SubmapAlgorithmBiased.C

Go to the documentation of this file.
00001 /*!@file Channels/SubmapAlgorithmBiased.C Compute SingleChannel submaps with Bayesian biasing */
00002 
00003 // //////////////////////////////////////////////////////////////////// //
00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2000-2005   //
00005 // by the University of Southern California (USC) and the iLab at USC.  //
00006 // See http://iLab.usc.edu for information about this project.          //
00007 // //////////////////////////////////////////////////////////////////// //
00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00010 // in Visual Environments, and Applications'' by Christof Koch and      //
00011 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00012 // pending; application number 09/912,225 filed July 23, 2001; see      //
00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00014 // //////////////////////////////////////////////////////////////////// //
00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00016 //                                                                      //
00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00018 // redistribute it and/or modify it under the terms of the GNU General  //
00019 // Public License as published by the Free Software Foundation; either  //
00020 // version 2 of the License, or (at your option) any later version.     //
00021 //                                                                      //
00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00025 // PURPOSE.  See the GNU General Public License for more details.       //
00026 //                                                                      //
00027 // You should have received a copy of the GNU General Public License    //
00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00030 // Boston, MA 02111-1307 USA.                                           //
00031 // //////////////////////////////////////////////////////////////////// //
00032 //
00033 // Primary maintainer for this file: Lior Elazary <elazary@usc.edu>
00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/Channels/SubmapAlgorithmBiased.C $
00035 // $Id: SubmapAlgorithmBiased.C 9714 2008-04-29 06:48:56Z itti $
00036 //
00037 
00038 #ifndef CHANNELS_SUBMAPALGORITHMBIASED_C_DEFINED
00039 #define CHANNELS_SUBMAPALGORITHMBIASED_C_DEFINED
00040 
00041 #include "Channels/SubmapAlgorithmBiased.H"
00042 
00043 #include "Channels/ChannelVisitor.H"
00044 #include "Channels/ComplexChannel.H"
00045 #include "Channels/SingleChannel.H"
00046 #include "Image/Image.H"
00047 #include "Image/ShapeOps.H"
00048 
00049 #include "GUI/DebugWin.H"
00050 namespace
00051 {
00052   class Installer : public ChannelVisitor
00053   {
00054     OptionManager& itsMgr;
00055 
00056   public:
00057     Installer(OptionManager& mgr) : itsMgr(mgr) {}
00058 
00059     virtual ~Installer() {}
00060 
00061     virtual void visitChannelBase(ChannelBase& chan)
00062     {
00063       // nothing to do here
00064     }
00065 
00066     virtual void visitSingleChannel(SingleChannel& chan)
00067     {
00068       nub::ref<SubmapAlgorithmBiased> algo
00069         (new SubmapAlgorithmBiased(itsMgr));
00070 
00071       chan.setSubmapAlgorithm(algo);
00072     }
00073 
00074     virtual void visitComplexChannel(ComplexChannel& chan)
00075     {
00076       for (uint i = 0; i < chan.numChans(); ++i)
00077         chan.subChan(i)->accept(*this);
00078     }
00079   };
00080 }
00081 
00082 // ######################################################################
00083 SubmapAlgorithmBiased::SubmapAlgorithmBiased(OptionManager& mgr,
00084                                              const std::string& descrName,
00085                                              const std::string& tagName)
00086   :
00087   SubmapAlgorithm(mgr, descrName, tagName)
00088 {}
00089 
00090 // ######################################################################
00091 SubmapAlgorithmBiased::~SubmapAlgorithmBiased()
00092 {}
00093 
00094 // ######################################################################
00095 Image<float> SubmapAlgorithmBiased::compute(const SingleChannel& chan,
00096                                             const uint i)
00097 {
00098   Image<float> submap = chan.getRawCSmap(i);
00099 
00100   // resize submap to fixed scale if necessary:
00101   if (submap.getWidth() > chan.getMapDims().w())
00102     submap = downSize(submap, chan.getMapDims());
00103   else if (submap.getWidth() < chan.getMapDims().w())
00104     submap = rescale(submap, chan.getMapDims());
00105 
00106   LFATAL("This is being reworked... stay tuned");
00107 
00108   /*
00109   // bias the submap if we have a mean and sigma
00110   LINFO("Mean %f var %f", chan.getMean(i), chan.getSigmaSq(i));
00111   if (chan.getMean(i) > 0 && chan.getSigmaSq(i) > 0)
00112   {
00113     double mean = chan.getMean(i);
00114     double var = chan.getSigmaSq(i);
00115 
00116     for(int y=0; y<submap.getHeight(); y++)
00117       for(int x=0; x<submap.getWidth(); x++)
00118       {
00119         double val = submap.getVal(x, y);
00120         double delta = -(val - mean) * (val - mean);
00121         //Calc the normal dist
00122         double newVal = exp(delta/(2*var))/(sqrt(2*M_PI*var));
00123 
00124         // submap.setVal(x, y, newVal*10000);
00125         submap.setVal(x, y, log(newVal)+10000);
00126       }
00127   }
00128 
00129   Image<float> biasMask = chan.getBiasMask();
00130   if (biasMask.initialized()) //bias based on a mask
00131   {
00132     //rescale the mask to the submap scale TODO: can be done more effiently
00133     biasMask = rescale(biasMask, submap.getDims());
00134     submap *= biasMask;
00135   }
00136   // now do the standard processing
00137   submap = chan.postProcessMap(submap, i);
00138 
00139 */
00140   return submap;
00141 }
00142 
00143 // ######################################################################
00144 void setSubmapAlgorithmBiased(ChannelBase& chan)
00145 {
00146   Installer inst(chan.getManager());
00147   chan.accept(inst);
00148 }
00149 
00150 // ######################################################################
00151 /* So things look consistent in everyone's emacs... */
00152 /* Local Variables: */
00153 /* mode: c++ */
00154 /* indent-tabs-mode: nil */
00155 /* End: */
00156 
00157 #endif // CHANNELS_SUBMAPALGORITHMBIASED_C_DEFINED
Generated on Sun May 8 08:40:22 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3