We use fully-computational, autonomous
models to predict eye movements in a
dynamic and interactive visual task with
naturalistic stimuli.

We move beyond purely stimulus-driven
bottom-up models, and introduce a simple
model that captures task-dependent
top-down influences on eye movements.

Previous studies have either relied on
qualitative/descriptive models, or have not
used naturalistic interactive stimuli.

* Purely bottom-up models are able to predict

eye position significantly better than chance,
but not as well as in passive-viewing
conditions

» Combining the bottom-up model with a
simple model of top-down, task-dependent

influences leads to significantly improved eye

position prediction

 This kind of model could be used In
autonomous machine vision situations, such
as Interactive virtual environments

videogame stimuli

* Nintendo GameCube games
» 24 sessions, 5 minutes each
. eye movements recorded durlng game play

* input processed
through as many as
5 multi-scale feature C
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» sample frames illustrate the output of the models

e for illustration, these frames are selected at the time when a

saccade is just beginning

. yeIIow arrows indicate the saccade path

entropy color

flicker

» two different metrics used to test how well
the models predict human eye movements

full saliency

mean=0 and stdev=1

 normalized salience value is extracted at each fixation
location

salience (NSS)

* NSS can be compared with the distribution of random
salience values

normalized scanpath salience (NSS)- P

 each salience map (or control map) is normalized to have

* human scanpath is overlaid on normalized salience map

* these values are summed to give the normalized scanpath

normalized
salience map
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distribution of
salience values

* models score significantly above chance
* dynamic, global features work best

* but, scores in this interactive task are lower than in previous
passive-viewing experiments
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* model learns to associate image “gist” signatures with
corresponding eye position density maps

* in testing, a leave-one-out approach is used: for each test
clip, the remaining 23 clips are used for training

* therefore, the model must be able to generalize across
game types in order to successfully predict eye positions
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top-down predictions

» sample frames illustrating output of
- bottom-up (BU) model alone
- mean eye position (MEP) (a control condition)

- BU combined with MEP
- top-down model (TD) based on pyramid features

- BU combined with TD

Kart

© BU map peak
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® combo peak

Super Mario
Sunshine

Wave Race

 average bottom-up and top-down maps across all frames
 bottom-up map reflects activity in the screen corners (game
score, time counter, etc.) that is largely ignored by observers
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top-down results

* a simple mean-eye-position control improves upon purely
bottom-up performance by a factor of 3-4x
* but, the full top-down models perform best

Kullback-Leibler (KL) distance

 how well can fixated and non-fixated locations be
distinguished, with no assumptions about decision
criteria?
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dyadic pyramid features

e 7 pyramids
- 1 luminanc
- 2 color
- 4 orientation

» 2 scales per pyrami
- coarse
- fine

- 4x4 array of local me
- 4x4 array of local var.
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B bottom-up (BU)
[ BU * MEP (mean eye position) 18 |
[ BU * RND (fake random features)
[0 BU * FTD (top-down, fourier features) |18
B BU * PTD (top-down, pyramid features)

KL distance
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