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Abstract

A critical function in both machine vision and biologi-

cal vision systems is attentional selection of scene regions

worthy of further analysis by higher-level processes such

as object recognition. Here we present the first model of

spatial attention that (1) can be applied to arbitrary static

and dynamic image sequences with interactive tasks and

(2) combines a general computational implementation of

both bottom-up (BU) saliency and dynamic top-down (TD)

task relevance; the claimed novelty lies in the combination

of these elements and in the fully computational nature of

the model. The BU component computes a saliency map

from 12 low-level multi-scale visual features. The TD com-

ponent computes a low-level signature of the entire image,

and learns to associate different classes of signatures with

the different gaze patterns recorded from human subjects

performing a task of interest. We measured the ability of

this model to predict the eye movements of people playing

contemporary video games. We found that the TD model

alone predicts where humans look about twice as well as

does the BU model alone; in addition, a combined BU*TD

model performs significantly better than either individual

component. Qualitatively, the combined model predicts

some easy-to-describe but hard-to-compute aspects of at-

tentional selection, such as shifting attention leftward when

approaching a left turn along a racing track. Thus, our

study demonstrates the advantages of integrating BU fac-

tors derived from a saliency map and TD factors learned

from image and task contexts in predicting where humans

look while performing complex visually-guided behavior.

1. Introduction

How do we decide where to look? Directing spatial at-

tention is a key function for both machine and biological

vision systems, and our goal in this study was to develop a

fully automated gaze prediction system incorporating both

task-independent and task-dependent influences. Models of

spatial attention can be characterized by several attributes,

including: the type of visual stimulus, the type of visual task

being modeled, and the level of detail desired in the model.

In that context, the present study introduces a novel combi-

nation of a dynamic natural stimulus (contemporary three-

dimensional video games) and a natural interactive task

(playing the video game) with a fully computational model

(Figure 1) that captures both bottom-up/task-independent

and top-down/task-dependent influences on eye position. In

contrast, prior studies using natural interactive tasks have

often offered only descriptive models of gaze behavior,

while prior studies using fully computational models have

applied the models only to non-interactive stimuli, without

accounting for top-down or task-dependent influences (see

Section 2, Related work). Our proposed model combines

separate bottom-up and top-down modules, each of which

generates a predicted gaze density map that highlights likely

gaze targets. The bottom-up component is based on the Itti-

Koch saliency model [12], which predicts interesting loca-

tions based on low-level visual features such as luminance

contrast, color contrast, orientation, and motion. The novel

top-down component is based on the idea of “gist,” which

in psychophysical terms is the ability of people to roughly

describe the type and overall layout of an image after only

a very brief presentation [15], and to use this information

to guide subsequent target searches [32]. Our model (Fig-

ure 1) decomposes each video frame into a low-level im-

age signature intended to capture some of the properties of

“gist” [30], and learns to pair the low-level signatures from

a series of video clips with the corresponding eye positions;

once trained, it generates predicted gaze density maps from

the gist signatures of previously unseen video frames. To

test these bottom-up and top-down components, we com-

pared their predicted gaze density maps with the actual eye

positions recorded while people interactively played video

games. Finally, we also tested a combined model includ-

ing both components. With this combined model, we find:

(1) qualitatively, the model can now mimic some aspects of



Figure 1. Schematic illustration of our model for learning task-dependent, top-down influences on eye position. First, in (a) the training

phase, we compile a training set containing feature vectors and eye positions corresponding to individual frames from several video

game clips which were recorded while observers interactively played the games. The feature vectors may be derived from either: the

Fourier transform of the image luminance; or, dyadic pyramids for luminance, color, and orientation; or, as a control condition, a random

distribution. The training set is then passed to a machine learning algorithm to learn a mapping between feature vectors and eye positions.

