BPneuron.H

Go to the documentation of this file.
00001 /*!@file BPnnet/BPneuron.H header for a back prop neuron */
00002 
00003 // //////////////////////////////////////////////////////////////////// //
00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the //
00005 // University of Southern California (USC) and the iLab at USC.         //
00006 // See http://iLab.usc.edu for information about this project.          //
00007 // //////////////////////////////////////////////////////////////////// //
00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00010 // in Visual Environments, and Applications'' by Christof Koch and      //
00011 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00012 // pending; application number 09/912,225 filed July 23, 2001; see      //
00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00014 // //////////////////////////////////////////////////////////////////// //
00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00016 //                                                                      //
00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00018 // redistribute it and/or modify it under the terms of the GNU General  //
00019 // Public License as published by the Free Software Foundation; either  //
00020 // version 2 of the License, or (at your option) any later version.     //
00021 //                                                                      //
00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00025 // PURPOSE.  See the GNU General Public License for more details.       //
00026 //                                                                      //
00027 // You should have received a copy of the GNU General Public License    //
00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00030 // Boston, MA 02111-1307 USA.                                           //
00031 // //////////////////////////////////////////////////////////////////// //
00032 //
00033 // Primary maintainer for this file: Philip Williams <plw@usc.edu>
00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/BPnnet/BPneuron.H $
00035 // $Id: BPneuron.H 4786 2005-07-04 02:18:56Z itti $
00036 //
00037 
00038 #ifndef BPNEURON_H_DEFINED
00039 #define BPNEURON_H_DEFINED
00040 
00041 //! neuron for a back prop neural net (BPnnet)
00042 class BPneuron {
00043 public:
00044   //! Constructor
00045   BPneuron();
00046 
00047   //! Destructor
00048   ~BPneuron();
00049 
00050   //! Assign given weighted input sum [S_j] and activation level
00051   /*! Activation Level a_j = f(S_j)*/
00052   void assignInput(double input);
00053 
00054   //! Calculate and set delta for output neurons
00055   /*! For output layer neurons; finds difference between output and
00056     target and multiplies by derivative of sigmoid function [delta_j =
00057     (t_j - a_j)*f'(S_j)]
00058     returns the difference [t_j - a_j] for RMS error calculation */
00059   double calcOutputDelta(const double target);
00060 
00061   //! Calculate and set delta for hidden neurons
00062   /*! For hidden layer neurons; compute hidden delta from weighted sum
00063     of output deltas [delta_j = sum_k(delta_k * w_kj)*f'(S_j)]
00064     returns delta_j */
00065   void calcHiddenDelta(double weightedDeltaSum);
00066 
00067   //! Return delta (error level)
00068   double getDelta();
00069 
00070   //! Return activation level
00071   double getActivationLevel();
00072 
00073 private:
00074   // Perform sigmoid function on x
00075   double sigmoidFunction(const double x);
00076 
00077   // Perform first derivative of sigmoid function on x
00078   double derivSigmoidFunction(const double x);
00079 
00080   double delta;            // d_j
00081   double weightedInputSum; // a_j
00082   double activationLevel;  // S_j
00083 };
00084 
00085 #endif
00086 
00087 // ######################################################################
00088 /* So things look consistent in everyone's emacs... */
00089 /* Local Variables: */
00090 /* indent-tabs-mode: nil */
00091 /* End: */
Generated on Sun May 8 08:40:21 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3