segmentImageTrack2.C

Go to the documentation of this file.
00001 /*!@file VFAT/segmentImageTrack2.C Basic image segmenter blob finder using color */
00002 
00003 // //////////////////////////////////////////////////////////////////// //
00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the //
00005 // University of Southern California (USC) and the iLab at USC.         //
00006 // See http://iLab.usc.edu for information about this project.          //
00007 // //////////////////////////////////////////////////////////////////// //
00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00010 // in Visual Environments, and Applications'' by Christof Koch and      //
00011 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00012 // pending; application number 09/912,225 filed July 23, 2001; see      //
00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00014 // //////////////////////////////////////////////////////////////////// //
00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00016 //                                                                      //
00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00018 // redistribute it and/or modify it under the terms of the GNU General  //
00019 // Public License as published by the Free Software Foundation; either  //
00020 // version 2 of the License, or (at your option) any later version.     //
00021 //                                                                      //
00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00025 // PURPOSE.  See the GNU General Public License for more details.       //
00026 //                                                                      //
00027 // You should have received a copy of the GNU General Public License    //
00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00030 // Boston, MA 02111-1307 USA.                                           //
00031 // //////////////////////////////////////////////////////////////////// //
00032 //
00033 // Primary maintainer for this file: T. Nathan Mundhenk <mundhenk@usc.edu>
00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/VFAT/segmentImageTrack2.C $
00035 // $Id: segmentImageTrack2.C 6003 2005-11-29 17:22:45Z rjpeters $
00036 //
00037 
00038 #include "VFAT/segmentImageTrack2.H"
00039 
00040 #include "Util/Assert.H"
00041 
00042 #include <iostream>
00043 /*
00044 #define LOTBOUND 150
00045 #define BOUND 10
00046 #define LEVBOUND 140
00047 #define MINBOUND 5
00048 #define TRAJ 4
00049 #define SAMPLESTART 30
00050 #define MAXTRAJ 50
00051 #define MAXSIZE 100
00052 #define MAXMASS 25000
00053 #define MINMASS 25
00054 #define RATIOMIN 0.3F
00055 #define LEVRATIOMIN -0.3F
00056 #define RATIOMAX 1.7F
00057 #define LEVRATIOMAX 3.3F
00058 */
00059 
00060 void segmentImageTrack2::SITapplyHardConst()
00061 {
00062   ASSERT(SIT_blobSet && "Must set blob properties in SITsetBlobProp");
00063   if(SIT_LOT == true)
00064   {
00065     //std::cerr << "SET new LOT\n";
00066     SIT_xBound = SIT_blobProp->BP_LOTbound;
00067     SIT_yBound = SIT_blobProp->BP_LOTbound;
00068   }
00069   else
00070   {
00071     //std::cerr << "SET old LOT\n";
00072     SIT_xBound = (int)(SIT_blobProp->BP_bound +
00073                        (SIT_levity*SIT_blobProp->BP_softBound));
00074     SIT_yBound = (int)(SIT_blobProp->BP_bound +
00075                        (SIT_levity*SIT_blobProp->BP_softBound));
00076   }
00077 
00078   for(int i = 0; i < SIT_image->SInumberBlobs(); i++)
00079   {
00080     SIT_softCandidateBlob[i] = true;
00081     SIT_candidateBlob[i] = true;
00082     SIT_killedByTrack[i] = false;
00083     // check if a blobs mass is within cosnstraints
00084     if((SIT_image->SIgetMass(i) < SIT_blobProp->BP_minMass) ||
00085        (SIT_image->SIgetMass(i) >SIT_blobProp->BP_maxMass))
00086     {
00087       SIT_candidateBlob[i] = false;
00088       SIT_softCandidateBlob[i] = false;
00089       SIT_killedByTrack[i] = true;
00090       /*std::cerr << "KILLED " << i << " MASS\n";
00091       std::cerr << "\t" << SIT_blobProp->BP_minMass
00092                 << " < " <<  SIT_image->SIgetMass(i)
00093                 << " < " << SIT_blobProp->BP_maxMass
00094                 << "\n";*/
00095     }
00096 
00097     // check that a blob is within our X frame
