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dynamic and interactive visual task with
naturalistic stimull.
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» human scanpath is overlaid on normalized salience map [ i, game types INn order to successfully predict eye positions - BU combined with TD
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. normallzed salience value is extracted at each fixation e Super Mario
location distribution of

- these values are summed to give the normalized scanpath ~2"'e"¢®¥alues N training phase testing phase Kart

salience (NSS) ; scanpat training movie frames

* NSS can be compared with the distribution of random : (from multiple movies) —  p—
salience values ’

We move beyond purely stimulus-driven
bottom-up models, and introduce a simple
model that captures task-dependent
top-down influences on eye movements.
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* men were more bottom-up driven than were women
(but note that N is small: 3 men, 2 women)
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» Combining bottom-up and top-down
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* This kind of model could be used In
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