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Human visual object categorization can be described by models
with low memory capacity
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Abstract

Studies of high-level models of visual object categorization have left unresolved issues of neurobiological relevance, including how

features are extracted from the image and the role played by memory capacity in categorization performance. We compared the

ability of a comprehensive set of models to match the categorization performance of human observers while explicitly accounting for

the models� numbers of free parameters. The most successful models did not require a large memory capacity, suggesting that a
sparse, abstracted representation of category properties may underlie categorization performance. This type of representation––

different from classical prototype abstraction––could also be extracted directly from two-dimensional images via a biologically

plausible early-vision model, rather than relying on experimenter-imposed features.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In humans, object categorization is one of the primary

tasks of the visual system. Sensory processing of visual

stimuli, along with prior visual experience, leads to

categorization judgments that can ultimately be used for
cognition. In the last 30 years, research in mathematical

psychology has discovered much about the processes of

visual categorization (e.g., Ashby, 1992a; Ashby &

Maddox, 1993; Ashby & Waldron, 1999; Nosofsky,

1984, 1991; Reed, 1972; Smith & Minda, 1998) by

combining the techniques of visual psychophysics and

computational modeling to develop high-level theories

of categorization. Despite the predictive success of these
theories, there exists a gap between the descriptive

framework of the models, and our current knowledge

of the neuronal mechanisms involved in categorization.

An important aim therefore is to shorten this gap by

extending models so that their implementations are

reasonable in light of recent developments in the

neurophysiology of object recognition and categoriza-
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tion (Ashby & Ell, 2001; Freedman, Riesenhuber, Pog-

gio, & Miller, 2001; Ishai, Ungerleider, Martin,

Schouten, & Haxby, 1999; Kanwisher, McDermott, &

Chun, 1997; Op de Beeck, Wagemans, & Vogels, 2001;

Sigala & Logothetis, 2002). In this study, we address

three key aspects of categorization models, each of
which can be studied with psychophysical experiments

and be informed by neurobiology.

First, current categorization models typically depend

on high-level multidimensional representations of in-

coming stimuli (Ashby, 1992b, Chap. 16; Ashby &

Maddox, 1993). Edelman (1999) reviewed evidence

suggesting that such representations are intimately

linked with the perceptual similarity of stimuli. A com-
mon technique used to infer implicit psychological rep-

resentations is to apply multidimensional scaling (MDS)

to observers� similarity judgments about a set of stimuli.
Presently, the link between these psychophysical mea-

sures of similarity and the neuronal mechanisms un-

derlying stimulus representation in the primate visual

system remains poorly understood. New approaches

using functional brain imaging in humans (Edelman,
Grill-Spector, Kushnir, & Malach, 1998) and electro-

physiological recordings in trained macaque monkeys

(Op de Beeck et al., 2001; Sigala & Logothetis, 2002) are
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likely to shed light on these issues. Such work will ulti-

mately have to rely on comparisons between inferred

psychological representations in monkey and human

observers. Since it is nearly impossible to train animals

to give graded similarity ratings between pairs of objects

(the common method in human studies), animal studies

must rely on two-alternative forced-choice methods in-

stead. It is therefore important to directly compare these
two ways of rating object similarity directly in human

subjects.

Second, in a biological system, any high-level repre-

sentation must be built from lower-level representations,

and in vision this means that all representations must

ultimately trace back to the retinal input. Many cate-

gorization models presuppose that the high-level (ex-

ternal) features used by the experimenter to define the
objects are the same as those used internally by the

observer when making a categorization decision. For

example, many categorization studies have used a set of

circles with bisecting lines, defined by two features: the

diameter of the circle, and the angle of the bisecting line

(e.g., Maddox & Ashby, 1993). This approach has cer-

tainly been fruitful, and MDS studies have demon-

strated strong similarities between the external and
internal feature representations. Nevertheless, apparent

irregularities in the categorization process that might be

inexplicable in terms of high-level representations, could

appear entirely natural in the light of biological early

vision. At the least, features such as angle of the bisecting

line are not likely to be represented explicitly by neurons

involved in visual perception; rather, a population of

neurons might form a distributed representation, in
which each neuron responds preferentially to a single

range of orientations. Whether such differences have an

effect on the output of categorization models is an em-

pirical question. We have tested a set of hybrid models,

in which an early-vision model based on Riesenhuber

and Poggio (1999) is used to process the input in image

space, yielding a set of coarse spatial maps, one for each

of a small number of local image features. These maps
are then used as input to the high-level categorization

models after a dimensionality reduction step.

Third and last, the models approximate categoriza-

tion decisions using a mechansim based on the multi-

dimensional representation of incoming stimuli, plus

possible auxiliary representations, such as memory tra-

ces. This process is typically controlled by a number of

free parameters, which are fitted with the goal of
matching human categorization behavior. However, a

simple statistical comparison between models––even

after accounting for the number of free parameters––

may ignore important differences in the neurobiological

implications of the models. For example, one successful

model, the generalized context model (GCM; Nosofsky,

1984), assumes that all training images are stored in

memory; a literal interpretation of the GCM might
conclude that the neuronal substrate of categorization

also scales linearly with the number of exemplars in a

category, or that categorization in biological systems

involves only simple memorization, without any cate-

gory-level abstraction (Knowlton, 1999). To provide a

more detailed look at such issues, we introduce a

roaming-exemplar model (RXM) that draws from neural

networks (Poggio & Girosi, 1990; Rosseel, 1996) and
exemplar-based models of categorization (Kruschke,

1992; Nosofsky, 1991; Nosofsky, Kruschke, & McKin-

ley, 1992). The RXM also has much in common with the

striatal pattern classifier (SPC) of Ashby and Waldron

(1999), including the fact that its memory traces are free

parameters. This stands in contrast to previous exem-

plar-based models, and hence neurobiological plausi-

bility can be assessed directly by accounting for numbers
of free parameters when comparing fitted models.
2. Methods

2.1. Subjects

Eighteen psychophysics subjects (ages 18–25) from

the Caltech community participated as paid volunteers

in the experiments described below. Informed consent

was obtained from all subjects, and experimental pro-

cedures were approved by the California Institute of
Technology�s Committee for the Protection of Human
Subjects.

2.2. Stimuli

We used three types of schematic, line-drawn visual

stimuli (Fig. 1): Brunswik faces and tropical fish out-

lines, which have been used previously (see below), plus
a new set of ‘‘cartoon face’’ images. Each type of visual

object was parameterized along four dimensions com-

prising the stimulus parameter space. Different sets of

objects were assigned to configurations, which contained

equal numbers of training exemplars assigned to each of

two categories, as well as an additional number of test

exemplars. The training exemplars from the two cate-

gories were always chosen so as to be linearly separable
in the objects� parameter space; that is, the members
of the two categories could be separated by some 3-D

hyperplane in the 4-D parameter space.

