SimStructures.H

Go to the documentation of this file.
00001 /*!@file ModelNeuron/SimStructures.H Class declarations for various
00002    simulation structures */
00003 
00004 // //////////////////////////////////////////////////////////////////// //
00005 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the //
00006 // University of Southern California (USC) and the iLab at USC.         //
00007 // See http://iLab.usc.edu for information about this project.          //
00008 // //////////////////////////////////////////////////////////////////// //
00009 // Major portions of the iLab Neuromorphic Vision Toolkvit are protected //
00010 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00011 // in Visual Environments, and Applications'' by Christof Koch and      //
00012 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00013 // pending; application number 09/912,225 filed July 23, 2001; see      //
00014 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00015 // //////////////////////////////////////////////////////////////////// //
00016 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00017 //                                                                      //
00018 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00019 // redistribute it and/or modify it under the terms of the GNU General  //
00020 // Public License as published by the Free Software Foundation; either  //
00021 // version 2 of the License, or (at your option) any later version.     //
00022 //                                                                      //
00023 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00024 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00025 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00026 // PURPOSE.  See the GNU General Public License for more details.       //
00027 //                                                                      //
00028 // You should have received a copy of the GNU General Public License    //
00029 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00030 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00031 // Boston, MA 02111-1307 USA.                                           //
00032 // //////////////////////////////////////////////////////////////////// //
00033 //
00034 // Primary maintainer for this file: David Berg <dberg@usc.edu>
00035 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/ModelNeuron/SimStructures.H $
00036 
00037 #ifndef MODELNEURON_SIMSTRUCTURES_H_DEFINED
00038 #define MODELNEURON_SIMSTRUCTURES_H_DEFINED
00039 
00040 #include "Util/SimTime.H"
00041 #include "ModelNeuron/Layer.H"
00042 #include "ModelNeuron/CompLayer.H"
00043 #include "ModelNeuron/LowPass.H"
00044 #include "ModelNeuron/LowpassNeuron.H"
00045 #include "ModelNeuron/IZNeuron.H"
00046 #include "ModelNeuron/SC.H"
00047 
00048 //######################################################################
00049 // Some different neural field type models
00050 //######################################################################
00051 //  All equations for the below classes are inspired by Neural Field
00052 //  dynamics: Amari & Arbib, 77; Coombs, 05; Erlhagen & Bicho, 2006
00053 //######################################################################
00054 
00055 //######################################################################
00056 // A neural field with local gaussian connectivity
00057 //######################################################################
00058 struct NeuralFieldGauss : public Layer<LowPassSigmoid, WeightsBinomial>
00059 {
00060   NeuralFieldGauss(const double& tau, const double& h, const double& estd, const BorderPolicy bp, 
00061                    const SimTime& timestep, const uint width, const uint height) 
00062     : Layer<LowPassSigmoid, WeightsBinomial>(estd, 1.0, true, bp,         //weights related options
00063                                              timestep, width, height,     //structuremodule related options
00064                                              "NFG", "pA")                 //set the name and units
00065   {
00066     //set a configured lowpass filter for all positions in layer
00067     setModule(LowPassSigmoid(tau, h, 0.55, 12, timestep));
00068   }
00069 };
00070 
00071 //######################################################################
00072 // A neural field where the interaction kernel is a Gaussian minus
00073 // a constant
00074 //######################################################################
00075 struct NeuralFieldCS : public Layer<LowPassSigmoid, WeightsCS>
00076 {
00077   NeuralFieldCS(const double& tau, const double& h, const double& estd, const double& inhibit, 
00078                 const BorderPolicy bp, const SimTime& timestep, const uint width, const uint height) 
00079     : Layer<LowPassSigmoid, WeightsCS>(estd, 1.0, inhibit, false, bp,     //weights related options
00080                                        timestep, width, height,          //structuremodule related options
00081                                        "NFCS", "pA")                     //set the name and units
00082   {
00083     //set a configured lowpass filter for all positions in layer
00084     setModule(LowPassSigmoid(tau, h, 0.55, 12, timestep));
00085   }
00086 };
00087 
00088 //######################################################################
00089 // A neural field where the interaction kernel is a difference of 
00090 // Gaussians.