Then, in (b) the testing phase, we use a different video game clip to test the model. Frames from the test clip are passed in parallel to a

bottom-up saliency model, as well as to the top-down feature extractor, which generates a feature vector that is used to generate a top-down

eye position prediction map. Finally, the bottom-up and top-down prediction maps can be combined via point-wise multiplication, and the

individual and combined maps can be compared against the actual observed eye position.

high-level scene understanding, and (2) quantitatively, the

model is significantly better than either individual compo-

nent at predicting human gaze targets.

2. Related work

Studies of gaze direction can be considered according to

the three attributes mentioned previously: (1) Visual stim-

ulus type. Categories here include artificial psychophys-

ical laboratory stimuli (e.g., Gabor patches, simple search

arrays) [34, 27, 18], static natural scenes (photographs,

paintings) [37, 16, 28, 36, 26, 20, 32, 4, 19, 23, 25], and

dynamic natural scenes (movies, cartoons, video games)

[33, 14, 13, 6, 9, 22, 3]. One effect of ever-increasing

computer power is that “artificial” stimuli can be rendered

to appear very naturalistic, as in three-dimensional im-

mersive virtual reality settings. (2) Task type. Possi-

ble task types include passive viewing, active viewing (vi-

sual search, scene comprehension, reading), and interac-

tive viewing (video game playing, driving, web browsing).

(3) Model type. Models of gaze prediction can be divided

into two broad categories: (a) those that predict gaze from

the scene’s semantic content, and (b) those that predict gaze

from the scene’s raw image pixels alone. The first approach

relies on an external source (typically, the experimenter) to

provide some semantic pre-processing (e.g., labeling scene

fragments as “on-road” or “off-road” in a driving scene), so

it is not a viable strategy for automated gaze-prediction. In

turn, the second approach is fully automated, yet is typically

limited to simple bottom-up features such as “saliency,” and

misses important high-level regularities in human gaze be-

havior that are captured by the first approach (e.g., people

spend more time looking at the road when they are driving a

car than when they are simply riding in a car as a passenger).

Several previous computational studies combining bottom-

up and top-down influences have worked within a visual

search paradigm, taking the approach of biasing bottom-up

features according to the properties of known properties of

target and distractor items [4, 19]. In contrast, our approach

here does not tune bottom-up processing for any particu-

lar target, but rather builds a separate top-down map that

simply highlights task-relevant locations irrespective of the

content at those locations.

When the task and stimulus are simple—for example,

“find the unusual item” in a visual search array with a “pop-

out” target—it is possible to make very accurate predictions

of eye movements. In fact, those predictions can be made

precise enough to be implemented in a machine-vision sys-

tem that mimics human vision: it receives the same “retinal

image,” processes that image computationally, and yields



luminance

luminance

fine

mean var mean var mean var mean var

log( | fft(luminance) | )

mean

cropped( cartesian )

var mean var mean var mean var mean var mean var

coarse fine coarse

cartesian( log(|fft|) )

fine coarse fine coarse fine coarse

90 degrees0 degreesblue/yellowred/green

(b) Fourier-based features

(a) Pyramid-based features

Figure 2. Two methods for extracting feature vectors for use in learning associations between “gist” and eye position, illustrated here for a

single sample frame. (a) Pyramid-based features. Here, we use 7 of the 12 feature pyramids from the bottom-up model (green boxes):

luminance, red/green and blue/yellow color contrast, and four orientations (though only two are shown in this figure). From each pyramid

we extract a coarse and a fine scale (yellow boxes), and from each scale we compute the local mean (red boxes) and variance (blue boxes)

within each patch on a 4× 4 grid; these mean and variance values become the feature vector. (b) Fourier-based features. Here, we use

the image luminance (green box) and first compute the log-magnitude of the FFT of the luminance (blue box). We transform the FFT into

a Cartesian representation with θ and ω on orthogonal axes (yellow box) and select a subregion (outlined in red) from this representation.

