Abstract


= PDF Reprint,     = BibTeX entry,     = Online Abstract


Click to download PDF version Click to download BibTeX data Clik to view abstract R. J. Peters, A. Iyer, L. Itti, C. Koch, Components of bottom-up gaze allocation in natural images, Vision Research, Vol. 45, No. 8, pp. 2397-2416, Aug 2005. [2003 impact factor: 1.958] (Cited by 266)

Abstract: Recent research (Parkhurst et al., Vision Research 2002) showed that a model of bottom-up visual attention can account in part for the spatial locations fixated by humans while free-viewing complex natural and artificial scenes. That study used a definition of salience based on local detectors with coarse global surround inhibition. Here, we use a similar framework to investigate the roles of several types of nonlinear interactions known to exist in visual cortex, and of eccentricity-dependent processing. For each of these, we added a component to the salience model, including richer interactions among orientation-tuned units, both at spatial short range (for clutter reduction) and long range (for contour facilitation), and a detailed model of eccentricity-dependent changes in visual processing. Subjects free-viewed naturalistic and artificial images while their eye movements were recorded, and the resulting fixation locations were compared with the models' predicted salience maps. We found that the proposed interactions indeed play a significant role in the spatiotemporal deployment of attention in natural scenes; about half of the observed inter-subject variance can be explained by these different models. This suggests that attentional guidance does not depend solely on local visual features, but must also include the effects of interactions among features. As models of these interactions become more accurate in predicting behaviorally-relevant salient locations, they become useful to a range of applications in computer vision and human-machine interface design.

Themes: Model of Bottom-Up Saliency-Based Visual Attention, Model of Top-Down Attentional Modulation, Human Eye-Tracking Research, Computational Modeling

 

Copyright © 2000-2007 by the University of Southern California, iLab and Prof. Laurent Itti.
This page generated by bibTOhtml on Mon Jun 30 12:01:59 PDT 2014