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pixel-shuffled control for image A =
	 randomly scramble pixels from
	 image A's salience map

image-shuffled control for image A =
	 take salience map from
	 a different image B

• multiple image features 
extracted in parallel channels

• features are subject to 
coarse global competition

• all features combine to give 
a single salience map

long-range orientation interactions 
for contour facilitation

try to predict each
subject's saccade 
locations from the 
average of the other 
subjects

short-range orientation interactions 
(cross-orientation suppression)
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• each salience map (or 
control map) is normalized to 
have mean=0 and stdev=1

• human scanpath is overlaid 
on normalized salience map

• normalized salience value 
is extracted at each fixation 
location

• these values are summed 
to give the normalized 
scanpath salience (NSS)

• NSS can be compared with 
the distribution of random 
salience values

receiver operating characteristic
• assuming a simple threshold:
how well can fixated and non-fixated 
locations be distinguished?

Kullback-Leibler distance
• with no assumptions about decision criteria:
how well can fixated and non-fixated 
locations be distinguished?

KL = 0.5 . Si pi(f ) . log (pi(f ) / pi(nf ))
      + 0.5 . Si pi(nf ) . log (pi(nf ) / pi(f ))

introduction

method

Eye movements provide an overt measure 
of the internal allocation of spatial attention.

Here, we use human eye movement 
recordings to test computational models 
of bottom-up spatial visual attention.

Eye movement psychophysics:
	• 3 image categories, 110 images per category
	• 4 subjects, 3 sec. free-viewing per image

Computational models:
	• lower bound given by pixel-shuffled control
	and image-shuffled control
	• upper bound given by inter-observer control
	• saccade location predictions made by
	baseline salience model
	• enhanced salience model includes more
	detailed physiological mechanisms

Analysis metrics:
	• quantify the statistical correspondence between
	human saccade targets and the predictions of
	salience models and control models

results
• baseline salience model predictions are far 
better than chance levels (pixel-shuffled and 
image-shuffled controls)

• physiological interactions among orientation-
tuned units (enhanced salience model) play a 
significant role in gaze allocation

• model predictions reach 50-90% of upper bound 
derived from inter-observer control

• strength of bottom-up influences on eye 
movements decays over time

• "center bias" varies with image category
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