00098     if((SIT_image->SIgetCenterX(i) < (SIT_centerX - SIT_xBound)) ||
00099         (SIT_image->SIgetCenterX(i) > (SIT_centerX + SIT_xBound)))
00100     {
00101       SIT_candidateBlob[i] = false;
00102       SIT_killedByTrack[i] = true;
00103       /*std::cerr << "KILLED " << i << " Xframe\n";
00104       std::cerr << "\t" << (SIT_centerX - SIT_xBound)
00105                 << " < " << SIT_image->SIgetCenterX(i)
00106                 << " < " << (SIT_centerX + SIT_xBound)
00107                 << "\n";*/
00108 
00109     }
00110 
00111     // check that a blob is within our Y frame
00112     if((SIT_image->SIgetCenterY(i) < (SIT_centerY - SIT_yBound)) ||
00113        (SIT_image->SIgetCenterY(i) > (SIT_centerY + SIT_yBound)))
00114     {
00115       SIT_candidateBlob[i] = false;
00116       SIT_killedByTrack[i] = true;
00117       /*std::cerr << "KILLED " << i << " Yframe\n";
00118       std::cerr << "\t" << (SIT_centerY - SIT_yBound)
00119                 << " < " << SIT_image->SIgetCenterY(i)
00120                 << " < " << (SIT_centerY + SIT_yBound)
00121                 << "\n";*/
00122     }
00123 
00124     // check that blob is within size ratios
00125 
00126     float foo = (SIT_image->SIgetXmax(i) - SIT_image->SIgetXmin(i));
00127     if(foo != 0)
00128     {
00129       float temp = (SIT_image->SIgetYmax(i) - SIT_image->SIgetYmin(i))/foo;
00130       if((temp < (SIT_blobProp->BP_ratioMin
00131                   + (SIT_levity*SIT_blobProp->BP_softRatioMin)))
00132          || (temp > (SIT_blobProp->BP_ratioMax
00133                      + (SIT_levity*SIT_blobProp->BP_softRatioMin))))
00134       {
00135         SIT_candidateBlob[i] = false;
00136         SIT_killedByTrack[i] = true;
00137         /*std::cerr << "KILLED " << i << " RATIO\n";*/
00138       }
00139 
00140     }
00141   }
00142 }
00143 
00144 // INSERT SIZE TO MASS RATIO
00145 // INSERT DUAL TRACK
00146 
00147 void segmentImageTrack2::SITfluidTrackCalc(float *thisMean, float *thisStd,
00148                                        float *thisCounter,
00149                                        std::vector<float> &thisList)
00150 {
00151   if((SIT_LOT == false) && (SIT_doTraj == true))
00152   {
00153     if(*thisCounter == SIT_blobProp->BP_traj)
00154       *thisCounter = 0;
00155     for(int i = 0; i < SIT_blobProp->BP_traj; i++)
00156     {
00157       *thisMean += thisList[i];
00158       *thisStd += pow(thisList[i],2)/SIT_blobProp->BP_traj;
00159     }
00160     *thisMean = *thisMean/SIT_blobProp->BP_traj;
00161     *thisStd = sqrt(*thisStd - pow(*thisMean,2));
00162   }
00163 }
00164 
00165 void segmentImageTrack2::SITmergeBlobs()
00166 {
00167   SIT_mass = 0;
00168   double meanX = 0;
00169   double meanY = 0;
00170   SIT_minX = 640;
00171   SIT_minY = 480;
00172   SIT_maxX = 0;
00173   SIT_maxY = 0;
00174 
00175   // calculate the center of a combined blob from the average
00176   // mass center of all remaining blobs
00177 
00178   for(int i = 0; i < SIT_image->SInumberBlobs(); i++)
00179   {
00180     //std::cerr << "BLOB " << i << "\n";
00181     if(SIT_candidateBlob[i] == true)
00182     {
00183       //std::cerr << "OK\n";
00184       SIT_mass += SIT_image->SIgetMass(i);
00185       meanX += SIT_image->SIgetMass(i)*SIT_image->SIgetCenterX(i);
00186       meanY += SIT_image->SIgetMass(i)*SIT_image->SIgetCenterY(i);
00187       if(SIT_image->SIgetXmax(i) > SIT_maxX) SIT_maxX =
00188                                                SIT_image->SIgetXmax(i);
00189       if(SIT_image->SIgetYmax(i) > SIT_maxY) SIT_maxY =
00190                                                SIT_image->SIgetYmax(i);
00191       if(SIT_image->SIgetXmin(i) < SIT_minX) SIT_minX =
00192                                                SIT_image->SIgetXmin(i);
00193       if(SIT_image->SIgetYmin(i) < SIT_minY) SIT_minY =
00194                                                SIT_image->SIgetYmin(i);
00195     }
00196   }
00197 
00198   if(SIT_mass > 0)
00199   {
00200     SIT_centerX = (int)(meanX/SIT_mass);
00201     SIT_centerY = (int)(meanY/SIT_mass);
00202     //LOT = false;
00203 
00204     if(((SIT_maxX-SIT_minX)*(SIT_maxY-SIT_minY)) >
00205        ((SIT_image->SIgetImageSizeX()*SIT_image->SIgetImageSizeY())
00206         /SIT_blobProp->BP_maxFrameSize))
