels as = ⋯H{ }i i M1 . Once obtaining the global-level saliency map SG,
for each pixel, the saliency value is assigned the same as the ones with
similar appearance in the local region. Denotes Hi the superpixel con-
taining the pixel p x y( , ). Then the formula of SLCI smoothing for the
pixel p x y( , ) is as follows:

∑=
∈

R
H

SG p1
| |

( ),i
g

i p Hi (2)

where H| |i denotes the cardinality of the set and Ri
g is the saliency value

for the superpixel Hi. The direct meaning of Eq. (2) is that the saliency
value of a pixel can be replaced with the average saliency value over all
pixels in the superpixel it belongs to. For each pixel in Hi, the saliency
value is set to the same as the saliency value of the superpixel. That’s:

= ∀ ∈p R p x y HS ( ) , ( , ) .g i
g

i (3)

3.2. Local-level saliency map

In order to obtain the local-level saliency map, an image is first
segmented into multiple sub-regions, and then the multiple sub-regions
are fed into the ResNet-L to generate the local-level semantic features.
At last, saliency is estimated for each sub-region via the extracted local
level features. We also introduce a method to refine the local level
saliency map by considering the spatial coherence among multiple sub-
regions.

3.2.1. Multi-level image segmentation
There are two steps to perform multi-level image segmentation:

first, we employ the graph-based image segmentation method [32] to
segment the image into multi-level sub-regions; secondly, in order to
produce accurate segmentation and reduce the number of small
meaningless segments, we apply region merging method [33]. Specifi-
cally, for each image, we segment it into =L 10 different levels. From
the coarsest level (level 1) to the finest level (level 10), the number of

Fig. 2. Visualization of features learned by ResNet-G on PASCAL-S dataset. (a) Input image (b) 25 convolutional filters in the first layer (c) the learned features at the
50th layer (d) the learned features at the 150th layer.
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segments for the image is set from 20 to 200, and the number of image
segments in the intermediate levels follows a geometric series.

3.2.2. Multiscale local feature extraction
We extract features for each image segment with a deep residual

network which has been trained on the ImageNet datasets using the
Caffe framework. Due to the segments obtained by the multi-level
image segmentation having variant size, we first wrap each of them in a
bounding box size of ×200 200. Then, at each level, all the warped
segments are fed into the ResNet-L to obtain the saliency map at level k
as: = + = …S H w ϕ H b k L( ) ( ) , 1,2, .k

i l i
T

l i l i
( )

, , . Here, Hi is the ith warped
segment at kth level of image segmentation, and wl i, and bl i, are obtained
similarly as in Eq. (1). An example of the obtained S k{ )}( is shown in
Fig. 3. From this figure, we can see that as the segmentation performed
from coarse level to fine level, the boundary of the salient object be-
comes accurate at the cost of the inhomogeneous salient object regions.
Once obtaining the saliency maps at all levels, we aim to further fuse
these saliency maps together to get an aggregated saliency map as

= ∑ =SL a Sk
L

k
k

1
( ), and the weights ak are learned by performing a least-

squares regression method on the training dataset:

∑ ∑−
∈

GT a Sargmin ‖ ‖ ,
a i I

i
k

k i
k

{ }

( ) 2

k u (4)

where Iu represents the set of indices of the images in the training da-
taset and GTi is the groundtruth of the ith image in the training set. Here,
we define ‖·‖ to calculate the squared sum of all elements.

3.2.3. Spatial coherence refinement
Due to the fact that image segmentation method can’t get the perfect

segmentation results and our model assigns saliency values to each
segment individually, problems by lacking of the spatial coherence
between segments will inevitably appear in the resulting saliency map.
Therefore, in order to enhance spatial coherence, we use a superpixel-
based saliency refinement method. As we did before, the saliency value
of the superpixel is set as the averaged saliency value of all pixels in it as

= ∑ ∈R SL p( )i H p H
1

| |i i
and = ∀ ∈S p R p H( ) ,l i i, where Ri is the saliency

value of the superpixel Hi at local saliency map SL. We enhance the
saliency map by setting an objective function, which can be reduced to
solving a linear system as:

∑ ∑− + −R R ω R Rargmin ( ) ( ) ,
R i

i
l

i
i j

i j i
l

j
l

{ }

2

,
,

2

i
l (5)

where Ri
l is the saliency value of the superpixel Hi after refinement. The

first term in the formula denotes the difference between the original
saliency map and the refined saliency map, and the second term in-
dicates the difference of spatial consistency between different super-
pixels. Here, ωi j, refers to the weight between superpixels Ri

l and Rj
l

aiming to enhance the spatial consistency. The ωi j, is thus defined as
follows:

⎜ ⎟= ⎛
⎝

− ⎞
⎠

ω exp
d H H

σ
( , )
2

,i j
i j

,

2

1
2 (6)

where d H H( , )i j is the normalized Euclidean distance between the color
histogram of Hi and Hj in ∗ ∗CIEL a b. In our experiment, σ1 is the stan-
dard deviation of the distance between pairwise superpixels and set to
0.1. After refinement, the refined local saliency map Sl becomes:

= ∀ ∈S p R p x y H( ) , ( , ) .l i
l

i (7)

3.3. Saliency map fusion

Given two saliency maps Sg and Sl, inspired by the fact that both Sg
and Sl are the prior information of the locations of the salient object, we
can use a Bayesian integration method [20,34,35] to achieve a better
fusion result. Specifically, we utilize one of them as the prior to com-
pute the posterior probability of the other one, and combine the two
computed posterior linearly to obtain the final fused saliency map S.

Take Sl as a prior and computation of the posterior probability for Sg
for example. Firstly, we threshold the saliency map Sg by its mean
saliency value and obtain its foreground and background regions de-
scribed by F and B, respectively. Then, in each region, we compute the
likelihoods by comparing Sg in terms of the foreground and background
bins at pixel z:

=

=

p S z F

P S z B

( ( )| ) ,

( ( )| ) ,

g
N

N

g
N

N

bF Sg z

F

bB Sg z

B

( ( ))

( ( ))

(8)

where NF and NB are the number of pixels in the foreground F and the
background B, respectively. Denote Nb S z( ( ))F and Nb S z( ( ))B the number of
pixels whose color features belong to the foreground bin b S z( ( ))F g and
background bin b S z( ( ))B g , respectively. Consequently, the posterior
probability p F S( | )g with regards to Sg can be computed with Sl as the
prior as:

=
+ −

p F S z
S z p S z F

S z p S z F S z p S z B
( | ( ))

( ) ( ( )| )
( ) ( ( )| ) (1 ( )) ( ( )| )

.g
l g

l g l g (9)

Similarly, the posterior probability p F S z( | ( ))l with Sg as the prior
can be computed as well. Once obtained p F S z( | ( ))g and p F S z( | ( ))l , we
can combine them together to get fused result S based on Bayesian
integration:

= +S p F S p F S( | ) ( | ).l g (10)

4. Experiments and discussion

In this section, experimental results are reported to validate the
proposed salient object detection model. Firstly, we compare our
method with eight state-of-the-art methods on three public datasets
qualitatively and quantitatively. Besides, in order to show the

Fig. 3. Visual comparison of saliency maps at different scales of segmentation. (a) Original image (b) S(1) at scale 1 (c) S(5) at scale 5 (d) S(10) at scale 10.
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effectiveness of our SOD-LGDRN method by using deep residual net-
work, we perform comparisons by using different deep neural network
under our SOD-LGDRN framework. Moreover, to show the superiority
of using 152-layers deep ResNet for salient object detection, we ex-
periment on deep ResNets with different layers. Meanwhile, in order to
show the effectiveness of salient object detection by ResNet-L and
ResNet-G in our proposed SOD-LGDRN method, we perform the per-
formance analysis of them on ECSSD dataset. Finally, performance
generalization of our model is provided.

4.1. Dataset

To evaluate our model, six public benchmark datasets are used:
ECSSD, MSRA-B, PASCAL-S, SED1, THUR15K and ASD.

ECSSD [36]: This dataset contains 1000 structurally complex
images acquired from the Internet with pixel-wise ground truth masks.

MSRA-B [37]: This dataset has 5000 images, and is widely used for
salient object detection. Most of the images contain only one salient
object. Pixel-wise annotation was provided by [38].

PASCAL-S [39]: This dataset was bulit using the validation set of
the PASCAL VOC 2010 segmentation challenge. It contains 850 images
with pixelwise salient object annotation. The ground truth saliency
masks were labeled by 12 subjects.