2.2.1. Brunswik faces

These line-drawn face stimuli (Fig. 1a; Brunswik &

Reiter, 1937) have been used frequently in categoriza-

tion experiments both with human (Nosofsky, 1991;

Reed, 1972) and non-human observers (pigeons, Huber
& Lenz, 1996; monkeys, Sigala, Gabbiani, & Logothetis,

2002). Each face consists of a simple ovaloid outline

with internal features defined by (compressed) circles



(EH) Eye height

(ES) Eye separation

(NL) Nose length

(MH) Mouth height

(EH) Eye height

(ES) Eye separation

(NL) Nose length

(MH) Mouth height

(DF) Dorsal fin

(TF) Tail fin

(VF) Ventral fin

(MA) Mouth area

Fig. 1. Three object classes, each with four stimulus parameters con-

trolling that object type, were used in similarity and categorization

psychophysics tasks. Three sample objects of each type demonstrate

the typical ranges of the parameters. (a) Brunswik faces. (b) Cartoon

faces. Although these faces are described by 28 parameters, the present

study used only the 4 parameters corresponding to those in (a). (c) Fish

outlines.
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and straight lines. The faces are parameterized by eye

height (EH; the vertical distance from the centers of the

eyes to the center of the face), eye separation (ES; the

horizontal distance separating the centers of the eyes),
nose length (NL; the vertical length of the nose line), and

mouth height (MH; the vertical distance from the center

of the face to the mouth line).
Fig. 2. Experiment 1 used five 20-object sets, each defined in a 4-D

parameter space. (a) The abstract configuration is shown in projections

onto the six possible pairs of dimensions. All-exemplars fall on a

3 · 3· 3· 3 grid, except for the two category prototypes, which were
among the test exemplars. Dashed lines indicate where the two cate-

gories� training exemplars are linearly separable. (b–f) For illustration,
2.2.2. Cartoon faces

These stimuli (Fig. 1b) were introduced in an fMRI

study (Jovicich, Peters, Koch, Chang, & Ernst, 2000) as

a parameterized object type that produced stronger ac-

tivation in the human fusiform face area (Kanwisher

et al., 1997) than did Brunswik faces. The cartoon faces

extend the Brunswik faces in several ways to make the

faces appear more human: a simple band of hair is ad-
ded around the top of the head, the size and dilation of

the pupils may be varied, eyebrows are added above the

eyes, the nose outline is defined by an extended open

contour, and the mouth is defined as a Bezier curve

rather than a straight line. To control these additional

features, the cartoon faces have a total of 28 stimulus

parameters; however, in the present study only the four

parameters corresponding to the Brunswik face dimen-
sions were varied, while the other 24 parameters were

held constant.
the training exemplars of category one (thin black lines) are superim-

posed upon those of category two (thick gray lines), for (b) cartoon

faces with dimensions {1¼EH, 2¼ES, 3¼NL, 4¼ML}, (c) fish
outlines {TF, VF, DF, MA}, (d) Brunswik faces {EH, ES, NL, MH},

(e) Brunswik faces {NL, MH, EH, ES}, and (f) Brunswik faces {MH,

EH, NL, ES}. See Fig. 1 for abbreviations.
2.2.3. Tropical fish outlines

These line-drawn images (Fig. 1c) were first used to

offer a completely novel stimulus set to monkey ob-

servers in a categorization task (Sigala et al., 2002).
Other fish images have been used previously in studies of

categorization in people and pigeons (Hernstein & de

Villiers, 1980) and in monkeys (Vogels, 1999). Each fish

image is composed of four cubic spline curves that were

fitted to scanned outlines of tropical fish. By adjusting

one control point of each of the curves, four features

of the outlines could be smoothly deformed: the dorsal

fin (DF), tail fin (TF), ventral fin (VF), and mouth area
(MA).

2.3. Similarity tasks

Two different similarity tasks (pairs and triads tasks)

were performed with the 20-object configurations used

in Experiment 1 (see Section 2.5; Fig. 2). For each

configuration, subjects� psychophysical responses were
used to form a 20 · 20 experimental dissimilarity matrix
with entries dij, using a procedure specific to the task (see
descriptions below). This matrix was then used to esti-

mate subjects� psychological representations of the

stimuli (see Section 2.4).

In the pairwise comparison task (Borg & Groenen,

1997, Chap. 6.2) or pairs task, subjects viewed sequences
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of simultaneously presented pairs of objects. Each pair

was presented for 2 s, followed by 2 s of blank screen.

Subjects could respond at any time during that 4 s in-

terval with a button press between 1 and 9, indicating

how similar the objects appeared. Subjects were in-

structed to choose ‘‘9’’ if and only if the two objects were

identical. Each of the 400 possible pairings of the 20

objects was presented three times throughout the ex-
periment, giving 1200 total trials. For each pair of ob-

jects xi and xj, the dissimilarity matrix entry dij was

taken to be 9� �ssij, where �ssij is the average similarity
rating over the n trials containing objects i and j (n ¼ 3

for i ¼ j, n ¼ 6 for i 6¼ j).
The triads task, a variant of the anchor stimulus

method (Borg & Groenen, 1997, Chap. 6.2), is a two-

alternative forced-choice (2-AFC) task, and as such it
has been particularly useful for studies involving non-

verbal observers (e.g., human infants, Arabie, Kosslyn,

& Nelson, 1975; monkeys, Sigala et al., 2002). Subjects

viewed sequences of simultaneously presented triads of

objects, arrayed horizontally. Each triad ðx1; x2; x3Þ was
presented for 2 s, followed by 2 s of blank screen.

Subjects could respond at any time during that 4 s trial

with a button press indicating whether the left pair
ðx1; x2Þ or the right pair ðx2; x3Þ appeared more similar.
Time constraints prohibited using all possible triad

combinations. Instead, the 6840 possible triads

ðxi; xj; xkÞ of the 20 objects were sorted by the Euclidean
distance in stimulus parameter space between the left-

most and rightmost stimuli (dðxi; xkÞ), and the 1710

triads with the largest such distances were used for

psychophysics. Finally, subjects� binary responses in the
triads task were transformed into analog dissimilarities

dij using a procedure described in Sigala et al. (2002).
2.4. MDS analysis

Multidimensional scaling (MDS) was used to find a
set bXX ¼ fx̂x1; . . . ; x̂xNg of N 4-D vectors x̂xi, that best re-

flected the internal psychological representation used by

a subject when performing a similarity task. The best

such representation is found by minimizing the stress

r ¼ 1

2

X
i;j

ðdðx̂xi; x̂xjÞ � dijÞ2;

where d is the Euclidian distance and dij are the dis-

similarities computed from subjects� responses in one of
the similarity tasks. 1 These representations allow for a
1 Note that this procedure deviates from a strict definition of MDS

because the dimensionality of the representation space was fixed to 4,

rather than being a free parameter. However, previous studies using

Brunswik faces and fish stimuli have obtained satisfactory MDS

solutions with 4-D representations (Nosofsky, 1991; Sigala et al.,

2002).
clear correspondence between the scaled dimensions and

the physical stimulus parameters, as explained next.

To align the MDS configuration bXX with the original

configuration X , we used an isometric Procrustes

transformation P , consisting of a rigid rotation, trans-
lation, and uniform scaling (Borg & Groenen, 1997,

Chap. 19). The optimal Procrustes transformation Pmin
minimizes the loss function LðPÞ ¼

P
i d

2ðxi; P ðx̂xiÞÞ. This
minimum value LðPminÞ––the residual squared distance

(RSD)––quantifies the dissimilarity between subjects�
psychological representation bXX and the original stimu-

lus configuration X .
To determine whether the observed RSDs were

smaller than would be expected by chance, a Monte

Carlo technique was used. RSDs were computed be-

tween the original configuration and 105 random con-
figurations whose parameters were drawn from a

uniform distribution over ½0; 1	. The resulting distribu-
tion was used to estimate the significance levels of the

RSDs of the pairs and triads MDS configurations.

2.5. Categorization tasks

The categorization experiments consisted of a training

phase and a testing phase. In both phases, subjects

viewed a series of objects presented one at a time. Each

object was presented for 2 s, followed by 2 s of blank

screen. During each 4 s trial, subjects pressed one of two

buttons indicating to which category the object be-
longed. In the training phase, subjects were shown only

the two categories� training exemplars, and were given
feedback in the form of a high- or low-pitch tone indi-

cating whether their response was correct or incorrect,

respectively. Subjects performed training blocks of 100

trials until they scored P85% correct on a single block.

Next, they moved into the testing phase, in which they

were shown the previously unseen test exemplars in
addition to the training exemplars that they had viewed

during the training phase. Subjects received no feedback

on their responses during the testing phase.

