StimAnalyzer.C

Go to the documentation of this file.
00001 /*!@file Psycho/StimAnalyzer.C make different kind of visual test stimuli
00002 */
00003 
00004 // //////////////////////////////////////////////////////////////////// //
00005 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the //
00006 // University of Southern California (USC) and the iLab at USC.         //
00007 // See http://iLab.usc.edu for information about this project.          //
00008 // //////////////////////////////////////////////////////////////////// //
00009 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00010 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00011 // in Visual Environments, and Applications'' by Christof Koch and      //
00012 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00013 // pending; application number 09/912,225 filed July 23, 2001; see      //
00014 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00015 // //////////////////////////////////////////////////////////////////// //
00016 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00017 //                                                                      //
00018 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00019 // redistribute it and/or modify it under the terms of the GNU General  //
00020 // Public License as published by the Free Software Foundation; either  //
00021 // version 2 of the License, or (at your option) any later version.     //
00022 //                                                                      //
00023 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00024 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00025 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00026 // PURPOSE.  See the GNU General Public License for more details.       //
00027 //                                                                      //
00028 // You should have received a copy of the GNU General Public License    //
00029 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00030 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00031 // Boston, MA 02111-1307 USA.                                           //
00032 // //////////////////////////////////////////////////////////////////// //
00033 //
00034 // Primary maintainer for this file: T. Nathan Mundhenk <mundhenk@usc.edu>
00035 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/Psycho/StimAnalyzer.C $
00036 // $Id: StimAnalyzer.C 6795 2006-06-29 20:45:32Z rjpeters $
00037 
00038 
00039 #ifndef STIM_ANALYZER_C_DEFINED
00040 #define STIM_ANALYZER_C_DEFINED
00041 
00042 #include "Psycho/StimAnalyzer.H"
00043 #include <cfloat>
00044 #include <fstream>
00045 #include <iostream>
00046 
00047 using namespace std;
00048 
00049 StimAnalyzer::StimAnalyzer(const int frames, const ushort conditions)
00050 {
00051   itsGTtargetColor.set(255.0F,255.0F,255.0F);
00052   itsGTtargetColorPatch1.set(0.0F,128.0F,128.0F);
00053   itsGTtargetColorPatch2.set(0.0F,0.0F,255.0F);
00054   itsGTtargetColorPatch1off.set(128.0F,128.0F,0.0F);
00055   itsGTtargetColorPatch2off.set(255.0F,0.0F,0.0F);
00056   itsGTdistColor.set(128.0F,128.0F,128.0F);
00057   SAinit(frames,conditions);
00058 }
00059 
00060 /*****************************************************************************/
00061 
00062 StimAnalyzer::~StimAnalyzer()
00063 {}
00064 
00065 /*****************************************************************************/
00066 
00067 void StimAnalyzer::SAinit(const int frames, const ushort conditions)
00068 {
00069   itsFrames     = frames;
00070   itsConditions = conditions;
00071 