00091 //######################################################################
00092 struct NeuralFieldDoG : public Layer<LowPassSigmoid, WeightsDoG>
00093 {
00094   NeuralFieldDoG(const double& tau, const double& h, const double& estd, const double& istd, const double& e_i_ratio,
00095                  const BorderPolicy bp, const SimTime& timestep, const uint width, const uint height) 
00096     : Layer<LowPassSigmoid, WeightsDoG>(estd, istd, e_i_ratio, 1.0, false, bp,   //weights related options
00097                                         timestep, width, height,                 //structuremodule related options
00098                                         "NFDoG", "pA")                           //set the name and units
00099   {
00100     //set a configured lowpass filter for all positions in layer
00101     setModule(LowPassSigmoid(tau, h, 0.55, 12, timestep));
00102   }
00103 };
00104 
00105 // ######################################################################
00106 // register the neural field SC
00107 // ######################################################################
00108 namespace 
00109 {
00110   typedef SimStructure::Factory NFFactory;
00111   typedef SimStructure::Creator NFCreator;
00112   
00113   //define creation functions
00114   struct RegisterNeuralField
00115   {
00116     RegisterNeuralField() 
00117     {
00118       const double tau = 25.0;                    //decay constant for low pass modules
00119       const SimTime time = SimTime::MSECS(5.0);   //default simulation time
00120       const uint w(100), h(100);                  //default dimensions
00121 
00122       //a simple gaussian neural field with either a null stable or full stable solution
00123       // ######################################################################
00124       NFFactory::instance().add("NFGauss", NFCreator::make<NeuralFieldGauss>(tau, -0.5, 1.5, NONE, time, w, h));
00125 
00126       //a global inhibition neural field - global inhibition (4th param) adjusts selection process.  values around 0.95
00127       //and below will lead to stable solutions, with values close to 0 approaching full activity solution. N-bump
00128       //solutions for values < around .45
00129       // ######################################################################
00130       //stable n-bump solution
00131       NFFactory::instance().add("NFNbumpCS", NFCreator::make<NeuralFieldCS>(tau,-0.05, 1.5,.3, NONE, time, w, h));
00132       //stable 1-bump solution
00133       NFFactory::instance().add("NF1bumpCS", NFCreator::make<NeuralFieldCS>(tau,-0.05, 1.5,.6, NONE, time, w, h));
00134 
00135       //a local inhibition neural field - ratio fo excitation/inhibition strength (5th param) can be used to adjust the
00136       //selection process for a fixed size of excitation and inhibition (3rd and 4th param). ratio > 1 and < around 2.5
00137       //will lead to a stable solution of N-regions each consisting of 1 bump. < 1 solutions are degenerating.
00138       //######################################################################
00139       NFFactory::instance().add("NFNbumpDoG",NFCreator::make<NeuralFieldDoG>(tau,-0.05,2.0,8.0,2.00,NONE,time,w,h));
00140       NFFactory::instance().add("NF0bumpDoG",NFCreator::make<NeuralFieldDoG>(tau,-0.05,2.0,8.0,1.0,NONE,time,w,h));
00141     }
00142   };
00143   static RegisterNeuralField registernf;  
00144 }
00145 
00146 //######################################################################
00147 // Models were the units are still esentially low-pass filters, but
00148 // the excitatory and inhibitory layers are more explicitly modeld. 