In Experiment 1, the values for each stimulus di-

mension were quantized to three possible values for each

dimension, so that the set of possible objects lay on a

3 · 3 · 3 · 3 grid in stimulus parameter space. The con-
figuration of 20 objects on this grid (Fig. 2a) followed
that used in Nosofsky (1991) and Sigala et al. (2002),

with 5 training exemplars for each category, plus 10 test

exemplars that included the two category prototypes.

For each set of objects, each of the four stimulus pa-

rameters for that object type was assigned to one of the

four generic dimensions in the stimulus configuration

shown in Fig. 2a. It is significant how the parameters are

assigned, since each generic dimension carries different
information about category membership. For example,

the categories were linearly separable in projections onto

2-D planes for pairs of stimulus dimensions ð1; 2Þ, ð1; 3Þ,
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and ð1; 4Þ, so dimension 1 was more informative about
an object�s category than were the other dimensions. In
all, five sets of stimuli were used in Experiment 1. These

included three sets of Brunswik faces in which the

stimulus parameters were assigned to the generic di-

mensions in different orderings ({EH, ES, NL, MH},

{NL, MH, EH, ES}, and {MH, EH, NL, ES}), a set of

cartoon faces ({EH, ES, NL, ML}), and a set of fish
outlines ({TF, VF, DF, MA}).

In Experiment 2, a larger configuration of 80 objects

was used (Fig. 3), with 10 training exemplars for each of

the two categories, plus 60 test exemplars. The exemp-

lars were arranged on a 7 · 7 · 7 · 7 grid in the stimulus
parameter space. There were 12 such sets, identical ex-

cept that the discretization grid of each set was rotated

through different angles (h ¼ n 
 15�, n 2 ½0; . . . ; 11	) in
the eye-height/eye-separation plane of parameter space.
2.6. Categorization models

We tested several categorization models by fitting

them to match the human observers� response profiles
from the testing phase of the categorization tasks. Each

model receives input in a 4-D feature space (i.e., not

image space), and produces an output that represents

a categorization probability for the input object. The
Fig. 3. Experiment 2 used these 12 sets of Brunswik faces. Each image

shows the 10 training exemplars of category one (thin black lines)

superimposed upon the 10 training exemplars of category two (thick

gray lines). The sets differ only in the angle by which the objects are

rotated in eye-height/eye-separation plane of feature space.
models we tested fall into several categories, each of

which proposes a unique architecture for the categori-

zation process (see Fig. 4), with different free parame-

ters, and different assumptions about the memory usage

of the system being modeled. These factors must be

weighed along with the raw goodness-of-fit when as-

sessing the neurobiological plausibility of the different

models.
In general, we assume (1) that each exemplar is de-

scribed by a point in an R-dimensional space (Ashby,
1992b, Chap. 16), x ¼ ðx1; . . . ; xRÞ, whose components
may be drawn either from the original stimulus con-

figuration, from an MDS configuration, or from a

configuration based on features extracted from an early-

vision model (see Section 2.6.5), and (2) that each cat-

egory is defined by N training exemplars fx1; . . . ; xNg.

2.6.1. Exemplar models

Exemplar models associate memory traces of M
(16M 6N ) stored exemplars 2 fy1; . . . ; yMg with each
category. Several model subtypes differ in the way that

these stored exemplars are selected:

• All-exemplar models (Fig. 4a) assume M ¼ N , and
yi ¼ xi. All of the training exemplars are explicitly

stored in memory, so these models have a high mem-

ory demand that is linear in the number of training

exemplars. All-exemplar models include the average-

distance model (ADM, Reed, 1972) and generalized

context model (GCM; Nosofsky, 1991).

• Prototype (one-exemplar) models (Fig. 4b) assume

M ¼ 1; each category stores only the arithmetic mean
of the category�s training exemplars, y1 ¼ 1=N

P
i xi.

These models have low and constant memory de-

mand, independent of the number of training exemp-

lars; however, the models imply a more complex

computational mechanism to estimate the prototype

during trial-by-trial exposure to the training exemp-

lars. Prototype models include the weighted prototype

model (WPM; Reed, 1972) and the weighted prototype
similarity model (WPSM; Nosofsky, 1991).

• In the proposed roaming-exemplar modelhMi
(RXMhMi, Fig. 4c), each category stores M exemp-

lars, each of which is a linear combination of the

training exemplars for that category, yj ¼
P

i wijxi.

Under the neurobiological consideration that neu-

rons do not represent objects far different from those
2 Our usage of the term ‘‘exemplar’’ to denote stored memory traces

reflects a meaning of ideal meaning or pattern or prototype, rather than

a strict meaning of previously seen stimulus. For example, in the RXM,

the stored exemplars are generalizations of the memory traces used in

all-exemplar or prototype models, and are most likely not previously

seen stimuli.



Fig. 4. Schematic depictions of several kinds of categorization models. Each diagram shows a hypothetical set of training exemplars from two

categories (d and �) in a 2-D feature space, plus a test exemplar (·) which is to be classified. (a–c) Three types of models which rely on distances
(indicated by dashed lines) between a test exemplar and each stored exemplar from both categories: (a) all-exemplar model, in which the set of stored

exemplars is just the set of training exemplars; (b) one-exemplar, or prototype model, in which the single stored exemplar per category is the arithmetic

mean of that category�s training exemplars; (c) roaming-exemplar modelhMi (RXMhMi) and striatal pattern classifierhMi (SPChMi), in which each
category hasM (in this case,M ¼ 2) stored exemplars, which must lie within the polygon that circumscribes the training exemplars (dotted lines). The

RXMhMi uses a summed-similarity decision rule, while the SPChMi uses a uses a nearest-neighbor decision rule. (d) Linear boundary model, in which
the model uses a linear boundary that separates the categories to classify test exemplars according to the side of this boundary on which they fall. (e)

Cue-validity model, which classifies a test exemplar according to the total cue-validity across all features; the cue-validity cvi for category i of a given
feature is the posterior probability of an exemplar with that feature belonging to category i (values of cv1 and cv2 are shown).
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that have been previously observed, the stored ex-

emplars are restricted to a region circumscribed by

the training exemplars, so the weights are constrained

by wij P 0 and
P

i wij ¼ 1 for all j. The number of
stored exemplars M is not a free parameter of a given

RXMhMi, but the stimulus parameters of those

stored exemplars are free parameters of the model.
Thus, when the RXM is fitted to a dataset, the num-

ber of stored exemplars is chosen and fixed at the

start, although RXMhMi�s with different (fixed) val-
ues of M may be fitted to the same dataset. The mem-

ory demand of the RXMhMi varies between that of
the prototype models (for M ¼ 1) and that of the

all-exemplar models (for M ¼ N ); the computational
complexity is similar to that of the prototype models,
since some mechanism must adjust the stored exemp-

lars during training.

Next, the exemplar model computes a similarity

measure between the test exemplar x and each of the
stored exemplars y, based on a weighted Euclidean

distance: daðx; yÞ ¼ ð
P

j ajðxj � yjÞ2Þ1=2, with aj P 0 andP
aj ¼ 1 (other metrics are possible; see e.g., Ashby &

Maddox, 1993). The coefficients aj, called attentional

weights, are intended to model the ability of human

observers to attend preferentially to the most task-rele-

vant stimulus features. The similarity s decays with the
distance d, either linearly (s ¼ �d, as in the RXM,
ADM, and WPM), or exponentially (s ¼ e�cd , as in the

GCM and WPSM; see Shepard, 1987).

Then, for each test exemplar x, the evidence Ei for

category Ci is given as the sum of similarities between

x and the M stored exemplars yij of that category:
EiðxÞ ¼

PM
j¼1 sðx; yijÞ. Finally, the model�s categorization

of x is based on the expression E1ðxÞ � E2ðxÞ þ n > t,
where n represents zero-mean Gaussian noise with

variance r2, and t is a threshold parameter; x is assigned
to category 1 if this expression is true, otherwise to

category 2.

