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normalized scanpath salience (NSS)
• each salience map (or control map) is normalized to have 
mean=0 and stdev=1
• human scanpath is overlaid on normalized salience map
• normalized salience value is extracted at each fixation 
location
• these values are summed to give the normalized scanpath 
salience (NSS)
• NSS can be compared with the distribution of random 
salience values

Kullback-Leibler (KL) distance
• how well can fixated and non-fixated locations be 
distinguished, with no assumptions about decision 
criteria?

KL = 0.5 . Σi pi(f ) . log (pi(f ) / pi(nf ))
      + 0.5 . Σi pi(nf ) . log (pi(nf ) / pi(f ))
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feature extractor eye tracking
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input image

multiscale feature maps via linear filtering

center−surround maps via spatial competition

conspicuity maps via pooling & normalization

feature combination
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BU * MEP (mean eye position)
BU * RND (fake random features)
BU * FTD (top-down, fourier features)
BU * PTD (top-down, pyramid features)

0

0.5

1

1.5

2

2.5

N
SS

We use fully-computational, autonomous 
models to predict eye movements in a 
dynamic and interactive visual task with 
naturalistic stimuli.

We move beyond purely stimulus-driven 
bottom-up models, and introduce a simple 
model that captures task-dependent 
top-down influences on eye movements.

Previous studies have either relied on 
qualitative/descriptive models, or have not 
used naturalistic interactive stimuli.

input mean eye position MEP top-down model TD

bottom-up model BU BU*MEP combo BU*TD combo

input mean eye position MEP top-down model TD
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• input processed 
through as many as
5 multi-scale feature 
channels

• different versions of 
the model include 
different combinations 
of features

• salience is a global 
property: outliers 
detected through 
coarse global 
competition

• sample frames illustrate the output of the models
• for illustration, these frames are selected at the time when a 
saccade is just beginning
• yellow arrows indicate the saccade path

• models score significantly above chance
• dynamic, global features work best
• but, scores in this interactive task are lower than in previous 
passive-viewing experiments

dyadic pyramid features

• 7 pyramids
 - 1 luminance
 - 2 color
 - 4 orientation

• 2 scales per pyramid
 - coarse
 - fine

• 32 features per scale
 - 4x4 array of local mean
 - 4x4 array of local var.

• model learns to associate image “gist” signatures with 
corresponding eye position density maps
• in testing, a leave-one-out approach is used: for each test 
clip, the remaining 23 clips are used for training
• therefore, the model must be able to generalize across 
game types in order to successfully predict eye positions

• sample frames illustrating output of
 - bottom-up (BU) model alone
 - mean eye position (MEP) (a control condition)
 - BU combined with MEP
 - top-down model (TD) based on pyramid features
 - BU combined with TD

• average bottom-up and top-down maps across all frames
• bottom-up map reflects activity in the screen corners (game 
score, time counter, etc.) that is largely ignored by observers

• a simple mean-eye-position control improves upon purely 
bottom-up performance by a factor of 3-4x
• but, the full top-down models perform best

• Purely bottom-up models are able to predict 
eye position significantly better than chance, 
but not as well as in passive-viewing 
conditions
• Combining the bottom-up model with a 
simple model of top-down, task-dependent 
influences leads to significantly improved eye 
position prediction
• This kind of model could be used in 
autonomous machine vision situations, such 
as interactive virtual environments 

• Nintendo GameCube games
• 24 sessions, 5 minutes each
• eye movements recorded during game play

• two different metrics used to test how well 
the models predict human eye movements

Computational models for predicting gaze direction
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