00149 //######################################################################
00150 
00151 //######################################################################
00152 // 2-layer (excitatory and inhibitory) competitive network
00153 //######################################################################
00154 struct LowpassCompLayer : public CompLayer<LowPassSigmoid, LowPassRectify>
00155 {
00156   LowpassCompLayer(const double& tau, const double& h1, const double& h2, 
00157                    const double& excite_std, const double& inhibit_std,
00158                    const double& excite_w, const double& feedforward, const double& feedback,
00159                    const BorderPolicy bp, const SimTime& timestep, const uint width, const uint height) :
00160     CompLayer<LowPassSigmoid, LowPassRectify>(excite_std, inhibit_std, excite_w, feedforward, feedback, 
00161                                               bp, timestep, width, height, "LowpassCompLayer", "")
00162   { 
00163     setModules(LowPassSigmoid(tau, h1, 0.55, 12, timestep), LowPassRectify(tau, h2, 0.0, timestep));
00164   }
00165 };
00166 
00167 //######################################################################
00168 // 2-layer (excitatory and inhibitory) competitive network with a
00169 // LowpassNeuronRectify
00170 //######################################################################
00171 /*
00172 struct LowpassNeuronCompLayer : public CompLayer<LowpassNeuronRectify, LowpassNeuronRectify>
00173 {
00174   LowpassNeuronCompLayer(const double& excite_std, const double& inhibit_std,
00175                          const double& excite_w, const double& feedforward, const double& feedback,
00176                          const BorderPolicy bp, const SimTime& timestep, const uint width, const uint height) :
00177     CompLayer<LowpassNeuronRectify, LowpassNeuronRectify>(excite_std, inhibit_std, excite_w, feedforward, feedback, 
00178                                                           bp, timestep, width, height, "LowpassCompLayer","PA")
00179   { 
00180     const double& taue, const double& taui, const double& taus, const double& gain, const double& h;
00181     LowpassNeuronRectify lpn(taue, taui, taus, gain, -0.5, 0.0, timestep);//excitatory neuron
00182     setModules(lpn, lpn);
00183   }
00184 };
00185 */
00186 
00187 //######################################################################
00188 // A Lowpass filter model of the mammilian superior colliculus where 
00189 // superficial and deep layers are each modeled with two layer competitive
00190 // networks of lowpass filters with sigmoidal firing rate functions
00191 //######################################################################
00192 struct LowpassSC : public SC
00193 {
00194   LowpassSC(const double tau, 
00195             const double& SCs_SCi, const double& SCi_PreM, const double& PreM_SCi, const double& SCi_SCs,
00196             const BorderPolicy bp, const SimTime& timestep, const uint width, const uint height, 
00197             const std::string name = "LowpassSC", const std::string units = "") :
00198     SC(SCs_SCi, SCi_PreM, PreM_SCi, SCi_SCs, bp, timestep, width, height, name, units)
00199   {
00200     LowpassCompLayer SCs(tau, -0.05, -0.05, 1.5, 3.0, 0.25, 1.0, -0.75, bp, timestep, width, height);
00201     LowpassCompLayer SCi(tau, -0.05, -0.05, 1.0, 1.0, 0.15, 1.0, -0.10, bp, timestep, width, height);
00202     setLayers(SCs, SCi, LowPassSigmoid(tau, 0.0, 1.0, 1.0, timestep));
00203   }
00204 };
00205 
00206 // ######################################################################
00207 // register the neural field models
00208 // ######################################################################
00209 namespace 
00210 {
00211   typedef SimStructure::Factory SSFactory;
00212   typedef SimStructure::Creator SSCreator;
00213   
00214   //define creation functions
00215   struct RegisterLowpass
00216   {
00217     RegisterLowpass() 
00218     {
00219       const double tau = 25.0;                    //decay constant for low pass modules
00220       const SimTime time = SimTime::MSECS(5.0);   //default simulation time
00221       const uint w(100), h(100);                  //default dimensions
00222 
00223       
00224       //two layer competitive neural field, a weak wta version
00225       //######################################################################
00226       SSFactory::instance().add("WeakWTA",SSCreator::make<LowpassCompLayer>(tau,-0.05, -0.05, 
00227                                                                             1.0, 9.0, 0.1, 1.0, -10.0, 
00228                                                                             NONE,time,w,h));
00229 
00230       /*      
00231       //######################################################################
00232       SSFactory::instance().add("WeakWTANeuron",SSCreator::make<LowpassNeuronCompLayer>(tau, tau
00233                                                                                         1.0, 9.0, 0.1, 1.0, -10.0, 
00234                                                                                         NONE,time,w,h));
00235       */
00236       
00237       //two layer competitive neural field, growing blob version
00238       //######################################################################
00239       SSFactory::instance().add("WeakBlob",SSCreator::make<LowpassCompLayer>(tau,-0.05, -0.05, 
00240                                                                              1.0, 1.0, 0.15, 1.0, -0.1, 
00241                                                                              NONE,time,w,h));
00242       //lowpass filter version of the SC model
00243       //######################################################################
00244       SSFactory::instance().add("LowpassSC",SSCreator::make<LowpassSC>(tau, 1.0, 1.0, 1.0, -1.0, NONE, time, w, h));
00245     }
00246   };
00247   static RegisterLowpass registerlowpass;  
00248 }
00249 
00250 //######################################################################
00251 // spiking models
00252 //######################################################################
00253 
00254 //######################################################################
00255 // Two layer competetive networks using spiking neurons, inspired by the 
00256 // construction of each layer in the mammalian superior colliculus. 