The free parameters of the exemplar models are thus

ða; c; t; rÞ, plus 2M stored exemplars for the RXMhMi.

2.6.2. Striatal pattern classifier

The RXM shares a very similar mathematical for-

mulation with the striatal pattern classifier (SPC) pro-
posed by Ashby and Waldron (1999), although the

mathematical elements have been treated with different

neurobiological interpretations (Ashby & Ell, 2001).

Both kinds of model rely on a set of units that represent

different locations in feature space, but the models differ

in how each category�s evidence is computed for a given
test exemplar. The exemplar models compute the sum of

similarities between the test exemplar and each stored
exemplar, whereas the SPC associates a test exemplar

with the category of the nearest striatal pattern (in this

respect the SPC resembles a k-nearest neighbor model
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with k ¼ 1). Both the SPC and the RXM use a similarity

measure that decays linearly with distance. In order to

maintain a formal similarity with the other models, we

used the following decision rule for the SPC: for each

test exemplar, the evidence for each category is given by

the maximum of the similarities between the test exem-

plar and that category�s stored exemplars. Thus, in the
case of one stored exemplar per category, the SPCh1i
and the RXMh1i form identical decision surfaces.

However, with M > 1, the SPChMi has a piecewise-lin-
ear boundary, while the RXMhMi has a curved decision
boundary.

2.6.3. Boundary models

Decision bound theory (Ashby & Maddox, 1993)

proposes that human perceptions of category exemplars

are instances of random variables with multivariate

normal distributions. Given a particular perception, the

optimal decision strategy is to choose the category of
which that perception was more likely an instance. Thus

the decision boundary (the locus where both categories

have equal probability densities) falls along the inter-

section of the graphs of the two probability density

surfaces. If the covariance matrices of the exemplar

distributions are identical for the two categories, then

the decision boundary is a linear surface (i.e., a hyper-

plane); otherwise, it is a quadratic surface.
We tested the probit linear model (PBI; Fig. 4d;

Ashby & Gott, 1988), which is trained to separate the

categories� training exemplars with a boundary de-

scribed by a normal vector b and a threshold t. Fol-
lowing training, a test exemplar x is classified according
to the side of the boundary on which it falls:

x 
 bþ n > t ) x 2 C1:

The PBI model parameters are ðb; t; rÞ; however the
variance of the noise is assumed to be r2 ¼ 1, since

identical models are obtained for ðb; t; rÞ as for

ðkb; kt; krÞ with k 6¼ 0.

2.6.4. Cue-validity models

Cue-validity models (Fig. 4e) treat each stimulus pa-

rameter as an independent indicator of category mem-

bership, based on the relative numbers of exemplars

from the two opposing categories that exhibit the cue (a
particular value of a stimulus parameter). Thus, for

example, a beard is a somewhat uncommon feature of

male faces, yet it is an even less common feature of fe-

male faces, and so provides a highly valid cue to the

gender category of a face.

In the weighted cue-validity model (WCVM; Reed,

1972), the validity for category Ci of the jth parameter xj
of a test exemplar x is defined as vijðxÞ ¼ pðCijxjÞ. The
overall cue-validity Vi is a weighted sum of these valid-

ities, ViðxÞ ¼
P

j ajvijðxÞ, where the aj are attentional

weights as in the exemplar models, with aj P 0 and
P
j ai ¼ 1. Also as in the exemplar models, the decision

rule incorporates Gaussian noise n and a threshold t; if
the expression V1ðxÞ � V2ðxÞ þ n > t is true, x is assigned
to category 1, otherwise to category 2.

A modified version of this model, called the weighted

frequency cue-validity model (WFCVM; Reed, 1972),

uses a different definition for the validity. A weight

factor, q ¼ ð1þ F ðxmÞÞ�1, is computed from the overall
number of times F ðxmÞ that the parameter value xm oc-
curs in exemplars from both categories. Then the

WCVM�s original validity vij is used to define the new
validity ~vvijðxÞ ¼ 1

2

 qþ vijðxÞ 
 ð1� qÞ, so that the valid-

ities of rare parameter values carry little information

about category membership. This reflects the idea that

subjects will pay more attention to common features.

The free parameters for both the WCVM and the
WFCVM are ða; t; rÞ.

2.6.5. HMAX

In order to assess the biological plausibility of the

categorization models from a computational perspec-
tive, we adapted a hierarchical model of early vision

(‘‘HMAX’’) presented by Riesenhuber and Poggio

(1999). HMAX operates directly in image space, in

contrast to the categorization models described above,

which operate in feature space. Our approach was to

extract a new feature space representation from the

output of HMAX, which could then be used as an al-

ternate input for fitting the categorization models, to be
compared with model fits obtained using the original

physical feature space.

In brief, HMAX operates through two stages of

‘‘simple’’ and ‘‘complex’’ units (S1, C1, S2, and C2). The

S1 representation is obtained by filtering the image with

a bank of Gabor-like filters tuned for multiple orienta-

tions and spatial scales. The C1 representation is pro-

duced by pooling the activations of S1 units at
neighboring spatial locations and across similar spatial

scales. At the S2 level, more complex features are

formed by pooling the activations of a 2 · 2 spatial array
of neighboring C1 units tuned to specific orientations; in

this way, different S2 units begin to represent features

such as ‘‘elongated contour’’ or ‘‘corner’’ or ‘‘disk’’.

Finally, each C2 unit pools across S2 units tuned to the

same feature type, but at different spatial scales and/or
spatial locations.

We made several modifications relative to the original

model of Riesenhuber and Poggio (1999); these modifi-

cations were guided by the goal of increasing the vari-

ance of the HMAX outputs across the set of input

images, so as to provide a rich but compact foundation

for a subsequent categorization stage. First, instead of

each C2 unit pooling across the entire image space, we
subdivided the image into a 6 · 6 grid, with each C2 unit
responding only to one of the 36 subregions. This in-

creased granularity allowed the model to extract features
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that were more relevant as input to the categorization

models. In addition, we restricted the number of orien-

tation filters among the S1 units from four to two (i.e.,

just horizontal and vertical). This retained the model�s
ability to represent the variability among the simple

schematic input images, but at the same time signifi-

cantly reduced the dimensionality of the output space:

since each S2/C2 feature type represented a four-part
configuration of two possible S1/C1 orientations, there

were 24 ¼ 16 S2/C2 feature types (rather than 44 ¼ 256

as in the original model). With 36 spatial locations, this

gave a total of 36 · 16 ¼ 576 C2 units. To reduce this

representation to a manageable size for input to the

categorization models, we applied principal component

analysis to the C2 activation vectors obtained across all

of the input images in a set. In general, we found that
>95% of the variance could be recovered with the first 50

of the 576 principal components, and �80% of the

variance was recovered with only the first 4 components.

Therefore, for comparison with the four-dimensional

physical parameter configurations, we used the first 4

principal components from the modified-HMAX C2

activations to test how well the categorization models

would fare with a biologically plausible input derived
from the image space representation of the stimuli.
2.7. Model-fitting

We fitted models based on (1) the objects� physical
parameter values, (2) the psychophysical (i.e., MDS)

parameter values obtained from a pairs or triads task,

and (3) the features derived via PCA from the C2 acti-

vations of the HMAX model. Furthermore, each model

could either be fitted separately to each individual sub-

jects� data, or be fitted once to data pooled across sub-
jects. However, since pooled fits may not accurately
reflect the categorization processes of individual ob-

servers (Maddox, 1999), we used only models fitted to

individual subjects� data.
Each model�s free parameters were fitted to maximize

its ability to predict the categorization probabilities

obtained from human observers. The goodness of this fit

was quantified with the likelihood, L, of the model
having generated the observed probabilities, given that
the fitted model correctly describes the subject�s cate-
gorization process (Collett, 1991). This likelihood is the

conditional probability of the set of observed probabil-

ities pi, given the values of the model parameters (which
govern the predicted probabilities bpipi ), over the N stim-

ulus objects:

L ¼
YN
i¼1

ni
pini

� �
ðbpipiÞpinið1� bpipiÞð1�piÞni ;

where ni is the number of categorization trials per-

formed for object i, and pini is the number of trials in
which the observer assigned object i to category one.
The likelihood takes the form of a binomial distribution

because subjects� responses are treated as independent
binary random variables. A numerical implementation

of adaptive simulated annealing (Ingber, 1989) followed

by a simplex method (Nelder & Mead, 1965) was used to

maximize the likelihood L, or equivalently, minimize the
minus loglikelihood (�ln L), which can be computed
more efficiently. The range of the likelihood is 06 L6 1,
so the range of the minus loglikelihood is 1P
�ln LP 0.

