

Computational models for predicting gaze direction in interactive virtual environments

Robert J. Peters and Laurent Itti University of Southern California, Computer Science, Neuroscience

introduction

We use *fully-computational, autonomous* models to predict eye movements in a dynamic and interactive visual task with naturalistic stimuli.

We move beyond purely stimulus-driven bottom-up models, and introduce a simple model that captures task-dependent top-down influences on eye movements.

Previous studies have either relied on qualitative/descriptive models, or have not used naturalistic interactive stimuli.

conclusions

• Purely bottom-up models are able to predict eye position significantly better than chance, but not as well as in passive-viewing conditions

• Combining the bottom-up model with a simple model of top-down, task-dependent influences leads to significantly improved eye position prediction

• This kind of model could be used in autonomous machine vision situations, such as interactive virtual environments

videogame stimuli

Nintendo GameCube games

- 24 sessions, 5 minutes each
- eye movements recorded during game play

bottom-up model

 input processed through as many as 5 multi-scale feature channels

 different versions of the model include different combinations of features

• salience is a global *property*: outliers detected through coarse global competition

bottom-up predictions

• sample frames illustrate the output of the models

 for illustration, these frames are selected at the time when a saccade is just beginning

• yellow arrows indicate the saccade path

metrics: model sco

two different metrics used to test how well the models predict human eye movements

- normalized scanpath salience (NSS) sample image • each salience map (or control map) is normalized to have mean=0 and stdev=1
- human scanpath is overlaid on normalized salience map • normalized salience value is extracted at each fixation location
- these values are summed to give the normalized scanpath salience (NSS)
- NSS can be compared with the distribution of random salience values

Kullback-Leibler (KL) distance

• how well can fixated and non-fixated locations be distinguished, with no assumptions about decision criteria?

 $KL = 0.5 \cdot \sum_{i} p_{i}(\mathbf{f}) \cdot log(p_{i}(\mathbf{f}) / p_{i}(\mathbf{nf}))$ + 0.5 · $\sum_{i} p_{i}(\mathbf{nf}) \cdot log(p_{i}(\mathbf{nf}) / p_{i}(\mathbf{f}))$

• 2

salience values

scanpath salience

14		1
ori	ing	
ho		

KL dis

bottom-up results

 models score significantly above chance • dynamic, global features work best • but, scores in this *interactive task* are lower than in previous passive-viewing experiments

top-down model

• model learns to associate *image "gist" signatures* with corresponding eye position density maps

• in testing, a leave-one-out approach is used: for each test clip, the remaining 23 clips are used for training

• therefore, the model must be able to generalize across game types in order to successfully predict eye positions

dyadic pyramid features

yramids 1 luminance 2 color	luminance	red/green	blue/yellow	
4 orientation	mean var mean var	mean yar mean yar	mean var mean var	
scales per pyramid 🔨 🤺				
coarse fine	0 degrees	45 degrees	90 degrees	135 degrees
features per scale (pyr level 2 pyr level 5			
4x4 array of local mean		Same and		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
4x4 array of local var.	mean var mean var			

• sam - b - n - B - to - B	ple ottenea U c
Supe Kart	r M nan ey map p
⊙ MEI ⊙ com	ວ or TI າbo pe
Supe Suns	r M hin
Wave	Ra
 aver botte score n 	rage om- , tir n ea l

e bottom-up and top-down maps across all frames -up map reflects activity in the screen corners (game me counter, etc.) that is largely ignored by observers

top-down results

• a simple mean-eye-position control improves upon purely bottom-up performance by a factor of 3-4x

acknowledgments

Supported by the National Geospatial-Intelligence Agency (NGA) and the Intelligence Community (IC) Postdoctoral Research Program