

Components of Bottom-Up Gaze Allocation in Natural Scenes Robert J. Peters (1,2), Asha Iyer (2), Christof Koch (2), Laurent Itti (1)

(1) University of Southern California, Computer Science, Neuroscience (2) California Institute of Technology, Computation and Neural Systems

introduction

Eye movements provide an overt measure of the internal allocation of spatial attention.

Here, we use human eye movement recordings to test *computational models* of bottom-up spatial visual attention.

method

Eye movement psychophysics:

- 3 image categories, 110 images per category
- 4 subjects, 3 sec. free-viewing per image

Computational models:

- lower bound given by pixel-shuffled control and image-shuffled control
- upper bound given by inter-observer control
- saccade location predictions made by baseline salience model
- enhanced salience model includes more detailed physiological mechanisms

Analysis metrics:

 quantify the statistical correspondence between human saccade targets and the predictions of salience models and control models

results

 baseline salience model predictions are far better than chance levels (pixel-shuffled and image-shuffled controls)

 physiological interactions among orientationtuned units (enhanced salience model) play a significant role in gaze allocation

- model predictions reach 50-90% of upper bound derived from inter-observer control
- strength of bottom-up influences on eye movements decays over time
- "center bias" varies with image category