Within this subregion, we subsample the values down to 24 spatial-frequency bands and 16 orientation bands, and these values become the

feature vector (red box).

simulated behavior like that of human observers. For ex-

ample, human gaze is preferentially directed towards re-

gions with: multiple superimposed orientations (corners or

crosses) [38, 26]; above-average spatial contrast (variance

of pixel intensities) [28], entropy [26], and texture contrast

[21]; and above-average “saliency” [20, 23].

On the other hand, when the task and stimulus become

less artificial and more complex—for example, driving a

car through city traffic—such computational systems of-

ten fail to predict important aspects of eye movement be-



havior. In those cases, with current technology it is no

longer possible to fully predict eye movements in the form

of an algorithm operating on the retinal image; nevertheless,

there are often very precise relationships between stimu-

lus and behavior, as recent behavioral studies have shown

[5]. For example, Yarbus [37] showed how gaze patterns

depend on the task performed while viewing people in a

painting: the observer’s gaze fell on faces when estimat-

ing the people’s age, but fell on clothing when estimat-

ing the people’s material wealth. Other studies have used

naturalistic interactive environments to describe how eye

movements are guided by high-level task-relevant informa-

tion, such as objects, agents, “gist,” and short-term memory

[2, 8, 29, 13, 31, 7, 1].

3. Methods

3.1. Videogame psychophysics and eye tracking

Five subjects (three male, two female) participated under

a protocol approved by the University of Southern Califor-

nia Institutional Review Board. Each subject played four

or five five-minute segments of standard Nintendo Game-

Cube games (Mario Kart, Wave Race, Super Mario Sun-

shine, Hulk, and Pac Man World), using a standard Game-

Cube controller to interact with the game. Stimuli were pre-

sented on a 22” computer monitor (640×480 pixels, 75 Hz

refresh). Subjects rested on a chin-rest and were seated at a

viewing distance of 80 cm, giving a usable field-of-view of

28◦× 21◦. To allow later processing with our computational

models, the video game frames were captured, displayed

and simultaneously saved on a dual-CPU Linux computer

under SCHED_FIFO scheduling. Each of the 24 video game

playing sessions led to 9,000 video frames giving 124GB

of raw video data; for the analyses reported here we ex-

cluded the first and last 500 video frames (to avoid non-

game frames such as navigation menus) from each clip and

considered only the remaining 8,000 video frames and the

corresponding eye position samples. Each subject’s right

eye position was recorded at 240Hz with a hardware-based

eye-tracking system (ISCAN, Inc.) giving about 1.7 million

total eye position samples.

3.2. Bottom­up saliency model

For the bottom-up component of our gaze-prediction

model, we used the freely available implementation1 of the

Itti-Koch saliency model [12, 10]. Briefly, this model in-

cludes twelve feature channels sensitive to color contrast

(red/green and blue/yellow), temporal luminance flicker, lu-

minance contrast, four orientations (0◦, 45◦, 90◦, 135◦),

and four oriented motion energies (up, down, left, right).

These features detect spatial outliers in image space, using

1http://ilab.usc.edu/toolkit/

a center-surround architecture inspired from biological re-

ceptive fields. Center and surround scales are obtained from

dyadic pyramids with 9 scales, from scale 0 (the original

image) to scale 8 (the image reduced by a factor of 28 = 256

in both the horizontal and vertical dimensions). Six center-

surround difference maps are then computed as point-wise

differences across pyramid scales, for combinations of three

center scales (c = {2,3,4}) and two center-surround scale

differences (δ = {3,4}). Each feature map is additionally

endowed with internal dynamics that provide a strong spa-

tial within-feature and within-scale competition for activity,

followed by within-feature, across-scale competition [11].

In this way, initially noisy feature maps can be reduced to

sparse representations of only outlier locations which stand

out from their surroundings. All feature maps finally con-

tribute to a unique saliency map representing the conspicu-

ity of each location in the visual field.

