00001 /*!@file Learn/GentleBoost.H GentleBoost Multi-Class Classifier */ 00002 // //////////////////////////////////////////////////////////////////// // 00003 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the // 00004 // University of Southern California (USC) and the iLab at USC. // 00005 // See http://iLab.usc.edu for information about this project. // 00006 // //////////////////////////////////////////////////////////////////// // 00007 // Major portions of the iLab Neuromorphic Vision Toolkit are protected // 00008 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency // 00009 // in Visual Environments, and Applications'' by Christof Koch and // 00010 // Laurent Itti, California Institute of Technology, 2001 (patent // 00011 // pending; application number 09/912,225 filed July 23, 2001; see // 00012 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status). // 00013 // //////////////////////////////////////////////////////////////////// // 00014 // This file is part of the iLab Neuromorphic Vision C++ Toolkit. // 00015 // // 00016 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can // 00017 // redistribute it and/or modify it under the terms of the GNU General // 00018 // Public License as published by the Free Software Foundation; either // 00019 // version 2 of the License, or (at your option) any later version. // 00020 // // 00021 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope // 00022 // that it will be useful, but WITHOUT ANY WARRANTY; without even the // 00023 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // 00024 // PURPOSE. See the GNU General Public License for more details. // 00025 // // 00026 // You should have received a copy of the GNU General Public License // 00027 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write // 00028 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, // 00029 // Boston, MA 02111-1307 USA. // 00030 // //////////////////////////////////////////////////////////////////// // 00031 // 00032 // Primary maintainer for this file: Dan Parks <danielfp@usc.edu> 00033 // $HeadURL$ 00034 // $Id$ 00035 // 00036 00037 #ifndef GENTLEBOOST_H_DEFINED 00038 #define GENTLEBOOST_H_DEFINED 00039 00040 #include "Learn/DecisionTree.H" 00041 #include "GentleBoostBinary.H" 00042 #include "Util/Assert.H" 00043 #include "Util/log.H" 00044 #include "Util/SortUtil.H" 00045 #include <limits> 00046 #include <math.h> 00047 #include <stdio.h> 00048 #include <map> 00049 #include <iostream> 00050 #include <fstream> 00051 00052 // The data is assumed to be in data[N][M] dimensions where N is the # of dimensions, and M is the # of samples 00053 00054 //! Multi-Class Gentle-AdaBoost using a One vs All, MAX wins voting scheme 00055 class GentleBoost 00056 { 00057 public: 00058 GentleBoost(int maxTreeSize=1); 00059 // Multi Class Boost 00060 //! Get PDF map of each class, with a vector of each observation 00061 std::map<int,std::vector<float> > predictPDF(const std::vector<std::vector<float> >& data); 00062 //! Get the most likely class for a particular index in a set of observations 00063 int getMostLikelyClass(const std::map<int,std::vector<float> >& pdf, int index); 00064 //! Get the most likely class for a set of observations 00065 std::vector<int> getMostLikelyClass(const std::map<int,std::vector<float> >& pdf); 00066 //! Get most likely class per observation 00067 std::vector<int> predict(const std::vector<std::vector<float> >& data); 00068 //! Train a set of binary (1vsAll) GentleBoost classifiers on the given data 00069 void train(const std::vector<std::vector<float> >& data, const std::vector<int>& labels, int maxIters); 00070 //! Convert class id labels to binary per class labels 00071 std::map<int,std::vector<int> > convertLabels(const std::vector<int>& labels); 00072 //! Remove all training 00073 void clear(); 00074 //! Convenience function to transpose the data dimensions, since the ordering is unusual 00075 std::vector<std::vector<float> > transpose(const std::vector<std::vector<float> >& data); 00076 //! Convenience function to print the underlying decision trees for each 1vsAll Classifier 00077 void printAllTrees(); 00078 //! Create a string representation of the heirarchy 00079 void writeAllTrees(std::ostream& outstream); 00080 //! Read a string representation of the heirarchy and build the class 00081 void readAllTrees(std::istream& instream); 00082 //! Load a BOOSTed system from a file 00083 void load(std::string file); 00084 //! Save a BOOSTed system to a file 00085 void save(std::string file); 00086 00087 private: 00088 // Limit the size of the underlying trees (number of splits) 00089 int itsMaxTreeSize; 00090 std::map<int,GentleBoostBinary> itsLearners; 00091 }; 00092 00093 00094 00095 #endif // GENTLEBOOST_H_DEFINED