00207     {
00208       SIT_LOT = true;
00209       std::cerr << "LOT: " << ((SIT_maxX-SIT_minX)*(SIT_maxY-SIT_minY))
00210                 << " > " <<
00211         ((SIT_image->SIgetImageSizeX()*SIT_image->SIgetImageSizeY())
00212          /SIT_blobProp->BP_maxFrameSize)
00213                 << "\n";
00214     }
00215     else
00216     {
00217       SIT_LOT = false;
00218     }
00219   }
00220   else
00221   {
00222     SIT_LOT = true;
00223     //std::cerr << "LOT: mass < 0" << "\n";
00224   }
00225 }
00226 
00227 /*=============================================================*/
00228 /*        PUBLIC methods                                       */
00229 /*=============================================================*/
00230 
00231 segmentImageTrack2::segmentImageTrack2()
00232 {
00233   SIT_blobSet = false;
00234 }
00235 
00236 segmentImageTrack2::segmentImageTrack2(int initSize)
00237 {
00238   SITsetUpVars(initSize);
00239   SIT_blobSet = false;
00240 }
00241 
00242 segmentImageTrack2::segmentImageTrack2(int initSize,segmentImage2 *seg)
00243 {
00244   SIT_image = seg;
00245   SITsetUpVars(initSize);
00246   SIT_blobSet = false;
00247 }
00248 
00249 void segmentImageTrack2::SITsetImage(segmentImage2 *seg)
00250 {
00251   SIT_image = seg;
00252 }
00253 
00254 void segmentImageTrack2::SITsetBlobProp(blobProp *bp)
00255 {
00256   SIT_blobSet = true;
00257   SIT_blobProp = bp;
00258 }
00259 
00260 void segmentImageTrack2::SITsetUpVars(int initSize)
00261 {
00262    // after the first iteration, do this
00263   SIT_candidateBlob.resize(initSize,true);
00264   SIT_softCandidateBlob.resize(initSize,true);
00265   SIT_killedByTrack.resize(initSize,true);
00266   SIT_Tsize.resize(SIT_blobProp->BP_traj,0);
00267   SIT_Tmass.resize(SIT_blobProp->BP_traj,0);
00268   SIT_TMS.resize(SIT_blobProp->BP_traj,0);
00269   SIT_TsizeStd.resize(SIT_blobProp->BP_traj,0);
00270 
00271   SIT_TmassStd.resize(SIT_blobProp->BP_traj,0);
00272   SIT_TMSStd.resize(SIT_blobProp->BP_traj,0);
00273   SIT_pVergance.resize(initSize,0);
00274   SIT_centerX = 0;
00275   SIT_centerY = 0;
00276   SIT_iter = false;
00277   SIT_LOT = false;
00278   SIT_trajCounterM = 0;
00279   SIT_trajCounterS = 0;
00280   SIT_trajCounterMS = 0;
00281   SIT_trajStart = 0;
00282   SIT_doTraj = false;
00283 }
00284 
00285 segmentImageTrack2::~segmentImageTrack2()
00286 {}
00287 
00288 void segmentImageTrack2::SITtrack(float _levity)
00289 {
00290   SIT_levity = _levity;
00291   if(SIT_iter == true)
00292   {
00293     // apply hard constraints to blob
00294     SITapplyHardConst();
00295   }
00296   else
00297   {
00298     SIT_iter = true;
00299   }
00300   // merge all remaining blobs into a super blob
00301   SITmergeBlobs();
00302 }
00303 
00304 int segmentImageTrack2::SITgetObjectX()
00305 {
00306   return SIT_centerX;
00307 }
00308 
00309 int segmentImageTrack2::SITgetObjectY()
00310 {
00311   return SIT_centerY;
00312 }
00313 
00314 int segmentImageTrack2::SITgetXmin()
00315 {
00316   return SIT_minX;
00317 }
00318 
00319 int segmentImageTrack2::SITgetXmax()
00320 {
00321   return SIT_maxX;
00322 }
00323 
00324 int segmentImageTrack2::SITgetYmin()
00325 {
00326   return SIT_minY;
00327 }
00328 
00329 int segmentImageTrack2::SITgetYmax()
00330 {
00331   return SIT_maxY;
00332 }
00333 
00334 int segmentImageTrack2::SITgetMass()
00335 {
00336   return SIT_mass;
00337 }
00338 
00339 bool segmentImageTrack2::SITisCandidate(int blob)
00340 {
00341   return SIT_candidateBlob[blob];
00342 }
00343 
00344 bool segmentImageTrack2::SITisSoftCandidate(int blob)
00345 {
00346   return SIT_softCandidateBlob[blob];
00347 }
00348 
00349 bool segmentImageTrack2::SITwasKilledByTrack(int blob)
00350 {
00351   return SIT_killedByTrack[blob];
00352 }
00353 
00354 void segmentImageTrack2::SITsetCandidate(int blob, bool setThis)
00355 {
00356   SIT_candidateBlob[blob] = setThis;
00357 }
00358 
00359 bool segmentImageTrack2::SITreturnLOT()
00360 {
00361   return SIT_LOT;
00362 }
00363 
00364 void segmentImageTrack2::SITsetLOT(bool LOT)
00365 {
00366   SIT_LOT = LOT;
00367 }
00368 
00369 void segmentImageTrack2::SITreset()
00370 {
00371   SIT_trajStart = 0;
00372   SIT_doTraj = false;
00373 
00374 }
Generated on Sun May 8 08:42:35 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3