3.3. Top­down task­relevance model

The top-down component of our gaze-prediction model

is designed to learn to associate the “gist” of an image with

likely task-relevant locations under the current task. The

model proceeds in two stages. First, in the training stage

(Figure 1a), we build a training set using a leave-one-out

approach—when one video game clip is used as the test

clip, the training set is formed from the remaining 23 clips,

and this procedure is repeated for each of the 24 clips. From

each frame in the training clips we collect the recorded eye

position of the observer who played the game as the clip

was recorded, and we also compute from the entire image

a low-dimensional feature vector that is intended to be di-

agnostic of the image’s “gist.” Two approaches for gener-

ating such feature vectors are described below. Second, in

the testing stage (Figure 1b), we pass the set of observed

eye positions and corresponding feature vectors to a learn-

ing algorithm, which, after training, can take feature vectors

extracted from new test frames and generate eye position

prediction maps.

Pyramid features. The pyramid-based feature vector

(see Figure 2a), similar to [30], relies on 7 of the 12 feature

pyramids from the bottom-up model: luminance, red/green

and blue/yellow color opponency, and four orientations.

From each of those pyramids we extract a fine scale (pyra-

mid level 2, reduced from the original by a factor of 22 = 4

in both the x and y dimensions) and a coarse scale (pyramid

level 5, reduced by a factor of 25 = 32). We divide each of

those pyramid scales into 16 patches, on a 4× 4 grid, and

finally compute the within-patch mean and the within-patch

variance for each patch. The within-patch means and vari-

ances become the elements of the feature vector, with a total

of 7 · 2 · (16+ 16) = 448 elements (7 pyramids, 2 scales per

pyramid, 16 means plus 16 variances per scale).

Fourier features. The Fourier-based feature vector (see



Figure 2b) uses Fourier energy from different orientations

and spatial frequencies to form a “gist” descriptor, similar in

spirit to [32]. Specifically, for each image we computed the

logarithm of the magnitude of the FFT of the image lumi-

nance. We resampled the resulting array so that the cardinal

axes represent orientation and spatial frequency, rather than

the x and y directions. Finally, the feature vector consisted

of 384 = 24 · 16 elements, each representing the average

energy within one patch from among 24 spatial-frequency

bands and 16 orientation bands.

Random features. As a control, we tested feature vec-

tors with values drawn from a random distribution, thus test-

ing how much the learner can learn from the eye positions

alone, when the features are meaningless. In practice, and

as expected, this gave identical results to those obtained

from the “mean eye-position control” (see below), so for

brevity we exclude this condition from further discussion.

Learning. To learn an association between eye posi-

tions and feature vectors, a number of potential machine-

vision approaches could be applied, including multi-layer

neural networks, support-vector machines, and the estima-

tion/maximization (EM) algorithm. However, we started

with an even simpler approach, which was to simply find

a linear least-squares best fit. In order for the eye position

data to be amenable to such a solution, we first coded the

eye positions into coarse 300-element gaze density maps,

with each position in the vector representing one of a 20×15

coarse array of eye positions. Thus, given an eye position

(x,y) with 1 ≤ x ≤ 20 and 1 ≤ y ≤ 15, the gaze density map

would be represented by a vector p= [p1, p2, · · · , p300] with

pi = 1 for i = x+ (y−1) ·20 and pi = 0 otherwise.

Given T, the number of samples in a training set; M, the

number of elements in each feature vector; N, the number

of elements in each gaze density vector (always 20 · 15 =

300); F, a T rows×M columns matrix of feature vectors;

P, a T × N matrix of gaze density vectors; and W, a M ×

N matrix for which we wish to solve; then, the learning

problem is represented by the matrix equation (1), and its

linear least-squares best fit solution is given by inversion

with the pseudo-inverse F+ of F (where F+×F = I) (2):

W = F+× P (1)

F×W = P. (2)

In practice, we computed the pseudo-inverse in terms of

the singular value decomposition (SVD). To avoid numeri-

cal instability, eigenvectors whose eigenvalue was less than

half of the largest eigenvalue were discarded during com-

putation of the pseudo-inverse. Finally, for each frame dur-

ing the test phase, we computed the test frame’s feature

vector f , and generated a predicted gaze density map p as

p= f ×W. For visualization, the 300-element vector p can

be unpacked back into a 20×15 two-dimensional array, ex-

amples of which are shown in Figure 3.

