Abstract


= PDF Reprint,     = BibTeX entry,     = Online Abstract


Click to download BibTeX data Clik to view abstract Y. Ge, Y. Li, D. Wu, A. Xu, A. M. Jones, A. S. Rios, I. Fostiropoulos, P. H. Huang, Z. W. Murdock, G. Sahin, S. Ni, K. Lekkala, S. A. Sontakke, L. Itti, Lightweight Learner for Shared Knowledge Lifelong Learning, Transactions on Machine Learning Research, pp. 1--26, 2023. (Cited by 3)

Abstract: In Lifelong Learning (LL), agents continually learn as they encounter new conditions and tasks. Most current LL is limited to a single agent that learns tasks sequentially. Dedicated LL machinery is then deployed to mitigate the forgetting of old tasks as new tasks are learned. This is inherently slow. We propose a new Shared Knowledge Lifelong Learning (SKILL) challenge, which deploys a decentralized population of LL agents that each sequentially learn different tasks, with all agents operating independently and in parallel. After learning their respective tasks, agents share and consolidate their knowledge over a decentralized communication network, so that, in the end, all agents can master all tasks. We present one solution to SKILL which uses Lightweight Lifelong Learning (LLL) agents, where the goal is to facilitate efficient sharing by minimizing the fraction of the agent that is specialized for any given task. Each LLL agent thus consists of a common task-agnostic immutable part, where most parameters are, and individual task-specific modules that contain fewer parameters but are adapted to each task. Agents share their task-specific modules, plus summary information ("task anchors") representing their tasks in the common task-agnostic latent space of all agents. Receiving agents register each received task-specific module using the corresponding anchor. Thus, every agent improves its ability to solve new tasks each time new task-specific modules and anchors are received. If all agents can communicate with all others, eventually all agents become identical and can solve all tasks. On a new, very challenging SKILL-102 dataset with 102 image classification tasks (5,033 classes in total, 2,041,225 training, 243,464 validation, and 243,464 test images), we achieve much higher (and SOTA) accuracy over 8 LL baselines, while also achieving near perfect parallelization.

Themes: Machine Learning, Computer Vision

 

Copyright © 2000-2007 by the University of Southern California, iLab and Prof. Laurent Itti.
This page generated by bibTOhtml on Tue 09 Jan 2024 12:10:23 PM PST