SED1 [36]: This dataset is exploited recently which contains 100
images of single object.

THUR15K [40]: It consists of 15000 images, with 6233 pixel-ac-
curate ground truth annotations for five specific categories: plane, dog
jump, coffe mug, butterfly and giraffe.

ASD [16]: It consists of 1000 images labeled with pixle-wise
ground truth.

All the experiments are run on the MATLAB R2011b platform on a
workstation with Intel Xeon(R) CPU(2.60 GHz) and 500 GB RAM.

4.2. Evaluation criteria

In order to objectively compare our method with other methods, we
use Precision-Recall curve, F-measure, MAE (Mean Absolute Error)
three criteria for evaluation.

Precision-Recall Curve Since Precision-Recall (P-R) curve [44]
provides rich information compared to ROC [9], we use P-R curve to
evaluate the proposed algorithm.

To obtain a P-R curve, for each saliency map, we binarized it with
256 threholds, ranging from 0 to 255. Each binary mask (D) is com-
pared with the ground-truth (G) which is also a binary mask. We
compute the averaged precision and recall for each employed datasets.

=
⋂

=
⋂

Precision
G D

D
Recall

G D
G

| |
| |

,
| |

| |
.

(11)

F-measure Compared to P-R curve, F-measure provides balanced
evaluation of precision and recall. Due to precision is always more
important than recall, F-measure is calculated as:

=
+ × ×

× +
F

β Precision Recall
β Precision Recall

(1 )
.β

2

2 (12)

We set β2 as 0.3 empirically. In order to obtain good precision and
recall values, every single saliency map is binarized via an adaptive
threshold as:

∑ ∑=
× = =

T
w h

s x y2 ( , ),δ
x

w

y

h

1 1 (13)

where w and h are the width and the height of saliency map respec-
tively. Denotes s x y( , ) the saliency value of pixel x y( , ). We then acquire
averaged precision, recall and F-measure in each dataset.

MAE Since precision and recall values sometimes fail to reflect True
Postive Rate (TPR) and Ture Negative Rate (TNR). MAE is exploited to

reduce the average errors when fitting relations between TPR and TNR.
MAE defines average pixel-wise absolute difference between ground
truth and saliency map. The corresponding formula is as follows:

∑ ∑=
×

−
= =

MAE
w h

s x y g x y1 | ( , ) ( , )|.
x

w

y

h

1 1 (14)

4.3. Performance comparisons with state-of-the-art methods

In this subsection, we evaluate the proposed model on ECSSD,
MSRA-B and PASCAL-S datasets. We trained our model using the 5000
images from the MSRA-B dataset and divide MSRA-B into two subsets,
one subset of 4000 images for training and the other subset of 1000
images for test. The results of our experiments compare with eight state-
of-the-art methods: Visual Saliency Based on Scale-Space Analysis in the
Frequency Domain (HFT [41]), Background and Foreground Seed (BFS
[42]), Bootstrap Learning (BL [43]), Global and Local cues (GL [22]),
Deep Image Saliency Computing via Progressive Representation
Learning (DISC [11]), Local Estimation and Global Search (LEGS [12]),
Multiscale Deep CNN Features (MDF [10]) and Encoded Low level
Distance map (ELD [13]). We compare with them quantitatively and
qualitatively.

Quantitative Comparison Fig. 4 shows the saliency maps gener-
ated by our method and eight other methods. Experimental results have
shown that our method not only highlights entire salient objects, but
also preserve the details very well. In particular, our method can ac-
curately detect the salient object and clearly display the object. As can
be seen, our method performs well in a variety of challenging cases,
such as the low contrast between salient object and background (row 1,
row 3 and row 6), cluttered background (row 2), multiple salient ob-
jects (4-th and 7-th rows) and objects touching the image boundary (3-
th and 4-th rows).

Qualitative Comparison As shown in the Fig. 5, our method
achieves the highest precision in the entire recall range in three data-
sets. The results of P-R curves demonstrate that the proposed method
outperform the state-of-the-art methods. On the ECSSD dataset, the
proposed method obtains the highest precision value of 98.5%, which is
7.5% higher than the best one (91% in the ELD method). On the other
hand, the minimal recall value of Ours method is 80%, significantly
higher than those of the other methods.

