00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046 #include "Util/Assert.H"
00047 #include "Util/stats.H"
00048 #include "Util/Types.H"
00049 #include "Util/log.H"
00050 #include <cmath>
00051
00052 template <class T>
00053 stats<T>::stats()
00054 {
00055 GGC = false;
00056 }
00057 template <class T>
00058 stats<T>::~stats()
00059 {
00060 }
00061
00062
00063
00064 template <class T>
00065 T stats<T>::mean(std::vector<T> &X)
00066 {
00067 ASSERT(X.size() > 0);
00068 T Xi = 0;
00069 for(unsigned int i = 0; i < X.size(); i++)
00070 {
00071 Xi = Xi + X[i];
00072 }
00073 return Xb = Xi/X.size();
00074 };
00075
00076 template <class T>
00077 T stats<T>::findS(std::vector<T> &X, T Xbar)
00078 {
00079 ASSERT(X.size() > 0);
00080 T Xi = 0;
00081 for(unsigned int i = 0; i < X.size(); i++)
00082 {
00083 Xi = (pow(X[i],2)/X.size()) + Xi;
00084 }
00085 S2 = Xi - pow(Xbar,2);
00086 if(S > 0)
00087 return S = sqrt(S2);
00088 else
00089 return S = 0;
00090 };
00091
00092 template <class T>
00093 T stats<T>::findS(std::vector<T> &X, T Xbar, T adj)
00094 {
00095 ASSERT(X.size() > 0);
00096 T Xi = 0;
00097 for(unsigned int i = 0; i < X.size(); i++)
00098 {
00099 Xi = (pow((X[i]+adj),2)/X.size()) + Xi;
00100 }
00101 S2 = Xi - pow((Xbar+adj),2);
00102 if(S2 > 0)
00103 S = sqrt(S2);
00104 else
00105 S = 0;
00106 return S;
00107 }
00108
00109 template <class T>
00110 T stats<T>::rRegression(std::vector<T> &X, std::vector<T> &Y)
00111 {
00112 ASSERT(X.size() == Y.size());
00113 T Xmean = mean(X);
00114 T Ymean = mean(Y);
00115 Sx = findS(X,Xmean);
00116 Sy = findS(Y,Ymean);
00117 T hold = 0;
00118 for(unsigned int i = 0; i < X.size(); i++)
00119 {
00120 hold = ((X[i] - Xmean)*(Y[i] - Ymean)) + hold;
00121 }
00122 return r = hold/(X.size()*Sx*Sy);
00123 };
00124
00125 #if 0
00126
00127 template <class T>
00128 T stats<T>::bRegression(std::vector<T> &X, std::vector<T> &Y)
00129 {
00130 ASSERT(X.size() == Y.size());
00131 T Xmean = mean(X);
00132 T Ymean = mean(Y);
00133 Sx = S(X,Xmean);
00134 Sy = S(Y,Ymean);
00135 T Zxy = 0;
00136 for(unsigned int i = 0; i < X.size(); i++)
00137 {
00138 Zxy = (((X[i] - Xmean)/Sx)*((Y[i] - Ymean)/Sy)) + Zxy;
00139 }
00140 return b = Zxy/X.size();
00141 };
00142 #endif
00143
00144 template <class T>
00145 T stats<T>::Bxy(T r, T Sx, T Sy)
00146 {
00147 return r*(Sy/Sx);
00148 };
00149
00150 template <class T>
00151 T stats<T>::simpleANOVA(std::vector<T> &X, std::vector<T> &Y)
00152 {
00153 ASSERT(X.size() == Y.size());
00154 float mean, meanX, meanY;
00155 float sumX = 0, sumY = 0;
00156
00157 for(unsigned int i = 0; i < X.size(); i++)
00158 {
00159 sumX += X[i];
00160 sumY += Y[i];
00161 }
00162 meanX = sumX/X.size();
00163 meanY = sumY/Y.size();
00164 mean = (sumY+sumX)/(X.size()+Y.size());
00165
00166 SSwithin = 0;
00167 SStotal = 0;
00168 for(unsigned int i = 0; i < X.size(); i++)
00169 {
00170 SSwithin += pow((X[i]-meanX),2);
00171 SSwithin += pow((Y[i]-meanY),2);
00172
00173 SStotal += pow((X[i]-mean),2);
00174 SStotal += pow((Y[i]-mean),2);
00175 }
00176
00177 SSbetween = 0;
00178 SSbetween = X.size() * (pow((meanX - mean),2));
00179 SSbetween += Y.size() * (pow((meanY - mean),2));
00180
00181
00182 DFwithin = (X.size()+Y.size())-2;
00183 DFbetween = 1;
00184 MSbetween = (SSbetween/DFbetween);
00185 MSwithin = (SSwithin/DFwithin);
00186 return F = MSbetween/MSwithin;
00187 }
00188
00189 #if 0
00190
00191 template <class T>
00192 T stats<T>::decisionGGC(T mu1, T mu2, T sigma1, T sigma2, T PofA)
00193 {
00194 T PofB = 1 - PofA;
00195
00196
00197 T LeftTop = (mu2*pow(sigma1,2))-(mu1*pow(sigma2,2));
00198 T Bottom = pow(sigma1,2)-pow(sigma2,2);
00199 T logVal = log((PofB*sigma1)/(PofA*sigma2));
00200 T preLog = pow((mu1-mu2),2)+(2*(pow(sigma1,2)-pow(sigma2,2)));
00201
00202
00203
00204 D = (LeftTop - ((sigma1*sigma2)*sgrt(preLog*logVal)))/Bottom;
00205
00206 Dprime = (LeftTop + ((sigma1*sigma2)*sgrt(preLog*logVal)))/Bottom;
00207 GGC = true;
00208 return D;
00209 }
00210 #endif
00211
00212 template <class T>
00213 T stats<T>::getDPrime()
00214 {
00215 ASSERT(GGC);
00216 return Dprime;
00217 }
00218
00219 template <class T>
00220 T stats<T>::getErrorGGC_2AFC(T mu1, T mu2, T sigma1, T sigma2)
00221 {
00222 LINFO("INPUT 2AFC u1 = %f, u2 = %f, s1 = %f, s2 = %f",mu1,mu2,sigma1,sigma2);
00223 float temp = fabs((mu1-mu2)/(sqrt(2*(pow(sigma1,2)+pow(sigma2,2)))));
00224 LINFO("ERFC(%f)",temp);
00225 return erfc(temp)/2;
00226 }
00227
00228 template <class T>
00229 T stats<T>::gauss(T x, T mu,T sigma)
00230 {
00231 return (1/(sqrt(2*3.14159*pow(sigma,2))))*exp((-1*pow((x-mu),2))/(2*pow(sigma,2)));
00232 }
00233
00234
00235 template class stats<float>;
00236 template class stats<double>;
00237
00238
00239
00240
00241
00242