Mean eye position control. To test how effectively the

pyramid-based and Fourier-based feature vectors actually

captured task-relevant gist information, we used a control

“learner” module which simply ignores the feature vec-

tors, and instead just learns the mean gaze density vector,

p̄, across all eye position samples in the entire training set

(consisting of all 24 clips except for the current test clip).

When this control model is asked to generate an eye posi-

tion prediction corresponding to the feature vector from a

new test frame, it again ignores the feature vector and just

returns p̄. If the feature vectors carry no information that

can be related to eye position, then the models based on

such feature vectors will be expected to perform no better

than the mean eye position control.

3.4. Normalized scanpath saliency (NSS)

To quantify how well the models’ predictions matched

observers’ actual eye positions, we used the normalized

scanpath saliency (NSS) [23], which is defined as the re-

sponse value at the current eye position, (xhuman,yhuman), in

a model’s predicted gaze density map that has been normal-

ized to have zero mean and unit standard deviation:

NSS =
1

σS
(S (xhuman,yhuman)−µS ) , (3)

where µS and σ
2
S
are the mean and variance of S, the un-

normalized predicted gaze density map.

By definition, an NSS value of zero suggests that the

model’s prediction matches the observer’s eye position no

better than it would a random eye position; the observer’s

eye position would have fallen on an “average” location in

that case. An NSS value of unity means that the observer’s

eye position fell on a location whose predicted salience was

one standard deviation above average.

4. Results

Figure 3 shows several sample frames from the 192,000

frames that were analyzed, along with the corresponding

gaze prediction maps from the various models. Considering

first the predictions of the bottom-up saliency model (BU),

we see that many times although the peak of the saliency

map is distant from the actual eye position, there is a weaker

local maximum very near to the eye position. In that con-

text, the role of a top-down signal might be to narrow down

the number of candidate locations that were highlighted by

the initial bottom-up signal. Indeed, this is what we observe

when the bottom-up maps are combined with one of the

two top-down signals that we tested: either the static mean

eye position (MEP), or the full dynamic top-down model

based on pyramid features (TD) (maps from the top-down

model based on Fourier features are not illustrated in the

figure, but gave similar results both qualitatively and quan-

titatively; see Figure 4). Many times the top-down model
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Figure 3. Each row shows a sample video game frame along with the predicted eye position maps generated by several of the computational

models that we tested: the purely bottom-up saliency model (BU), the mean eye position prediction (MEP), the point-wise product of

BU ∗MEP, the top-down model based on pyramid features (TD), and the point-wise product of BU ∗ TD. Each orange circle indicates the

observer’s actual eye position from that frame; note that this is fixed within each row. Superimposed on the model prediction maps are blue

diamonds which indicate the location of each map’s peak location; a smaller distance between the orange circle and blue diamond suggests

a better eye position prediction by the model.



alone already gives a good prediction of the eye position;

however, several frames (rows 6, 8, and 9) illustrate cases

where the bottom-up and top-down models each missed the

target individually, but in combination came much closer to

the actual eye position.

These qualitative trends are reflected quantitatively in

the normalized scanpath saliency (NSS) scores across all

192,000 frames (Figure 4). The score for the bottom-up

(BU) model alone was 0.58 ± 0.08, somewhat less than

the NSS score of 0.69± 0.03 that was previously reported

for the Itti-Koch saliency model applied to static pho-

tographs of natural outdoor scenes [23]. The mean eye

position (MEP) control alone gave a significantly higher

(paired t-test, p < 0.05) NSS score (0.76± 0.002); this re-

flects that a basic feature of observers’ eye positions dur-

ing the video game clips is that they tended to cluster near

the center of the display, so that a trivial model that pre-

dicts a weak center bias will be accurate more often than

not. Previous studies have demonstrated that there is of-

ten a bias toward central locations in subjects’ eye posi-

tions [20, 23], which in this study is compounded by the

fact that video games are typically designed to keep the im-

portant game elements at the center of the screen. Never-

theless, significantly better (p < 0.05) scores were obtained

from the full top-down models, whether based on pyra-

mid features (PFX: 1.07± 0.10) or Fourier features (FFX:

1.09±0.13). Finally, when we combined the bottom-up and

top-down components using a simple point-wise multipli-

cation, we found significantly improved (p < 0.05) scores

again for BU*MEP (1.10± 0.07), BU*PFX (1.19± 0.09),

and BU*FFX (1.22 ± 0.11), with the best model overall

(BU*FFX) scoring more than twice as well as the bottom-

up model alone. Although these differences are statistically

significant they are small in magnitude; again, this may sim-

ply reflect the central bias in the recorded eye position data,

such that MEP scores are higher than would be expected if

the eye positions were more uniformly distributed.

5. Discussion and Conclusion

The current model relies on simple algorithms in sev-

eral places where more powerful or biologically-plausible

computations could be substituted. For example, the learn-

ing stage is currently implemented by a linear least-squares

best fit; one possible more sophisticated approach might in-

volve a clustering network of radial-basis functions [24],

where each node represents one canonical image “gist,” and

test frames are classified according to a k-nearest neigh-

bor scheme. Likewise, the bottom-up/top-down combina-

tion stage currently involves only a simple point-wise prod-

uct of the instantaneous bottom-up and top-down maps; a

more sophisticated approach there might draw on neuro-

physiological [17] and psychophysical [35] studies of the

millisecond-scale interactions between stimulus-driven and
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Figure 4. Normalized scanpath saliency (NSS) scores from com-

paring different models’ predictions with actual eye positions

recorded from human observers playing video games; a larger

NSS score means a better fit, and an NSS score of zero would

mean the model was no better than chance at predicting eye po-

sition. Each bar represents mean ± s.e.m. across 24 video game

clips; each clip represents 8,000 individual NSS scores, one from

each frame in the clip. The bottom-up (BU) model alone scores

significantly above chance, but the scores are improved signifi-

cantly when a top-down (TD) component is included in the model.

The TD models alone score better than BU alone, and the com-

bined BU*TD models score better than either type of model alone.

Among the TD models, the full models based on pyramid fea-

tures and Fourier features score significantly better than the simple

mean eye position model. For significance scores, see Section 4,

Results.

goal-driven influences. One possible mapping between neu-

robiology and the components of our model might be for the

bottom-up map to represent a covert attention map contain-

ing many candidate locations of interest, with the top-down

map acting as a gating mechanism which chooses the best

task-relevant location from among those candidates. A cur-

rent limitation of our proposed task-relevance model is that

although generic enough to apply to any task or stimulus, its

behavior in practice depends of course on its training set; it

remains to be seen how diverse of a training set is needed to

support broad generalization.

The main contribution of this study is its novel com-

bination of three elements: a dynamic, naturalistic visual

stimulus, an interactive task, and a fully computational

gaze-prediction model that includes both bottom-up and

top-down components. Our combined bottom-up/top-down

model currently remains limited to processing of low-level

features, and as such it is unable to reflect eye movement

influences that depend on higher-level visual features (such

as objects). Despite this limitation it is able in some cases

to mimic such high-level behavior: for example, it often

predicts that the observer’s gaze will follow the direction of

an upcoming turn, or will follow the location where enemy

characters are likely to appear. This behavior occurs with-



out any explicit high-level representations for objects and

agents, but rather emerges from the fact that task-relevant

relationships among such objects and agents may often be

reflected in statistical regularities among low-level visual

features. Our results suggest that these regularities can form

the foundation of a powerful tool for predicting gaze direc-

tion during natural, interactive vision.
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