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Human visual object categorization is best described by a model with few stored exemplars

When memory capacity is accounted for with free parameters:

• a model with low memory capacity accounts best for human 
performance in a subordinate-level categorization task

• a successful model with low memory capacity must have 
sufficient flexibility in its decision boundary

• the success of all-exemplar models (such as the GCM) is due to 
their relatively more flexible decision boundary, not to their high 
memory capacity

• categorization may rely on a sparse representation that is 
different from prototype abstraction
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zj = sigmoid{[ D wij (xi - µ i)
2]1/2}

output unit y = sigmoid( N vj zj)

In exemplar models, these are attentional weights, which 
typically vary only with the input unit, not with the hidden unit.

In boundary models, these weights form boundaries in feature 
space through their dot-products with the input vectors.

In exemplar models, the hidden units compute the weighted 
distance between a stored exemplar µ and the input pattern x:

These weights, through their sign and magnitude, reflect the 
strength with which each hidden unit is associated with one 
category or the other. An extra weight v0 serves as a bias term.

In boundary models, the hidden units compute the distance of 
input pattern x from the boundary normal to the weight vector wj:
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•Models of visual object categorization:

•Very often the all-exemplar models win out—why?

•Past comparisons of models have not resolved these factors

•We introduced the roaming exemplar model to help sort them out

all-exemplar models (e.g., GCM; Nosofsky, 1991)

prototype models (e.g., Reed, 1972)

decision boundary models (e.g., Maddox & Ashby, 1993)

memory capacity?

orientation of decision boundary?

shape of decision boundary?

uncorrected
for # of free parameters

after correction
for # of free parameters

These differences are 
statistically significant, 
though small in 
magnitude.

After correcting for free parameters,

Without correcting for free parameters,
model fits improves with more memory.

(four examples out of 
108 such data sets)

decision surfaces of
fitted models

the RXM[1] fits better than any other model.

Exemplar modelsBoundary
models

The RXM[1] has the 
set of properties that 
allow it to best fit 
human behavior RXM[1] RXM[N]
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• 12 sets of 
categories,  
with different 
boundaries

• 60 test 
exemplars
(not shown)

• 10 training 
exemplars in 
category 2

• 10 training 
exemplars in 
category 1

Training phase
• uses category 1 & 2 training exemplars
• presented one at a time in random order
• subject guesses category 1 or 2
• auditory feedback is given
• repeat until subject reaches 85% correct

Testing phase
like testing phase, except:
• also uses additional test exemplars
• feedback is not given
• repeat until each exemplar is seen 7 times
• subjects' responses are used to fit the models

9 subjects did training and testing for each of 12 sets of categories

(eye height, eye separation, ...)

(stored exemplars)

Categories are represented as 
Gaussian distributions, so 
decision boundaries are linear 
or quadratic surfaces.

The one stored exemplar per 
category is the mathematical 
average of the training 
exemplars of that category.

All of the training exemplars, 
regardless of their number, are 
taken to be stored exemplars 
in the model.

The stored exemplars are fitted to best match human behavior.

An exemplar model computes the sum of the similarities between a test 
exemplar and each of the stored exemplars for a given category.

The same number of stored 
exemplars as training exemplarsOne stored exemplar per category
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