We used the percentage of variance (%-variance) ex-

plained by the model as a more tangible measure for

comparing fitted models. This measure is simply given

by r2, the square of the correlation coefficient between
the observed and predicted probabilities.
Finally, although the loglikelihood (ln L) or %-vari-

ance are appropriate statistics for comparing fitted

models having similar numbers of free parameters,

comparisons of models differing in their number of free

parameters, Nfp, require a statistic such as the Akaike
information criterion (Zucchini, 2000), AIC ¼ �2 ln Lþ
2Nfp, which contains a penalty term proportional to Nfp.
Pairwise model comparisons were made with the Wil-
coxon signed-rank test of either �ln L or the AIC, and
we report the median value of �ln L or the AIC to

summarize the model fits from a group of individual

subjects.
3. Results

3.1. MDS fits

In order to quantify the goodness-of-fit between

subjects� Procrustes-transformed MDS configurations

and the original stimulus configuration, we used Monte
Carlo simulations comparing the residual squared dis-

tances (RSDs) of our subjects�MDS configurations with
the RSDs of random configurations (see Fig. 5a). The

mean of the pairs-MDS distribution (0.1444) was

roughly twice as close to the original configuration as

would be expected by chance (0.3268), and all pairs-

MDS configurations were significantly closer (p <
0:005) to the original configuration than were the ran-
dom configurations. Likewise, the triads-MDS configu-

rations were also all significantly closer to the original

space than would be expected by chance (p < 0:005),
although the mean of the triads-MDS distribution

(0.1982) was not as close to the original configuration as

was the pairs-MDS distribution. A paired t-test showed
that the residual squared distances of the pairs-MDS

configurations were significantly smaller than those of
the triads-MDS configurations (p < 0:05).
To further assess the relationship between these two

methods for obtaining similarity judgments, we per-



mean
(triads)

mean
(pairs)

Fig. 5. A summary of the MDS configurations obtained with pairs and triads similarity tasks. (a) As measured with the residual squared distance

(RSD), all of the pairs-MDS and triads-MDS configurations were significantly more similar (p < 0:005) to the original configuration of stimulus

parameter values than would be expected by chance. The distribution of RSDs for 105 random configurations (gray bars, arrows with p-values) was
compared with the RSDs for 10 subjects� pairs-MDS (upper, solid lines) and triads-MDS (lower, dashed lines) configurations. Two identical con-
figurations would give an RSD of 0, while two unrelated configurations would give an RSD near the median of the random distribution (0.33). The

RSDs for pairs-MDS were significantly smaller than those for triads-MDS (p < 0:05). (b) To directly compare the similarity judgments obtained in

the pairs and triads tasks, we computed two metrics for triads of objects ðx1; x2; x3Þ: (1) the difference D ¼ Sðx2;x3Þ � Sðx1;x2Þ of two similarity
ratings given in the pairs task, and (2) among triads with similar values of D, the fraction F of trials in which the observer chose ðx2;x3Þ as more
similar than ðx1;x2Þ when viewing ðx1; x2; x3Þ in the triads task. The two measures D and F were highly correlated (q ¼ 0:9946) across 10 subjects.
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formed a more direct comparison, using subjects� raw
responses rather than the derived MDS configurations

(Fig. 5b). In each trial in the triads task, subjects viewed

three objects ðx1; x2; x3Þ and compared the similarities of
the two pairs ðx1; x2Þ and ðx2; x3Þ. Subjects also directly
rated the similarities of these pairs in the pairs task.

Thus, for each triad ðx1; x2; x3Þ which was shown in the
triads task, we computed Dpairs, the difference between
the similarity ratings given by the subjects in the pairs

task to the pairs ðx1; x2Þ and ðx2; x3Þ. We then split the
triads trials into groups with similar values of Dpairs.

Within each group we computed Ftriads, the fraction of
trials for which the subject chose the right pair as more

similar than the left pair in the triads task. These two

measures Dpairs and Ftriads were highly correlated in data
obtained from single subjects (q > 0:98 for 9 of 10
subjects) and when data were pooled across subjects

(q ¼ 0:9946; Fig. 5b).
3 Note that the RXM and SPC were not used in fitting the data

from Experiment 1 because even with one stored exemplar, these

models carry almost as many free parameters as the number of data

points to be fitted (20). This renders any comparisons among such

models virtually meaningless. This issue is avoided in Experiment 2 due

to the greater number of test exemplars (80).
3.2. Model fits

We found no systematic differences in the fits ob-

tained from different model subtypes (such as those

using exponential vs. linear decay of similarity with

distance). Therefore, in further discussion, models are
referred to by their general names (e.g., all-exemplar

models) rather than by the specific subtypes (e.g., ADM

or GCM).
3.2.1. Model fits: Experiment 1

Table 1 summarizes the fits of the all-exemplar, linear

boundary, prototype, and cue-validity models, for each

of the five sets of objects used in Experiment 1, along

with significance values for pairwise comparisons of the

models using the Wilcoxon matched pair signed-rank

test. 3 There were two general patterns of model fits.

The first pattern was associated with the first two
Brunswik face sets ({EH, ES, NL, MH} and {NL, MH,

EH, ES}, which depend primarily on attention to the

eyes and nose) and the cartoon faces ({EH, ES, NL,

ML}). In this pattern, the all-exemplar models obtained

the best fit, but the boundary model also fit well, in-

distinguishable from the exemplar models. The proto-

type models fit significantly worse (p < 0:05) than the
all-exemplar models, but the magnitude of this differ-
ence was small. Finally, the cue-validity models fit sig-

nificantly worse than the other models.

The second pattern was seen with the third Brunswik

face set ({MH, EH, NL, ES}) and the fish outlines ({TF,

VF, DF, MA}). As in the first pattern, the all-exemplar

models obtained the best fit. However, the rest of the



Table 1

Goodness-of-fit of the models tested in Experiment 1

GCM PBI WPSM WCVM

Brunswik faces {EH, ES, NL, MH} %-variance 98.22 98.08 96.39 88.37

�lnL 21.15 22.23 27.32� 42.50�

Brunswik faces {NL, MH, EH, ES} %-variance 95.68 97.75 95.32 74.38

�lnL 28.08 26.53 32.81 42.58�

Brunswik faces {MH, EH, NL, ES} %-variance 94.02 58.56 61.55 86.30

�lnL 36.83 80.57� 90.31� 52.76

Cartoon faces %-variance 95.50 90.70 90.18 86.66

�lnL 30.68 29.95 37.07� 53.49

Fish outlines %-variance 97.23 80.98 70.30 96.03

�lnL 20.73 32.85� 74.36� 28.74

%-variance: larger value indicated better fit.

�ln L, minus loglikelihood: smaller value indicates better fit.
Bold numbers: model(s) which gave the best fit in each row.
�Models whose � ln L was significantly worse (p < 0:05) than the best-fitting model in each row.
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pattern was qualitatively different from the first pattern.