00072   itsTargetFrameOn.resize(frames,false);
00073   itsDistFrameOn.resize(frames,false);
00074   itsOtherFrameOn.resize(frames,false);
00075 
00076   itsTargetFrameNumber.resize(frames,0);
00077   itsDistFrameNumber.resize(frames,0);
00078   itsOtherFrameNumber.resize(frames,0);
00079 
00080   itsTargetFrameTotalONNumber.resize(itsConditions,0);
00081   itsDistFrameTotalONNumber.resize(itsConditions,0);
00082   itsOtherFrameTotalONNumber.resize(itsConditions,0);
00083 
00084   itsTargetFrameSum.resize(frames,0.0F);
00085   itsDistFrameSum.resize(frames,0.0F);
00086   itsOtherFrameSum.resize(frames,0.0F);
00087 
00088   itsTargetFrameSS.resize(frames,0.0F);
00089   itsDistFrameSS.resize(frames,0.0F);
00090   itsOtherFrameSS.resize(frames,0.0F);
00091 
00092   itsTargetFrameMin.resize(frames,DBL_MAX);
00093   itsDistFrameMin.resize(frames,DBL_MAX);
00094   itsOtherFrameMin.resize(frames,DBL_MAX);
00095 
00096   itsTargetFrameMax.resize(frames,0.0F);
00097   itsDistFrameMax.resize(frames,0.0F);
00098   itsOtherFrameMax.resize(frames,0.0F);
00099 
00100   itsTargetFrameMean.resize(frames,0.0F);
00101   itsDistFrameMean.resize(frames,0.0F);
00102   itsOtherFrameMean.resize(frames,0.0F);
00103 
00104   itsTargetFrameStd.resize(frames,0.0F);
00105   itsDistFrameStd.resize(frames,0.0F);
00106   itsOtherFrameStd.resize(frames,0.0F);
00107 
00108   itsTargetFrameTotalONSum.resize(itsConditions,0.0F);
00109   itsDistFrameTotalONSum.resize(itsConditions,0.0F);
00110   itsOtherFrameTotalONSum.resize(itsConditions,0.0F);
00111 
00112   itsTargetFrameTotalONSS.resize(itsConditions,0.0F);
00113   itsDistFrameTotalONSS.resize(itsConditions,0.0F);
00114   itsOtherFrameTotalONSS.resize(itsConditions,0.0F);
00115 
00116   itsTargetFrameTotalONMin.resize(itsConditions,DBL_MAX);
00117   itsDistFrameTotalONMin.resize(itsConditions,DBL_MAX);
00118   itsOtherFrameTotalONMin.resize(itsConditions,DBL_MAX);
00119 
00120   itsTargetFrameTotalONMax.resize(itsConditions,0.0F);
00121   itsDistFrameTotalONMax.resize(itsConditions,0.0F);
00122   itsOtherFrameTotalONMax.resize(itsConditions,0.0F);
00123 
00124   itsTargetFrameTotalONMean.resize(itsConditions,0.0F);
00125   itsDistFrameTotalONMean.resize(itsConditions,0.0F);
00126   itsOtherFrameTotalONMean.resize(itsConditions,0.0F);
00127 
00128   itsTargetFrameTotalONStd.resize(itsConditions,0.0F);
00129   itsDistFrameTotalONStd.resize(itsConditions,0.0F);
00130   itsOtherFrameTotalONStd.resize(itsConditions,0.0F);
00131 }
00132 
00133 /*****************************************************************************/
00134 
00135 void StimAnalyzer::SAinputImages(const Image<double>          salmap,
00136                                  const Image<PixRGB<double> > groundTruth,
00137                                  const uint   frame,
00138                                  const ushort condition)
00139 {
00140   itsSalMap      = salmap;
00141   itsGroundTruth = groundTruth;
00142   itsFrame       = frame;
00143   itsCondition   = condition;
00144   SAcompImages();
00145 }
00146 
00147 /*****************************************************************************/
00148 
00149 void StimAnalyzer::SAcompImages()
00150 {
00151   double targetMax = 0.0F; double targetMin = DBL_MAX;
00152   double distMax   = 0.0F; double distMin   = DBL_MAX;
00153   double otherMax  = 0.0F; double otherMin  = DBL_MAX;
00154 
00155   int targetN = 0; double sumTarget = 0.0F; double ssTarget = 0.0F;
00156   int distN   = 0; double sumDist   = 0.0F; double ssDist   = 0.0F;
00157   int otherN  = 0; double sumOther  = 0.0F; double ssOther  = 0.0F;
00158 
