

# **A Computational Model of Task-Dependent Influences on Eye Position**

**Robert J. Peters and Laurent Itti** University of Southern California, Computer Science, Neuroscience

# introduction

We use *fully-computational, autonomous* models to predict eye movements in a dynamic and interactive visual task with naturalistic stimuli.

We move beyond purely stimulus-driven bottom-up models, and introduce a simple model that captures task-dependent top-down influences on eye movements.

Previous studies have either relied on qualitative/descriptive models, or have not used naturalistic interactive stimuli.

|                                                                                                                   | MODEL TYPE                                                                                    |                                                                                                                                                                        |  |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| STIMULUS TYPE                                                                                                     | qualitative                                                                                   | quantitative                                                                                                                                                           |  |
| <b>static, artificial</b><br>(gabor patches,<br>search arrays)                                                    | Treisman & Gelade 1980;<br>Wolfe & Horowitz 2004                                              | Rao et al 2002;<br>Najemnik & Geisler 2005;<br>Navalpakkam & Itti 2006                                                                                                 |  |
| <b>static, natural</b><br>(photographs)                                                                           | Yarbus 1967;<br>Parker 1978;<br>Mannan, Ruddock & Wooding 1997;<br>Rayner 1998;<br>Voge 1999  | Privitera & Stark 1998;<br>Reinagel & Zador 1999;<br>Parkhurst, Law & Niebur 2002;<br>Torralba 2003;<br>Peters et al 2005;<br>Navalpakkam & Itti 2005;<br>Pomplun 2006 |  |
| <b>dynamic, natural</b><br>(movies, cartoons)                                                                     | Tosi, Mecacci & Pasqual 1997;<br>May, Dean & Barnard 2003;<br>Peli, Goldstein & Woods 2005    | Carmi & Itti 2004;<br>Itti & Baldi 2005                                                                                                                                |  |
| <b>interactive, natural</b><br>(video games, flying or<br>driving simulators,<br>virtual reality, actual reality) | Land, Mennie & Rusted 1999;<br>Land & Hayhoe 2001;<br>Hayhoe et al 2002;<br>Hayhoe et al 2003 | this study                                                                                                                                                             |  |

# overal method

- eye movements recorded while subjects play video games
- eye movements compared with model predictions



# videogame stimuli

- Nintendo GameCube games
- 24 sessions, 5 minutes each



# bottom-up mode

 input processed through as many as 5 multi-scale feature channels

 different versions of the model include different combinations of features



- sample frames illustrate the output of the models
- for illustration, these frames are selected at the time when a
- saccade is just beginning
- yellow arrows indicate the saccade path





-----



# metrics: model scoring

 three different metrics used to test how well the models predict human eye movements



• men were more bottom-up driven than were women (but note that N is small: 3 men, 2 women) 

4440,0,0444

& 10 10,0 4 MM

# http://ilab.usc.edu/rjpeters/pubs/2006\_VSS\_Peters.pdf

# top-down model

• model learns to associate *image "gist" signatures* with corresponding eye position density maps

• in testing, a leave-one-out approach is used: for each test clip, the remaining 23 clips are used for training

 therefore, the model must be able to generalize across game types in order to successfully predict eye positions

### training phase testing phase (from multiple movies) pyramids fourier components test random features $f_1 =$ $p(t_1) = (x_1, y_1)$ f2 = eve positions learner top-down top-down linear network (least-squares fitting) on–linear multilayer network (backprop gaussian mixture model (EM fitting) support vector machine

# feature extraction

### fourier features

- 384 features from the fourier transform
- fft log-magnitude converted to cartesian ( $\theta,\omega$ ) space
- sample at 24x16 ( $\theta,\omega$ ) locations



### dyadic pyramid features

- 7 pyramids
- 1 luminance
- 2 color
- 4 orientation
- 2 scales per pyram<sup>2</sup>
  - coarse
- fine
- 32 features per scale - 4x4 array of local mean - 4x4 array of local var.

| uminance                  | red/green                | blue/yellow               |                             |
|---------------------------|--------------------------|---------------------------|-----------------------------|
|                           |                          |                           | FALL                        |
| 90000<br>yr level 2 pyr 1 | evel 5 pyr level 2 pyr 1 | evel 5 pyr level 2 pyr le | evel 5                      |
| ean var mean              | var mean var mean        | var mean var mean         | var                         |
| degrees                   | 45 degrees               | 90 degrees                | 135 degrees                 |
|                           |                          |                           |                             |
| ur level 2 pur 1          | evel 5 pur level 2 pur l | evel 5 pyr level 2 pyr le | evel 5 pur level 2 pur leve |
|                           | Same and                 |                           | See 2                       |

## top-down predictions

- sample frames illustrating output of - bottom-up (BU) model alone - mean eye position (MEP) (a control condition)
- BU combined with MEP
- top-down model (TD) based on pyramid features





Supported by the National Geospatial-Intelligence Agency (NGA) and the Intelligence Community (IC) Postdoctoral Research Fellowship Program



### top-down results

 average bottom-up and top-down maps across all frames • bottom-up map reflects activity in the screen corners (game score, time counter, etc.) that is largely ignored by observers





• the bottom-up model is best predictive of eye position with about ~250ms delay

 the top-down model slightly lags behind eye position (due to temporal averaging in the model)



• a simple mean-eye-position control improves upon purely bottom-up performance by a factor of 3-4x

but, the full top-down models perform best



### summary

 Goal was to explain gaze behavior with fully-computational models that don't know about "objects" or "actions"

• Purely bottom-up models are able to predict eye position significantly better than chance, but not as well as in passive-viewing conditions

 So, some other factors must be influencing eye position in our interactive task

 Introduced a simple model for learning top-down, task-dependent influences on eye position

 Combining bottom-up and top-down mechanisms leads to significantly improved eye position prediction

 This kind of model could be used in autonomous machine vision situations, such as interactive virtual environments