Whereas the cue-validity models gave the worst fits in

the first pattern, their fits were indistinguishable from

the all-exemplar models in the second pattern. In addi-
tion, the boundary model fit very poorly, significantly

worse than the exemplar models (p < 0:05). Finally, the
prototype models fit even more poorly, significantly

worse than the exemplar and boundary models

(p < 0:05).
Each of the models tested in Experiment 1 was also

fitted using MDS-based configurations obtained from

the pairs or triads tasks. Measured by %-variance, both
the MDS-pairs and MDS-triads model fits were strongly

correlated with the fits obtained using the original con-

figuration, as well as with each other (q > 0:90 in each
case). The average goodness-of-fit of the MDS-pairs

models lagged behind that of the original models by 2.3

%-variance, and the MDS-triads models lagged by an

additional 5.5 %-variance.

3.2.2. Model fits: Experiment 2

We fitted subjects� categorization probabilities from
Experiment 2 with versions of the roaming-exemplar

model and striatal pattern classifier using 1, 2, 3, 5, 7,

and 10 stored exemplars, 4 as well as the all-exemplar,

prototype, and linear boundary models, and assessed
these fits with three measures (see Table 2): the log-

likelihood, the %-variance explained, and the Akaike

information criterion (AIC).

When the model fits were assessed with their minus

loglikelihoods (Table 2, row 2), we observed a pattern

among the previously tested models similar to the first

pattern observed in Experiment 1: the all-exemplar and
4 For brevity, the models with 5, 7, and 10 stored exemplars were

withheld from Table 2, since our analysis revealed these data to merely

continue the trends seen with 1, 2, and 3 stored exemplars.
boundary models both obtained better (lower) scores

than the prototype model. However, each of these pre-

vious models was outperformed by all versions of the

roaming-exemplar model and striatal pattern classifier.
In addition, for both the RXMhni and the SPChni the
goodness-of-fit increased with the number n of stored
exemplars––an unsurprising result, given that each

stored exemplar reflects additional free parameters. The

%-variance values (Table 2, row 1) show a similar pat-

tern, but give a more concrete assessment of how well

the models match the human subjects� categorization
behavior: the best-fitting model (the SPCh3i) captured
nearly 92% of the variance, while the worst-fitting model

(the WPSM) captured roughly 85% of the variance.

In contrast, when the model fits were assessed with the

AIC to account for their numbers of free parameters

(Table 2, row 3), the RXM and SPC with one stored

exemplar per category (RXMh1i and SPCh1i) obtained
the best (lowest) scores among all models. These com-

parisons were statistically significant (Wilcoxon signed-
rank test, p < 0:05) except against the PBI (p ¼ 0:44).
Moreover, increasing the number of stored exemplars in

either the RXMhni or SPChni was detrimental to the
AIC goodness-of-fit; the SPCh10i (AIC¼ 253.29) and
RXMh10i (SPC¼ 271.85) fit much worse than any of
the other models.

Each of the models was also fitted using representa-

tions of the visual objects based on features derived
from the C2 activations of the HMAX model, rather

than the original physical parameters of the stimuli. We

found that the features derived from HMAX recovered

much of the information about the original physical

parameters. For example, pairwise distances between

objects in the original parameter space were strongly

correlated (q > 0:8) with pairwise distances in the C2-
derived feature space. In addition, we found individual
C2 units whose activities were highly correlated with one



Table 2

Goodness-of-fit of the models tested in Experiment 2; see also Table 3 for further discussion of the models� qualitative properties

RXMh1i RXMh2i RXMh3i SPCh1i SPCh2i SPCh3i GCM PBI WPSM

%-variance [orig] 89.36� 90.98� 91.49 89.36� 90.83� 91.64 86.84� 87.10� 84.90�

�ln L [orig] 75.72� 72.06� 71.32� 75.72� 71.65� 69.92 83.41� 83.66� 88.79�

AIC [orig] 173.44 178.13� 188.64� 173.44 177.30� 185.84� 178.81� 177.32 189.57�

%-variance [HMAX] 80.96� 83.98� 85.00� 80.96� 84.54� 85.99 75.62� 78.57� 72.57�

�ln L [HMAX] 91.24� 84.38� 81.89� 91.24� 82.77� 78.11 111.92� 97.70� 118.19�

AIC [HMAX] 204.48� 202.76� 209.78� 204.48� 199.55 202.23� 235.85� 205.40� 248.37�

%-variance: larger value indicated better fit.

� ln L, minus loglikelihood: smaller value indicates better fit.
AIC, Akaike information criterion: smaller value indicates better fit.

orig: models were fitted using objects represented by the original stimulus parameters, as in Experiment 1.

HMAX: models were fitted using objects represented by features derived from a feed-forward early-vision network.

Bold numbers: model(s) which gave the best fit in each row.
�Models whose fits were significantly worse (p < 0:05) than the best-fitting model in each row.
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of the original physical parameter values (EH: q ¼ 0:93,
ES: q ¼ 0:91, NL: q ¼ 0:95, MH: q ¼ 0:998).
Among the HMAX-based models, the SPC and RXM

again gave better fits than the other models (see Table 2,

rows 4–6). As before, the uncorrected measures (minus

loglikelihood and %-variance) improved as the number

of stored exemplars increased, with the best overall fit

given by the SPCh3i. In contrast to the fits based on the
physical parameters, the best AIC values were obtained

with two (rather than one) stored exemplars per cate-

gory for both the SPC and RXM, although as before fits

decreased again with more than two stored exemplars.

Overall, the HMAX-based model fits were significantly

poorer than the corresponding fits based on the physi-

cal parameters. Nevertheless, the absolute difference

between the best-fitting HMAX-based and physical
parameter-based models was only 5.6 %-variance.
5 Alternatively, a same/different task can be used to generate a

confusion matrix for MDS (Sugihara, Edelman, & Tanaka, 1998).
4. Discussion

Several authors (Edelman, 1999; Shepard, 1987) have

proposed that neural mechanisms of representation are

based on similarity. Similarity measures can be trans-

formed to feature space representations with multidi-

mensional scaling, a technique that has often been used

as the basis for models of categorization and recognition

(e.g., Nosofsky, 1986). Yet, only recently has the neu-
robiological validity of MDS begun to be investigated

directly with monkey electrophysiology (Op de Beeck

et al., 2001; Sigala & Logothetis, 2002) and human

fMRI (Edelman et al., 1998). Given the practical sig-

nificance of comparing results obtained in monkey and

human studies, it is important to establish the compat-

ibility of the behavioral methods used for the two spe-

cies. Because it is impossible for monkey observers (as
well as for human infants; e.g., Arabie et al., 1975;

Sloutsky & Lo, 1999) to give an analog similarity rating,

a task based on binary choice such as the ‘‘triads’’ task
must be used instead. 5 Unfortunately, since each triads

trial conveys only relative information about pairwise

similarities, the entire task requires many trials and is

quite time demanding. Thus, adult human subjects

prefer the ‘‘pairs’’ task, which is based on analog simi-

larity judgments, and is less time demanding since each

trial directly conveys absolute information about pair-

wise similarities. Therefore, we compared the results of
the pairs and triads tasks within a set of human subjects

to assess their equivalence in characterizing psycho-

physical representations of similarity. As Fig. 5b shows,

the judgments obtained in theses two tasks were highly

correlated, suggesting that a shared process could ac-

count for subjects� performance in both tasks. These
results legitimize comparisons between data from the

pairs task in human subjects and data from the triads
task in monkey subjects.

One purpose of the MDS analysis is to construct an

input representation for the categorization models that

can be tested independently of the original stimulus

configuration. We found that model fits did not improve

when the models were based on pairs-MDS or triads-

MDS configurations, relative to the original stimulus

configuration. This result agrees with the findings of
Sigala et al. (2002) using both monkey and human

subjects in experiments similar to those reported here.