Fig. 6 shows the F-measure values on the ECSSD, MSRA-B and
PASCAL-S datasets, respectively. Among all these methods, our ap-
proach achieves the best performance on the overall F-measure as well
as significant improvement in both precision and recall. On the ECSSD
dataset, our method achieves 89.0% precision and 80% recall while the
second best (ELD) achieves 86.8% precision and 72.3% recall. Perfor-
mance improvement becomes more obvious on MSRA-B dataset. Com-
pared with the second best (ELD), our method increases the F-measure
from 0.72 to 0.78 and achieves an increase of 5% in precision while at
the same time improving the recall by 15.1%.

Fig. 7 demonstrates that our method significantly outperforms other
existing methods in terms of the MAE measurement, which provides a
better estimation of the visual distance between the predicted saliency
map and the ground truth. Our method successfully lowers the MAE by
5.0% with respect to the second best method (ELD) on the ECSSD da-
taset. On two other datasets, MSRA-B and PASCAL-S, our algorithm
lowers the MAE by 2% and 3% respectively with respect to the second
best methods (ELD). All these further show that our predicted saliency
map is the best estimation of the ground truth.

4.4. Comparison with other deep neural networks

To further demonstrate the effectiveness of the proposed frame-
work, we replace our SOD-LGDRN architecture with CNN, VGG16 and
AlexNet, and compare their performance, respectively. It is worth
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Fig. 4. Visual comparison of our results with
the state-of-the-art methods on ECSSD,
MSRA-B and PASCAL-S datasets. Top and
bottom two rows are images from the
ECSSD, MSRA-B datasets, middle three rows
are images from the PASCAL-S dataset. The
ground truth (GT) is shown in the last
column. Our method produces saliency
maps closest to the ground truth. We com-
pare our method against saliency model HFT
[41], BFS [42], BL [43], GL [22], DISC [11],
LEGS [12], MDF [10], ELD [13].

Fig. 5. Quantitative comparison the precision-recall curves of different methods on three datasets: (a) ECSSD dataset (b) MSRA-B dataset (c) PASCAL-S dataset.

Fig. 6. Quantitative comparison our method with different methods from F-measure, Precision, Recall on three datasets: (a) ECSSD dataset (b) MSRA-B dataset (c)
PASCAL-S dataset.

Fig. 7. Quantitative comparison the MAE values of different methods on three datasets: (a) ECSSD dataset (b) MSRA-B dataset (c) PASCAL-S dataset. Better viewed in
color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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noting that both VGG16 and AlexNet networks are improved and en-
hanced on the CNN network structure. In order to make a fair com-
parison, we put the SOD-LGDRN framework of different networks on
the same dataset (PASCAL-S). The experiments are all carried out on a
workstation with NVIDIA GeForce GTX TITAN Black and 1 TB RAM.
The results are shown in Fig. 8. The SOD-LGDRN architecture with 152-
layers ResNet performs consistently better than SOD-LGDRN framework
with VGG16 and AlexNet. As can be seen from Fig. 8, our SOD-LGDRN
framework with 152-layers Resnet is significantly superior to SOD-
LGDRN framework with VGG16 and AlexNet. Therefore, it can de-
monstrate the effectiveness of our SOD-LGDRN framework with ResNet.

4.5. Comparison with the different layers of deep ResNet

In order to demonstrate the superiority of the SOD-LGDRN frame-
work with 152-layers ResNet, we compared the SOD-LGDRN

framework with 152-layers ResNet to the SOD-LGDRN model with 51-
layers, 101-layers ResNet. Except for the different layers of ResNet, all
other settings of the SOD-LGDRN framework are kept untouched.
Sample results of salient object detection by SOD-LGDRN with 152-
layers and SOD-LGDRN with 51-layers, 101-layers are shown in Fig. 9.
We can see that, SOD-LGDRN architecture with 152-layers not only
highlights the overall objects but preserves the boundary and structure
details. While the boundary detected by the SOD-LGDRN model with
51-layers and 101-layers are more background are detected. Therefore,
SOD-LGDRN framework with 152-layers achieved better performance
in detecting salient object.

4.6. ResNet-L v.s. ResNet-G on salient object detection

In order to show the effectiveness of salient object detection by
ResNet-L and ResNet-G in our proposed SOD-LGDRN method, we

Fig. 8. Visual comparison of our results with other different types of deep neural networks. The samples are taken from the MSRA-B dataset: (a) Original image (b)
CNN (c) AlexNet (d) VGG (e) Ours.