00159   Image<double>::iterator salMapItr               = itsSalMap.beginw();
00160   Image<PixRGB<double> >::iterator groundTruthItr = itsGroundTruth.beginw();
00161 
00162   // Get the saliency values over Targets, distractors and other pixels
00163 
00164   while(salMapItr != itsSalMap.endw())
00165   {
00166     if((*groundTruthItr == itsGTtargetColor))//       ||
00167       ///      (*groundTruthItr == itsGTtargetColorPatch1) ||
00168       //     (*groundTruthItr == itsGTtargetColorPatch2))
00169     {
00170       if(*salMapItr > targetMax)
00171         targetMax = *salMapItr;
00172       else if(*salMapItr < targetMin)
00173         targetMin = *salMapItr;
00174 
00175       sumTarget += *salMapItr;
00176       ssTarget  += pow(*salMapItr,2.0);
00177       targetN++;
00178     }
00179     else if(*groundTruthItr == itsGTdistColor)
00180     {
00181       if(*salMapItr > distMax)
00182         distMax = *salMapItr;
00183       else if(*salMapItr < distMin)
00184         distMin = *salMapItr;
00185 
00186       sumDist += *salMapItr;
00187       ssDist  += pow(*salMapItr,2.0);
00188       distN++;
00189     }
00190     else
00191     {
00192       if(*salMapItr > otherMax)
00193         otherMax = *salMapItr;
00194       else if(*salMapItr < otherMin)
00195         otherMin = *salMapItr;
00196 
00197       sumOther += *salMapItr;
00198       ssOther  += pow(*salMapItr,2.0);
00199       otherN++;
00200     }
00201     ++salMapItr; ++groundTruthItr;
00202   }
00203 
00204   // Set whether targets and distractors are On or Off in this frame
00205 
00206   if(targetN != 0)
00207     itsTargetFrameOn[itsFrame]   = true;
00208   if(distN != 0)
00209     itsDistFrameOn[itsFrame]     = true;
00210   if(otherN != 0)
00211     itsOtherFrameOn[itsFrame]    = true;
00212 
00213   // set the final stat values for this frame
00214 
00215   itsTargetFrameNumber[itsFrame] = targetN;
00216   itsDistFrameNumber[itsFrame]   = distN;
00217   itsOtherFrameNumber[itsFrame]  = otherN;
00218 
00219   itsTargetFrameSum[itsFrame]    = sumTarget;
00220   itsDistFrameSum[itsFrame]      = sumDist;
00221   itsOtherFrameSum[itsFrame]     = sumOther;
00222 
00223   itsTargetFrameSS[itsFrame]     = ssTarget;
00224   itsDistFrameSS[itsFrame]       = ssDist;
00225   itsOtherFrameSS[itsFrame]      = ssOther;
00226 
00227   itsTargetFrameMin[itsFrame]    = targetMin;
00228   itsDistFrameMin[itsFrame]      = distMin;
00229   itsOtherFrameMin[itsFrame]     = otherMin;
00230 
00231   itsTargetFrameMax[itsFrame]    = targetMax;
00232   itsDistFrameMax[itsFrame]      = distMax;
00233   itsOtherFrameMax[itsFrame]     = otherMax;
00234 
00235   // compute mean and std for this frame
00236 
00237   itsTargetFrameMean[itsFrame]   = sumTarget/targetN;
00238   itsDistFrameMean[itsFrame]     = sumDist/distN;
00239   itsOtherFrameMean[itsFrame]    = sumOther/otherN;
00240 
00241   itsTargetFrameStd[itsFrame]    = sqrt((ssTarget/targetN)
00242     - pow(itsTargetFrameMean[itsFrame],2.0));
00243   itsDistFrameStd[itsFrame]      = sqrt((ssDist/distN)
00244     - pow(itsDistFrameMean[itsFrame],2.0));
00245   itsOtherFrameStd[itsFrame]     = sqrt((ssOther/otherN)
00246     - pow(itsOtherFrameMean[itsFrame],2.0));
00247 
00248   // gather values for this "condition"
00249   // additionally, keep track of whether the item is On or Off
00250   // in this frame
00251 
00252   if(itsTargetFrameOn[itsFrame])
00253   {
00254     itsTargetFrameTotalONNumber[itsCondition] += targetN;
00255     itsTargetFrameTotalONSum[itsCondition]    += sumTarget;
00256     itsTargetFrameTotalONSS[itsCondition]     += pow(sumTarget,2.0);