00257 //######################################################################
00258 struct IZCompLayer : public CompLayer<FSNeuron, FSNeuron>
00259 {
00260   IZCompLayer(const double& excite_std, const double& inhibit_std,
00261               const double& excite_w, const double& feedforward, const double& feedback,
00262               const BorderPolicy bp, const SimTime& timestep, const uint width, const uint height) :
00263     CompLayer<FSNeuron, FSNeuron>(excite_std,inhibit_std,excite_w,feedforward,feedback, 
00264                                   bp, timestep, width, height, "IZCompLayer", "")
00265   { 
00266    setModules(FSNeuron(), FSNeuron());
00267   }
00268 };
00269 
00270 //######################################################################
00271 // A spiking model of the mamillian superior colliculus
00272 //######################################################################
00273 struct SpikingSC : public SC
00274 {
00275   SpikingSC(const double& SCs_SCi, const double& SCi_PreM, const double& PreM_SCi, const double& SCi_SCs,
00276             const BorderPolicy bp, const SimTime& timestep, const uint width, const uint height, 
00277             const std::string name = "SpikingSC", const std::string units = "") :
00278     SC(SCs_SCi, SCi_PreM, PreM_SCi, SCi_SCs, bp, timestep, width, height, name, units)
00279   {
00280     IZCompLayer SCs(1.0, 9.0, 3.0, 2.0, -0.05, bp, timestep, width, height);
00281     IZCompLayer SCi(1.0, 0.0, 2.0, 6.0, -0.3, bp, timestep, width, height);
00282     setLayers(SCs, SCi, EBNeuron());
00283   }
00284 };
00285 
00286 // ######################################################################
00287 // register the neural simulation models
00288 // ######################################################################
00289 namespace 
00290 {
00291   typedef SimStructure::Factory SpikeLayerFactory;
00292   typedef SimStructure::Creator SpikeLayerCreator;
00293   
00294   //define creation functions
00295   struct RegisterSpikeLayers
00296   {
00297     RegisterSpikeLayers() 
00298     {
00299       const SimTime time = SimTime::MSECS(1.0);
00300       const uint w(100), h(100); //default dimensions
00301 
00302       // superficial SGs model
00303       // ######################################################################
00304       SpikeLayerFactory::instance().add("SCs", SpikeLayerCreator::make<IZCompLayer>(1.0, 9.0, 3.0, 2.0, -0.05, 
00305                                                                                     NONE, time, w, h));
00306       
00307       // our intermediate SC model
00308       // ######################################################################
00309       SpikeLayerFactory::instance().add("SCi", SpikeLayerCreator::make<IZCompLayer>(1.0, 0.0, 2.0, 6.0, -0.3, 
00310                                                                                     NONE, time, w, h));
00311 
00312       //spiking version of the SC model
00313       //######################################################################
00314       SpikeLayerFactory::instance().add("SC", SpikeLayerCreator::make<SpikingSC>(1.0, 1.0, 1.0, -1.0, 
00315                                                                                  NONE, time, w, h));
00316     }
00317   };
00318   static RegisterSpikeLayers registersspikelayers;  
00319 }
00320 
00321 #endif
00322 // ######################################################################
00323 /* So things look consistent in everyone's emacs... */
00324 /* Local Variables: */
00325 /* indent-tabs-mode: nil */
00326 /* End: */
Generated on Sun May 8 08:41:01 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3