00001 /*!@file Image/KalmanFilter.H implementation of a 2nd order linear Kalman Filter 00002 */ 00003 // //////////////////////////////////////////////////////////////////// // 00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2000-2002 // 00005 // by the University of Southern California (USC) and the iLab at USC. // 00006 // See http://iLab.usc.edu for information about this project. // 00007 // //////////////////////////////////////////////////////////////////// // 00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected // 00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency // 00010 // in Visual Environments, and Applications'' by Christof Koch and // 00011 // Laurent Itti, California Institute of Technology, 2001 (patent // 00012 // pending; application number 09/912,225 filed July 23, 2001; see // 00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status). // 00014 // //////////////////////////////////////////////////////////////////// // 00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit. // 00016 // // 00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can // 00018 // redistribute it and/or modify it under the terms of the GNU General // 00019 // Public License as published by the Free Software Foundation; either // 00020 // version 2 of the License, or (at your option) any later version. // 00021 // // 00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope // 00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the // 00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // 00025 // PURPOSE. See the GNU General Public License for more details. // 00026 // // 00027 // You should have received a copy of the GNU General Public License // 00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write // 00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, // 00030 // Boston, MA 02111-1307 USA. // 00031 // //////////////////////////////////////////////////////////////////// // 00032 // 00033 // Primary maintainer for this file: Dirk Walther <walther@caltech.edu> 00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/Image/KalmanFilter.H $ 00035 // $Id: KalmanFilter.H 6005 2005-11-29 18:49:14Z rjpeters $ 00036 // 00037 00038 #ifndef KALMANFILTER_H_DEFINED 00039 #define KALMANFILTER_H_DEFINED 00040 00041 #include "Util/Types.H" 00042 #include "Image/Image.H" 00043 00044 #define DEF_PNOISE 1.0F 00045 #define DEF_MNOISE 1.0F 00046 #define DEF_TSTEP 1.0F 00047 00048 //! implementation of a 2nd order linear Kalman Filter 00049 /*! This class can be used for tracking. The state vector is second order, 00050 i.e. it maintains location, speed, and accelaration to generate 00051 predictions.*/ 00052 class KalmanFilter 00053 { 00054 public: 00055 00056 //! default constructor - need to call init before the filter can be used 00057 KalmanFilter(); 00058 00059 //! constructor that initializes the filter 00060 /*!@param initialM - the initial measurement used to jump start the filter 00061 @param pNoise - std of the (Gaussian) proess noise 00062 @param mNoise - std of the (Gaussian) measurement noise 00063 @param timeStep - the time interval between measurements (default: 1)*/ 00064 KalmanFilter(float initialM, float pNoise = DEF_PNOISE, 00065 float mNoise = DEF_MNOISE, float timeStep = DEF_TSTEP); 00066 00067 // default copy constructor and destructor are fine 00068 00069 //! initialize the filter 00070 /*!@param initialM - the initial measurement used to jump start the filter 00071 @param pNoise - std of the (Gaussian) process noise 00072 @param mNoise - std of the (Gaussian) measurement noise 00073 @param timeStep - the time interval between measurements (default: 1)*/ 00074 void init(float initialM, float pNoise = DEF_PNOISE, 00075 float mNoise = DEF_MNOISE, float timeStep = DEF_TSTEP); 00076 00077 //! write the entire KalmanFilter to the output stream os 00078 void writeToStream(std::ostream& os) const; 00079 00080 //! read the KalmanFilter from the input stream is 00081 void readFromStream(std::istream& is); 00082 00083 //! returns a prediction for the next value 00084 float getEstimate() const; 00085 00086 //! returns a prediction for the next value given a measurement 00087 float getEstimate(float measurement) const; 00088 00089 //! returns the speed (second entry in the state vector) 00090 float getSpeed() const; 00091 00092 //! returns the cost for associating measurement with this Kalman tracker 00093 float getCost(float measurement) const; 00094 00095 //! update the filter for the next time step without a measurement (skipped value) 00096 float update(); 00097 00098 //! update the filter for the next time step with a measurement 00099 float update(float measurement); 00100 00101 //! returns the current state vector [x, v, a] 00102 Image<float> getStateVector() const; 00103 00104 //! returns the covariance matrix P 00105 Image<float> getCovariances() const; 00106 00107 //! test whether the filter is initialized 00108 bool isInitialized() const; 00109 00110 00111 private: 00112 // update the Kalman matrix and the covariance matrices 00113 void updateFilter(); 00114 00115 // returns the predicted state vector without a measurement 00116 Image<float> getXEstimate() const; 00117 00118 // returns the predicted state vector given a measurement 00119 Image<float> getXEstimate(float z) const; 00120 00121 00122 // a number of matrices used for the processing 00123 Image<float> x, I, M, K, P, H, HT, Phi, PhiT, Q; 00124 float itsPNoise, itsMNoise2; 00125 bool initialized; 00126 }; 00127 00128 #endif 00129 00130 // ###################################################################### 00131 /* So things look consistent in everyone's emacs... */ 00132 /* Local Variables: */ 00133 /* indent-tabs-mode: nil */ 00134 /* End: */