00257     if(targetMin < itsTargetFrameTotalONMin[itsCondition])
00258       itsTargetFrameTotalONMin[itsCondition]   = targetMin;
00259     else if (targetMax > itsTargetFrameTotalONMax[itsCondition])
00260       itsTargetFrameTotalONMax[itsCondition]   = targetMax;
00261   }
00262 
00263   if(itsDistFrameOn[itsFrame])
00264   {
00265     itsDistFrameTotalONNumber[itsCondition] += distN;
00266     itsDistFrameTotalONSum[itsCondition]    += sumDist;
00267     itsDistFrameTotalONSS[itsCondition]     += pow(sumDist,2.0);
00268     if(distMin < itsDistFrameTotalONMin[itsCondition])
00269       itsDistFrameTotalONMin[itsCondition]   = distMin;
00270     else if (distMax > itsDistFrameTotalONMax[itsCondition])
00271       itsDistFrameTotalONMax[itsCondition]   = distMax;
00272   }
00273 
00274   if(itsOtherFrameOn[itsFrame])
00275   {
00276     itsOtherFrameTotalONNumber[itsCondition] += otherN;
00277     itsOtherFrameTotalONSum[itsCondition]    += sumOther;
00278     itsOtherFrameTotalONSS[itsCondition]     += pow(sumOther,2.0);
00279     if(otherMin < itsOtherFrameTotalONMin[itsCondition])
00280       itsOtherFrameTotalONMin[itsCondition]   = otherMin;
00281     else if (otherMax > itsOtherFrameTotalONMax[itsCondition])
00282       itsOtherFrameTotalONMax[itsCondition]   = otherMax;
00283   }
00284 }
00285 
00286 /*****************************************************************************/
00287 
00288 void StimAnalyzer::SAfinalStats()
00289 {
00290 
00291   for(ushort i = 0; i < itsConditions; i++)
00292   {
00293     // compute means over conditions
00294     itsTargetFrameTotalONMean[i]   =
00295       itsTargetFrameTotalONSum[i]/itsTargetFrameTotalONNumber[i];
00296     itsDistFrameTotalONMean[i]     =
00297       itsDistFrameTotalONSum[i]/itsDistFrameTotalONNumber[i];
00298     itsOtherFrameTotalONMean[i]    =
00299       itsOtherFrameTotalONSum[i]/itsOtherFrameTotalONNumber[i];
00300 
00301     // computer std over conditions
00302     itsTargetFrameTotalONStd[i] =
00303       sqrt((itsTargetFrameTotalONSS[i]/itsTargetFrameTotalONNumber[i]) -
00304            pow(itsTargetFrameTotalONMean[i],2.0));
00305     itsDistFrameTotalONStd[i] =
00306       sqrt((itsDistFrameTotalONSS[i]/itsDistFrameTotalONNumber[i]) -
00307            pow(itsDistFrameTotalONMean[i],2.0));
00308     itsOtherFrameTotalONStd[i] =
00309       sqrt((itsOtherFrameTotalONSS[i]/itsOtherFrameTotalONNumber[i]) -
00310            pow(itsOtherFrameTotalONMean[i],2.0));
00311   }
00312 }
00313 
00314 /*****************************************************************************/
00315 
00316 void StimAnalyzer::SAdumpFrameStats(string fileName, string sample,
00317                                     bool printHeader)
00318 {
00319 
00320 
00321   if(printHeader)
00322   {
00323     ofstream out(fileName.c_str(),ios::out);
00324 
00325     out << "Sample\tFrame\t";
00326 
00327     out << "Target_On\tTarget_N\tTarget_Sum\tTarget_SS\tTarget_Min\t"
00328         << "Target_Max\tTarget_Mean\tTarget_Std\t";
00329 
00330     out << "Dist_On\tDist_N\tDist_Sum\tDist_SS\tDist_Min\tDist_Max\t"
00331         << "Dist_Mean\tDist_Std\t";
00332 
00333     out << "Other_On\tOther_N\tOther_Sum\tOther_SS\tOther_Min\tOther_Max\t"
00334         << "Other_Mean\tOther_Std\t";
00335 
00336     out << "\n";
00337 
00338     out.close();
00339   }
00340 
00341   ofstream out(fileName.c_str(),ios::app);
00342 
00343   for(uint i = 0; i < itsFrames; i++)
00344   {
00345     out << sample << "\t" << i << "\t";
00346 
00347     out << itsTargetFrameOn[i]      << "\t"
00348         << itsTargetFrameNumber[i]  << "\t"