Thus, although some models (such as the GCM;

Nosofsky, 1986, 1991) have originally been used exclu-

sively with MDS configurations, we found that they

achieve similar performance when the original configu-

ration is used instead. We interpret these results to mean

that subjects can efficiently learn a psychological repre-
sentation that is highly similar to the native represen-

tation of a set of objects. The mechanism for this

learning process remains a subject for future investiga-

tion. Nevertheless, the empirical correlation between the
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original and MDS configurations is of practical rele-

vance because the MDS procedure is time-intensive both

in the collection of similarity task data and in the

computational analysis of those data. Our results sug-

gest that this analysis step can be bypassed without af-

fecting the comparison of various classification models.

Experiment 1 revealed a pattern of model fits similar

to that reported previously (e.g. Maddox & Ashby,
1993; Nosofsky, 1991; Reed, 1972; Sigala et al., 2002).

We found that across several categorization tasks in-

volving different types of objects, an all-exemplar model

provided better fits than a linear boundary model, pro-

totype model, or cue-validity model (Table 1). In some

cases the fits of the linear boundary and prototype

models approached those of the all-exemplar model.

The relative strengths of all-exemplar models and
boundary models have been discussed at length

(Maddox & Ashby, 1998; McKinley & Nosofsky, 1996;

Nosofsky, 1998). Since each model differs from the

others in more than one way, it is difficult to conclude

which of these differences contribute to a model�s success
under particular test conditions. To address this point,

we introduced a ‘‘roaming-exemplar’’ model (RXM)

that can treat independently some of the factors that
were mutually dependent in previous models. It shares a

flexible memory storage architecture with the striatal

pattern classifier (Ashby & Waldron, 1999; Ashby,

Waldron, Lee, & Berkman, 2001). It shares a decision

mechanism with all-exemplar models and prototype

models, since new exemplars are classified by comparing

the sums of their similarities to the stored exemplars

associated with each of two categories. However, in the
roaming-exemplar model as well as the striatal pattern

classifier, these stored exemplars are not strictly deter-

mined by the training exemplars, but are allowed to

‘‘roam’’ during training within the feature space of the

objects to be classified.

In Experiment 2, we analyzed individual subjects�
categorizations of 12 different sets of Brunswik faces by

fitting them with the roaming-exemplar model and
striatal pattern classifier, in addition to the models used

in Experiment 1 (Table 2). While the relationships

among the all-exemplar, prototype, and linear boundary
Table 3

Qualitative comparison of the key models that were tested in Experiment 2

Model type Stored exemplars Main decision bound

Shape

Linear boundary None Linear

Prototype 1, fixed Linear

Roaming-exemplarh1i 1, ‘‘roaming’’ Linear

Striatal-patternh1i 1, ‘‘roaming’’ Piecewise-linear

All-exemplar N , fixed Curved

Roaming-exemplarhNi N , ‘‘roaming’’ Curved

N : number of training exemplars per category.
AIC, Akaike information criterion: smaller value indicates better fit.
models have been analyzed previously (Ashby &

Alfonso-Reese, 1995; Ashby &Maddox, 1993; Nosofsky,

1990), the improved model fits obtained with the RXM

and SPC in Experiment 2 afford new insights into the

strengths and weaknesses of previous models (see Table

3 for an overview).

All-exemplar vs. prototype models. There are two sig-

nificant differences between these models. First, in pro-
totype models, the stored exemplars are by construction

defined as the arithmetic mean in feature space of the

training exemplars, while in all-exemplar models the

stored exemplars occupy other locations. Second, all-

exemplar models allow more than one stored exemplar

per category, while prototype models allow only one,

regardless of the number of training exemplars.

This second difference is linked with the question of
category abstraction: storage of a category prototype

implies a more abstract representation than simple

memorization of all training exemplars. This places a

higher burden on the learning process, since the system

must select the correct abstraction, but makes post-

learning categorization more simple, since new exemp-

lars have only to be compared with the category

prototypes. All-exemplar models make the opposite
trade-off: since no abstraction is involved, learning is

straightforward as each training exemplar is simply

packed away into memory, but post-learning categori-

zation is complicated since a new exemplar must be

compared with every stored exemplar in memory. While

this requirement is not neurobiologically unreasonable

in typical psychophysical experiments which use few

training exemplars per category, it seems less likely to be
applicable to natural visual categories, which may con-

tain thousands or more of exemplars. Furthermore, bio-

logical systems are likely to spend more time in using

categories than in learning them, at least for highly sa-

lient categories (e.g., male/female faces, poisonous/non-

poisonous fruit). Such arguments lend some a priori

credence to the notion of a prototype model, but are

entirely hidden from statistical comparisons, since nei-
ther the contents of the memory nor the complexity of

the learning process are free parameters of the models.

Indeed, past comparisons between all-exemplar and
ary Iso-probability con-

tours
Goodness-of-fit

Orientation Rank (AIC)

Arbitrary Linear 2 (177.3)

Constrained Curved 4 (189.6)

Arbitrary Curved 1 (173.4)

Arbitrary Piecewise-linear 1 (173.4)

Constrained Curved 3 (178.7)

Arbitrary Curved 5 (279.8)
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prototype models have generated a preponderance of

evidence favoring the all-exemplar models.

When the contents of the memory locations become

explicit free parameters, questions concerning the im-

portance of memory capacity can be addressed statisti-

cally. For example, by comparing either the RXMh1i or
the equivalent SPCh1i with a prototype model, we ex-
amine only the first difference mentioned above between
all-exemplar models and prototype models (whether

memory traces are fixed at the category mean). On the

other hand, by comparing the RXMh1i with the

RXMhni (n > 1) we examine only the second difference

(changing the number of stored exemplars). Our results

from Experiment 2 (Table 2) demonstrate a large im-

provement from allowing roaming, rather than fixed,

stored exemplars (AIC: RXMh1i, SPCh1i ¼ 173:4,
prototype¼ 189.6), while allowing additional stored

exemplars actually leads to a decline in goodness-of-fit

when the additional memory is counted among the

models� free parameters (AIC: RXMh10i ¼ 271:9,
RXMh1i ¼ 173:4). Thus, although the empirical success
of all-exemplar models appears to support a rejection of

category abstraction, our results show that in fact we

should only reject the strict notion of abstraction in-
volving category prototypes.

Prototype vs. linear boundary models. These two

models are similar in that each has a decision boundary

(i.e., the iso-probability density surface where the cate-

gorization probability density equals 0.5) that is a hy-

perplane in stimulus parameter space (Ashby &

Maddox, 1993). The models also have two important

differences. First, for prototype models, the decision
boundary must be orthogonal to the vector connecting

the two category prototypes in stimulus parameter

space, while for linear boundary models, the decision

boundary can have an arbitrary orientation. Second,

consider the iso-probability density surfaces with

p 6¼ 0:5: for the linear boundary model, these are hy-
perplanes parallel to the decision boundary, but for the

prototype model, these are paraboloid surfaces with a
curvature that increases as p diverges from 0.5. Con-

ceptually, this means that for the linear boundary

model, decision thresholds are the same at every point

along the category boundary in feature space, while for

the prototype model, decision thresholds are narrowest

(i.e., the model is most confident) at the center of feature

space, near the category prototypes. Intuitively, the

behavior of the prototype model seems more natural––
new objects are categorized more accurately when they

are similar to previously seen objects––but our results

from Experiment 1 along with others� results (e.g., No-
sofsky, 1991) clearly contradict this intuition.

