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(1) Introduction & Conclusion (8) Results: Top Gun (flight combat) (9) Results: Need For Speed: Underground (car racing)

(3) Videogame stimuli (4) Bottom-up model (5) Top-down/task-relevance model (6) Model scoring (7) Previous results

(2) Overall method
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Game frames surrounding 
event at times t-δ, t, t+δ

Game events extracted 
from a continuous signal 
across the full game session

Eye position (in screen 
coordinates) recorded from 
observer playing the game

Prediction strength of BU 
and TD models in predicting 
observers’ eye position

Event-locked prediction 
strength of BU and TD 
models, averaged across all 
events of a given type

shown here for a single example event

shown here for a single example session

shown here for a single example session

shown here for a single example session

shown here for all events of a given type
shaded area represents 98% confidence interval

BU prediction map of gaze 
position at times t-δ, t, t+δ, 
relative to an event time 

shown here for a single example event

TD prediction map of gaze 
position at times t-δ, t, t+δ, 
relative to an event time 

shown here for a single example event
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• individual BU and TD models each 
perform better than chance at 
predicting gaze

• combined BU*TD model performs 
better than either individual model, 
and better than a simple mean 
eye-position control model

Peters & Itti VSS 2006
Peters & Itti CVPR 2007
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normalized scanpath salience (NSS)

• normalize each salience map to mean=0 and stdev=1

• overlay human scanpath on normalized salience map

• extract normalized salience value at each eye position

• average these values to give the overall NSS value

Peters, Iyer, Itti & Koch
Vis. Res. 2005

PCA/ICA Dimension Reduction

Place Classifier

Most Likely Location

Gist Feature
Vectors

Orientation Channel Color Channel Intensity Channel
Feature Maps

Gist Features

Input Image

(a) feature extraction

(b) training phase (c) testing phase

Siagian & Itti
PAMI 2007

Peters & Itti
CVPR 2007

• model learns to associate image “gist” signatures with corresponding 
gaze density maps

• a leave-one-out approach is used for testing: for each test clip, the 
remaining 59 clips are used for training

saliency map

2:5 2:6

3:6 3:7

4:7 4:8

scale 0

1

2
3

intensity (I)

2:5 2:6

3:6 3:7

4:7 4:8

scale 0

1

2
3

orientation (O)

2:5 2:6

3:6 3:7

4:7 4:8

scale 0

1

2
3

color (C)

2:5 2:6

3:6 3:7

4:7 4:8

scale 0

1

2
3

flicker (F)

2:5 2:6

3:6 3:7

4:7 4:8

scale 0

1

2
3

motion (M)

input image

multiscale feature maps via linear filtering

center-surround maps via spatial competition

conspicuity maps via pooling & normalization

feature combination

• 12 features
intensity
orientation x 4
color x 2
flicker
motion x 4

• 9 scales

• 6 center- 
surround pairs

• combination 
across scales

• combination 
across features

Itti, Koch, Niebur
PAMI 1998

• Nintendo GameCube games “Top Gun” and 
“Need For Speed: Underground”

• 3 game levels per game
• 5 subjects
• Subjects practiced several hours on each 
game prior to eye movement recordings

• During eye tracking, subjects played each 
game level twice

• Each game level lasted ~3–9 minutes
• Data set spans ~4.5 hours in 60 sessions
(5 subjects x 2 games x 3 levels/game
x 2 sessions/level)

• Data set includes ~500,000 video game 
frames and ~4,000,000 eye position samples

Nintendo
GameCube
(Top Gun,

Need For Speed:
Underground)

Infrared
camera

Subject

Stimulus display system
with framegrabber

(dual-CPU Linux with
SCHED_FIFO timing)

CRT
(30Hz frame rate)

Eyetracker system
(ISCAN, Inc.)

Recorded video frames
(~500,000 frames; 500GB)

bottom-up
saliency (BU)

Computational gaze prediction models

top-down
(TD) gist

Recorded
eye movement traces

(240Hz; ~4,000,000 samples)

Game controller

NSS metric

Observed vs. predicted
comparison

Gaze
prediction

maps

video signal

observed eye position
task interaction

predicted eye position

PSYCHOPHYSICS

ANALYSIS

• eye movements recorded while subjects play video games
• eye movements compared with model predictions

How does the brain integrate bottom-up (BU) and 
top-down (TD) influences on eye position? Often a 
simple static combination of factors is assumed:

Here we propose a framework for dynamic 
combination of factors, in which a “governor” 
module receives both high-level visual information 
(such as object identities) as well as information 
about cognitive task state and goals, and uses this 
high-level information to selectively modulate the 
influence of BU and TD signals on eye position:

We report finding evidence consistent with such a 
system in the relationships between eye tracking 
recordings and the predictions of computational BU 
and TD models: we estimate cognitive task state by 
isolating important game events, and show that the 
predictive strength of BU and TD models changes 
significantly around these events.
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Integrating low-level and high-level visual influences on eye movement behavior
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