00349         << itsTargetFrameSum[i]     << "\t"
00350         << itsTargetFrameSS[i]      << "\t"
00351         << itsTargetFrameMin[i]     << "\t"
00352         << itsTargetFrameMax[i]     << "\t"
00353         << itsTargetFrameMean[i]    << "\t"
00354         << itsTargetFrameStd[i]     << "\t";
00355 
00356     out << itsDistFrameOn[i]        << "\t"
00357         << itsDistFrameNumber[i]    << "\t"
00358         << itsDistFrameSum[i]       << "\t"
00359         << itsDistFrameSS[i]        << "\t"
00360         << itsDistFrameMin[i]       << "\t"
00361         << itsDistFrameMax[i]       << "\t"
00362         << itsDistFrameMean[i]      << "\t"
00363         << itsDistFrameStd[i]       << "\t";
00364 
00365     out << itsOtherFrameOn[i]       << "\t"
00366         << itsOtherFrameNumber[i]   << "\t"
00367         << itsOtherFrameSum[i]      << "\t"
00368         << itsOtherFrameSS[i]       << "\t"
00369         << itsOtherFrameMin[i]      << "\t"
00370         << itsOtherFrameMax[i]      << "\t"
00371         << itsOtherFrameMean[i]     << "\t"
00372         << itsOtherFrameStd[i]      << "\t";
00373 
00374     out << "\n";
00375   }
00376   out.close();
00377 }
00378 /*****************************************************************************/
00379 
00380 void StimAnalyzer::SAdumpConditionStats(string fileName, string sample,
00381                                         bool printHeader)
00382 {
00383 
00384 
00385   if(printHeader)
00386   {
00387     ofstream out(fileName.c_str(),ios::out);
00388 
00389     out << "Sample\tCondition\t";
00390 
00391     out << "Target_N\tTarget_Sum\tTarget_SS\tTarget_Min\tTarget_Max\t"
00392         << "Target_Mean\tTarget_Std\t";
00393 
00394     out << "Dist_N\tDist_Sum\tDist_SS\tDist_Min\tDist_Max\t"
00395         << "Dist_Mean\tDist_Std\t";
00396 
00397     out << "Other_N\tOther_Sum\tOther_SS\tOther_Min\tOther_Max\t"
00398         << "Other_Mean\tOther_Std\t";
00399 
00400     out << "\n";
00401 
00402     out.close();
00403   }
00404 
00405   ofstream out(fileName.c_str(),ios::app);
00406 
00407   for(ushort i = 0; i < itsConditions; i++)
00408   {
00409     out << sample << "\t" << i << "\t";
00410 
00411     out << itsTargetFrameTotalONNumber[i] << "\t"
00412         << itsTargetFrameTotalONSum[i]    << "\t"
00413         << itsTargetFrameTotalONSS[i]     << "\t"
00414         << itsTargetFrameTotalONMin[i]    << "\t"
00415         << itsTargetFrameTotalONMax[i]    << "\t"
00416         << itsTargetFrameTotalONMean[i]   << "\t"
00417         << itsTargetFrameTotalONStd[i]    << "\t";
00418 
00419     out << itsDistFrameTotalONNumber[i]   << "\t"
00420         << itsDistFrameTotalONSum[i]      << "\t"
00421         << itsDistFrameTotalONSS[i]       << "\t"
00422         << itsDistFrameTotalONMin[i]      << "\t"
00423         << itsDistFrameTotalONMax[i]      << "\t"
00424         << itsDistFrameTotalONMean[i]     << "\t"
00425         << itsDistFrameTotalONStd[i]      << "\t";
00426 
00427     out << itsOtherFrameTotalONNumber[i]  << "\t"
00428         << itsOtherFrameTotalONSum[i]     << "\t"
00429         << itsOtherFrameTotalONSS[i]      << "\t"
00430         << itsOtherFrameTotalONMin[i]     << "\t"
00431         << itsOtherFrameTotalONMax[i]     << "\t"
00432         << itsOtherFrameTotalONMean[i]    << "\t"
00433         << itsOtherFrameTotalONStd[i]     << "\t";
00434 
00435     out << "\n";
00436   }
00437   out.close();
00438 }
00439 
00440 
00441 
00442 
00443 #endif // STIM_ANALYZER_C_DEFINED
Generated on Sun May 8 08:41:13 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3