Abstract


= PDF Reprint,     = BibTeX entry,     = Online Abstract


Click to download PDF version Click to download BibTeX data Clik to view abstract J. Bonaiuto, L. Itti, The Use of Attention and Spatial Information for Rapid Facial Recognition in Video, Image and Vision Computing, Vol. 24, No. 6, pp. 557-563, Jun 2006. [2004 impact factor: 1.159] (Cited by 21)

Abstract: Bottom-up visual attention is the process by which primates quickly select regions of an image likely to contain behaviorally relevant objects. In artificial systems, restricting the task of object recognition to these regions allows faster recognition and unsupervised learning of multiple objects in cluttered scenes. A problem with this approach is that often objects that are superficially dissimilar to the target are given the same consideration in recognition as similar objects. Additionally, in video, objects recognized in previous frames at locations distant to the current fixation point often are given the same consideration in recognition as objects previously recognized at proximal locations. Here we investigate the value of rapidly pruning the facial recognition search space, first using similarity in the already-computed low-level features that guide attention to prioritize matching against an object database, and, second, using spatial proximity information derived from previous video frames. By comparing the performance of Lowe's recognition algorithm with Itti & Koch's bottom-up attention model with and without search space pruning, we demonstrate that this approach significantly accelerates facial recognition in video footage.

Themes: Model of Bottom-Up Saliency-Based Visual Attention, Computer Vision

 

Copyright © 2000-2007 by the University of Southern California, iLab and Prof. Laurent Itti.
This page generated by bibTOhtml on Wed Feb 15 12:13:56 PST 2017