Human visual object categorization iIs best described by a model with few stored exemplars
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Introduction

Models of visual object categorization:
all-exemplar models (e.g., GcM; Nosofsky, 1991)
prototype models (e.g., Reed, 1972)
decision boundary models (e.g., Maddox & Ashby, 1993)

*Very often the all-exemplar models win out—why?
memory capacity?
orientation of decision boundary?
shape of decision boundary?

*Past comparisons of models have not resolved these factors

*\We introduced the roaming exemplar model to help sort them out

oy Categorization models

The RXM[1] has the
set of properties that
allow It to best fit
human behavior
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£§ Categorization task

@ Training phase
* uses category 1 & 2 training exemplars
* presented one at a time in random order
* subject guesses category 1 or 2
e auditory feedback is given
* repeat until subject reaches 85% correct

@ Testing phase
like testing phase, except:
* also uses additional test exemplars
 feedback is not given
e repeat until each exemplar is seen 7 times
* subjects' responses are used to fit the models

9 subjects did training and testing for each of 12 sets of categories
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Boundary
models

Categories are represented as
Gaussian distributions, so
decision boundaries are linear

Exemplar models

An exemplar model computes the sum of the similarities between a test
exemplar and each of the stored exemplars for a given category.

prototype roaming-exemplar

The stored exemplars are fitted to best match human behavior.

all-exemplar

The one stored exemplar per All of the training exemplars,
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oYz1 Detail: categorization mechanisms
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' VX "' X hidden units Z,...Zy (stored exemplars)
/ \ In exemplar models, the hidden units compute the weighted
distance between a stored exemplar g and the input pattern x:
C{ C{ ég é[5 ?) ?D z = sgmoie] [ X w; (x - )] ¥%}
In boundary models, the hidden units compute the distance of
I / / input pattern x from the boundary normal to the weight vector w;:

N\
\\\ // Z = sigmoid( X, W; %

weights V...V

These weights, through their sign and magnitude, reflect the
strength with which each hidden unit is associated with one
category or the other. An extra weightvg serves as a bias term.

Input units Xy Xo

(eye height, eye separation, ...)

weights

In exemplar models, these are attentional weights, which
typically vary only with the input unit, not with the hidden unit.
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In boundary models, these weights form boundaries in feature
space through their dot-products with the input vectors.

predicted probability OUtpUt unit Y= sgmmd(ZNVj;)

5b Detail: model fits

Without correcting for free parameters,
model fits improves with more memaory.
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These differences are
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statistically significant,
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RXM]I3] magnitude.
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After correctihg for free parameters,
the RXM[1] fits better than any other model.
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Summary

When memory capacity is accounted for with free parameters:

« a model with low memory capacity accounts best for human
performance in a subordinate-level categorization task

e a successful model with low memory capacity must have
sufficient flexibility in its decision boundary

 the success of all-exemplar models (such as the GCM) is due to
their relatively more flexible decision boundary, not to their high
memory capacity

e categorization may rely on a sparse representation that is
different from prototype abstraction

www.klab.caltech.edu/rjpeters/2001_SFN_Poster.pdf