Fig. 9. Visual comparison of saliency map of
the ResNet with 51-layers, 101-layers and
152-layers. The samples are taken from the
MSAR-B dataset: (a) Original image (b) 51-
layers RseNet (c) 101-layers ResNet (d) 152-
layers ResNet.

Fig. 10. Visual comparison of the salient object detection result by ResNet-L and ResNet-G in our SOD-LGDRN method. (a) Original image (b) Global saliency map by
ResNet-G (c) Local saliency map by ResNet-L (d) The fused result.

Fig. 11. Visual comparison the generalization ability of our method with different methods on three datasets: (a) ASD dataset (b) SED1 dataset (c) THUR15K dataset.
From this figure, we can see that SOD-LGDRN framework has well generalization ability.
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perform the performance analysis of them on ECSSD dataset. The
sampled detection results are shown in Fig. 10. From this figure, we can
see that the global saliency map obtained via ResNet-G (i.e. Fig. 10(b))
cannot keep the complete object boundary (e.g. the hindquarters of the
yak) and some of the background on the right bottom of the image are
wrongly detected, while the local saliency map generated via ResNet-L
(i.e. Fig. 10(c)) can obtain complete object boundary but the interior of
the salient object cannot be highlighted homogeneously. Only the fused
result by our proposed SOD-LGDRN method can not only highlight the
overall object but preserve the object boundary and the details of the
structure.

4.7. Ablation study

4.7.1. Multi-level image segmentation
As discussed in Section 3.2, our method employs multi-level image

segmentation algorithm when extracting local-level features. As shown
in Fig. 12, the performance of the multi-level segmentation is sig-
nificantly better than the performance of single-level segmentation. The
aggregated saliency map from 10 levels of image segmentation is sig-
nificantly improved, and the average accuracy is improved by 2.4% and
the recall rate is 8.4% when it is compared with the result obtained by
single-level segmentation.

4.7.2. Execution time
In the experiment, we implement our SOD-LGDRN model under the

caffe framework and train them using stochastic gradient descent (SGD)
with momentum of 0.99, and weight decay of 0.005. The learning rate
for the training the SOD-LGDRN is initialized as −10 9 with a batch size of
64. All the experiments are run on the MATLAB R2011b platform on a
workstation with Intel Xeon(R) CPU(2.60 GHz) and 500 GB RAM.

In fact, more accurate results are achieved at the cost of longer run-
time. However, this is not what we expect, we hope to achieve better
performance, but also can maintain high efficiency. As shown in
Table 1, we can see that proposed method has achieved good perfor-
mance and run-time is the shortest.

4.8. Performance of generalization on other datasets

In this section, we evaluate and analyze the generalization of SOD-

LGDRN. In order to learn a particular model, we need to spend a lot of
time and effort to train on a large number of labeled data. Therefore, we
need a model with generalization function. To evaluate the effect of
SOD-LGDRN on other datasets, we evaluated SOD-LGDRN on three
datasets (i.e. ASD, SED1 and THUR15K). In our experiment, except for
the different datasets, all other settings of the SOD-LGDRN model is
keep untouched. We test the performance of these three datasets by
using the model we learned on the ECSSD dataset. The test results are
shown in Fig. 11. As can be seen from Fig. 11, although the model is
trained on other datasets, its performance still outperforms some of the
state-of-the-art approaches. Thus, we can demonstrate that our SOD-
LGDRN model has generalization ability.

5. Conclusion

In this paper, we propose a novel salient object detection frame-
work. Compared with existing image saliency computing methods, our
framework achieves superior performance without relying on various
features (priors/assumptions). We model the image saliency from both
local and global observations. Specifically, our salient object detection
model is built upon deep ResNets. Firstly, ResNet-G generates a global
level saliency map by taking the overall image as the input. Secondly,
we decompose the input image into a series of regions, then put theses
regions into the ResNet-L to produce local level saliency map while
preserving object details. Our method outperforms eight state-of-the-art
approaches in term of visual qualitative and quantitative results on
pubilc datasets. Meanwhile, our method has superior generalization
ability across datasets. As a future work, we are planning to combine
our model with object location or object recognition to explore the
efficient algorithms.
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