BPnnet Class Reference

describes structure of a 3 layer back prop neural net More...

#include <BPnnet/BPnnet.H>

Collaboration diagram for BPnnet:
Collaboration graph
[legend]

List of all members.

Public Member Functions

 BPnnet (const int numInput, const int numHidden, const KnowledgeBase *kb)
 Constructor.
 ~BPnnet ()
 Destructor.
void randomizeWeights ()
 Initialize all weights to (small) random values.
void normalizeWeights ()
 Normalize weights.
double train (const Image< float > &in, const SimpleVisualObject &target, const double learnRate)
 Do one training iteration.
bool recognize (const Image< float > &in, SimpleVisualObject &vo)
 Attempt to recognize given jet as a certain visual object.
bool save (const char *filename) const
 Store 2 matrices of weights to the file "filename".
bool load (const char *filename)
 Assign all weights based on data stored in the file "filename".

Detailed Description

describes structure of a 3 layer back prop neural net

Definition at line 48 of file BPnnet.H.


Constructor & Destructor Documentation

BPnnet::BPnnet ( const int  numInput,
const int  numHidden,
const KnowledgeBase kb 
)

Constructor.

Definition at line 50 of file BPnnet.C.

References KnowledgeBase::getSize(), and Image< T >::resize().

BPnnet::~BPnnet (  ) 

Destructor.

Definition at line 77 of file BPnnet.C.

References Image< T >::freeMem().


Member Function Documentation

bool BPnnet::load ( const char *  filename  ) 

Assign all weights based on data stored in the file "filename".

returns false if the # of units in each layer do not match the matrix sizes in the file

Definition at line 252 of file BPnnet.C.

References Image< T >::getArrayPtr(), and Image< T >::getSize().

void BPnnet::normalizeWeights ( void   ) 

Normalize weights.

Definition at line 98 of file BPnnet.C.

References getMinMax(), and inplaceClamp().

Referenced by randomizeWeights().

void BPnnet::randomizeWeights ( void   ) 

Initialize all weights to (small) random values.

Definition at line 84 of file BPnnet.C.

References normalizeWeights(), randomDouble(), and Image< T >::setVal().

bool BPnnet::recognize ( const Image< float > &  in,
SimpleVisualObject vo 
)

Attempt to recognize given jet as a certain visual object.

Definition at line 196 of file BPnnet.C.

References SimpleVisualObject::getName(), KnowledgeBase::getSimpleVisualObject(), and max().

bool BPnnet::save ( const char *  filename  )  const

Store 2 matrices of weights to the file "filename".

use this after training a net

Definition at line 232 of file BPnnet.C.

References Image< T >::getArrayPtr(), and Image< T >::getSize().

double BPnnet::train ( const Image< float > &  in,
const SimpleVisualObject target,
const double  learnRate 
)

Do one training iteration.

returns rms1 = sum of (target output - actual output)^2/n_outputs for all output layer neurons

Definition at line 111 of file BPnnet.C.

References KnowledgeBase::findSimpleVisualObjectIndex(), SimpleVisualObject::getName(), Image< T >::getVal(), and Image< T >::setVal().


The documentation for this class was generated from the following files:
Generated on Sun May 8 08:43:08 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3