Again, a more flexible model can help to provide some

insight into this issue. In particular, the RXMh1i and
SPCh1i are like the prototype model with curved, rather
than planar, iso-probability surfaces, but are like the
linear boundary model in that the main decision

boundary can have an arbitrary orientation. Our results

from Experiment 2 demonstrate that with these two

qualities combined, the RXMh1i and SPCh1i fit human
behavior significantly better than either the prototype or

linear boundary models (AIC: RXMh1i, SPCh1i ¼
173:4, prototype ¼ 189:6, linear boundary ¼ 177:3).
All-exemplar vs. linear boundary models. By extension

of the previous two comparisons, the differences be-

tween the all-exemplar model and the linear boundary

model are even more numerous. The all-exemplar model

allows for curved decision surfaces, but the orientation

of the surface has limited flexibility. In contrast, the

linear boundary model allows only flat decision surfaces,

but these may have arbitrary orientation. Again, the

RXM can combine the separate strengths of these two
models.

In the RXM, the parameters which describe the stored

exemplars become free parameters of the model, and can

be incorporated into comparisons among models using

statistical measures such as the Akaike information

criterion. This allows us to address the importance of

memory by comparing different versions of the RXM

with different numbers of stored exemplars. With this
framework, we can now provide a better answer as to

why models which are otherwise appealing in their con-

ceptual simplicity, such as prototype models, are

consistently outperformed by all-exemplar models: all-

exemplar models allow better flexibility in matching the

shape and orientation of decision surfaces to those used

by human observers. Our results show that the good-

ness-of-fit of all-exemplar models can be improved upon
by allowing ‘‘roaming’’ stored exemplars, and thus an

unconstrained decision boundary, without committing

to high memory demands or to a lack of category-level

abstraction.

RXM vs. SPC. Computationally, the RXM and SPC

are quite similar to each other, as well as to several

earlier models (Anderson, 1991; Kruschke, 1992; see

also Ashby & Waldron, 1999), in that they each rely on
a set of units representing locations in feature space, and

categorize new inputs based on the distance in feature

space between the input and the various stored units.

The main qualitative difference is at the decision stage,

where the RXM produces smoothly curved decision

boundaries, while the SPC produces piecewise-linear

decision boundaries. This is because in the RXM, the

categorization decision is based on contributions from
all of the stored units, with weights proportional to the

distance of the stored units from the input, while in the

SPC, only the nearest stored unit of each category is

considered. In this sense, the SPC involves a much

stronger non-linearity than the RXM. This sharp non-

linearity may not be strictly implemented in neural cir-

cuitry; rather, a biological implementation might have

to rely on a ‘‘softmax’’ approximation (Riesenhuber &
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Poggio, 1999) which would more closely resemble a

gradual decay of similarity with distance as in the RXM.

This question remains to be resolved by further neuro-

physiological study.

Despite the computational similarities of the SPC and

RXM, each is derived from previous models whose

neurobiological implications may appear to put the two

models at odds. We have proposed the RXM as a gen-
eralization of prototype models and all-exemplar models

(i.e., GCM). All-exemplar models, which propose one

hidden unit for every training exemplar, have in par-

ticular carried the implication that observers may rely

on explicit memory of individual visual stimuli, and that

the models� hidden units correspond to these memory
traces (e.g., Knowlton, 1999). This stands in contrast to

neuropsychological evidence from patients with amnesia
who, despite an impairment in recognition tasks re-

quiring declarative memory of individual exemplars, are

relatively unimpaired in various tasks requiring category

learning (Filoteo, Maddox, & Davis, 2001; Knowlton &

Squire, 1993; Squire & Knowlton, 1995). For this rea-

son, Ashby and Waldron (1999) proposed that the

striatal units in the SPC are primarily response-associ-

ated; that is, the units are primarily involved in decision,
rather than perception. We do not make any claims

regarding whether the hidden units in the RXM are

essentially explicit memory traces, particularly since the

hidden units are allowed to occupy points in feature

space that were never directly related to a training ex-

emplar. However, electrophysiogical evidence does

suggest that the mechanisms that are shaped during

category learning also affect perception. Sigala and Lo-
gothetis (2002) showed that, after category learning,

inferotemporal neurons in the macaque were more

sensitive to features that were diagnostic of category

membership than to non-diagnostic features (although

Ashby & Ell, 2001 reviewed studies in which exposure to

visual stimuli that were associated with non-visual cate-

gories such as good/bad tastes did not lead to a change

in visual cell response properties). Furthermore, be-
havioral data (MDS) showed that monkeys� perception
also shifts as a result of category training (Sigala et al.,

2002), supporting the idea that the hidden units tuned to

specific features in a categorization model may not op-

erate solely at the decision stage, but may also be di-

rectly involved in perception. This is not incompatible

with the evidence from amnesic patients; it may be that

categorization relies on neural representations that are
explicit in the sense of being discrete and minimally

distributed, but do not constitute ‘‘explicit memory’’ in

the sense of being behaviorally accessible for declarative

memory. In any case, current psychophysical evidence

alone cannot discriminate whether a model�s mathe-
matical constructs correspond to neuronal processes

occurring in specific cortical areas such as the striatum,

inferotemporal cortex, or even prefrontal cortex.
HMAX. We have begun to ground these high-level

models of categorization more firmly in neurobiology by

combining them with a model (HMAX; Riesenhuber &

Poggio, 1999) that encapsulates the processes that

functionally precede object categorization in the visual

system. Unlike the original categorization models which

receive a high-level feature-based description of their

input, these hybrid models operate directly on a pixel-
based image space representation of the input. Although

the hybrid models fit relatively poorly when compared

with the original models, their absolute performance is

encouraging. The best-fitting HMAX-SPCh3imodel was
able to account for nearly 86% of the variance seen in

subjects� responses. If anything, our results underesti-
mate the capabilities of a hybrid model, since we used

only the first 4 of 576 principal component vectors of the
raw HMAX output, sacrificing �20% of the available

variance. This performance was achieved using straight-

forward bottom–up processing of the input images, with

no task-specific training or context-specific top–down

modulation of the early-vision stage. Yet, such top–

down effects are certainly involved in the performance of

human subjects, and the original high-level features are

indeed a close approximation of subjects� internal rep-
resentations as shown by MDS experiments. It thus

appears that current high-level models of categorization

can be linked to more detailed biological models of vi-

sion. A better integration of early-vision and object-

categorization models––for example, by allowing at-

tentional weights to propagate from the decision stage

back to earlier sensory levels––is likely to uncover a

more complete picture of the categorization process.
Generalization and learning. In the most general terms,

categorization is a process with four components: (1)

external input (visual stimuli), (2) internal input (pre-

existing memories and neural state), and (3) a mecha-

nism that combines the inputs to produce (4) an

observable output (categorization behavior). A com-

plete theory of categorization should quantitatively de-

scribe an internal mechanism that can be appropriately
tuned by a learning process involving exposure to a

limited set of training exemplars (e.g., Ashby & Ell,

2001; Nosofsky et al., 1992), and should describe how

differences in observers� pre-existing internal states lead
to different categorization behavior given the same in-

put. In the context of the RXM or SPC, for example,

such a theory might help address questions such as how

the number of hidden units is adjusted during learning,
perhaps in relation to the difficulty in separating cate-

gories from one another.

By this standard, the models we have discussed pro-

vide only a partial theory, in that they only describe the

fully trained mechanism without offering a process for

learning the tunable parameters of that mechanism. We

have inferred the final values of these parameters by

fitting the models to human behavior on a set of test
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exemplars. 6 In other words, by collecting and modeling

observers� responses to the test exemplars, we have only
addressed the question of what did observers learn, ra-

ther than the more complex question of how did they

learn it. Nevertheless, our descriptive results provide

valuable constraints for more complete future models of

the learning process; after all, a model cannot success-

fully describe the learning process without also suc-
cessfully describing the outcome of that process.

An open question is to what extent these computa-

tional insights, based on psychophysical experiments

using simple, four-feature stimuli, carry over to the

identification and categorization of complex objects in

natural scenes. One challenge is to translate this analysis

of the computational principles underlying object cate-

gorization into a mature understanding of how neurons
along the ventral visual pathway can implement such

operations (Op de Beeck et al., 2001; Sigala & Logo-

thetis, 2002).
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