Bayes.H

Go to the documentation of this file.
00001 /*!@file Learn/Bayes.H Bayesian network classifier */
00002 
00003 // //////////////////////////////////////////////////////////////////// //
00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2000-2005   //
00005 // by the University of Southern California (USC) and the iLab at USC.  //
00006 // See http://iLab.usc.edu for information about this project.          //
00007 // //////////////////////////////////////////////////////////////////// //
00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00010 // in Visual Environments, and Applications'' by Christof Koch and      //
00011 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00012 // pending; application number 09/912,225 filed July 23, 2001; see      //
00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00014 // //////////////////////////////////////////////////////////////////// //
00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00016 //                                                                      //
00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00018 // redistribute it and/or modify it under the terms of the GNU General  //
00019 // Public License as published by the Free Software Foundation; either  //
00020 // version 2 of the License, or (at your option) any later version.     //
00021 //                                                                      //
00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00025 // PURPOSE.  See the GNU General Public License for more details.       //
00026 //                                                                      //
00027 // You should have received a copy of the GNU General Public License    //
00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00030 // Boston, MA 02111-1307 USA.                                           //
00031 // //////////////////////////////////////////////////////////////////// //
00032 //
00033 // Primary maintainer for this file: Lior Elazary <elazary@usc.edu>
00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/Learn/Bayes.H $
00035 // $Id: Bayes.H 10794 2009-02-08 06:21:09Z itti $
00036 //
00037 
00038 //This is a Naive Bayes for now
00039 #ifndef LEARN_BAYES_H_DEFINED
00040 #define LEARN_BAYES_H_DEFINED
00041 
00042 #include "Util/Types.H" // for uint
00043 #include <vector>
00044 #include <string>
00045 
00046 class Bayes
00047 {
00048 public:
00049 
00050   struct ClassInfo
00051   {
00052     ClassInfo(int id, double p, double sig) : classID(id), prob(p), statSig(sig) {} //constructor to set values
00053     int classID; //the class ID;
00054     double prob; //the probability of this class
00055     double statSig; //the statistical significance between the features value and the params
00056   };
00057 
00058   //! Construct a bayes classifer with a given number of features and
00059   //! number of classes
00060   Bayes(uint numFeatures, uint numClasses);
00061 
00062   //! Destructor
00063   ~Bayes();
00064 
00065   //! Learn to associate a feature vector with a particuler class
00066   void learn(const std::vector<double> &fv, const uint cls); //TODO make as a Template
00067 
00068   //! Learn to associate a feature vector with a particuler class name
00069   void learn(const std::vector<double> &fv, const char *name); //TODO make as a Template
00070 
00071   //! classify a given feature vector
00072   int classify(const std::vector<double> &fv, double *prob = NULL); //TODO make as a template
00073 
00074   //! classify a given feature vector (Return all classes and thier prob, cls contains the max)
00075   std::vector<ClassInfo> classifyRange(std::vector<double> &fv, int &retCls, const bool sort=true);
00076 
00077   //! Return the probability of all the classes given the feature vector
00078   std::vector<double> getClassProb(const std::vector<double> &fv);
00079 
00080   //! Get the mean for a particuler feature
00081   double getMean(const uint cls, const uint i) const;
00082 
00083   //! Get the stdev Squared for a particuler feature
00084   double getStdevSq(const uint cls, const uint i) const;
00085 
00086   //! set the mean
00087   void  setMean(const uint cls, const uint i, const double val);
00088 
00089   //! set the stdev Squared for a particuler feature
00090   void setStdevSq(const uint cls, const uint i, const double val);
00091 
00092   //! Get the number of features
00093   uint getNumFeatures() const;
00094 
00095   //! Get the number of classes
00096   uint getNumClasses() const;
00097 
00098   //! Get the Freq of a given class
00099   uint getClassFreq(const uint cls) const;
00100 
00101   //! Get the probability of a given class
00102   double getClassProb(const uint cls) const;
00103 
00104   //! return the statistical significent of the FV for a given class
00105   double getStatSig(const std::vector<double> &fv, const uint cls) const;
00106 
00107   //! Calculate a Normal Dist (use the srdev squared
00108   double gauss(const double x, const double mean, const double stdevSq) const;
00109 
00110   //! Save the network to a file
00111   void save(const char *filename);
00112 
00113   //! Load the network from a binary file
00114   bool load(const char *filename);
00115 
00116   //! Load the network from a text file
00117   void import(const char *filename);
00118 
00119   //! set feature name (for debuging)
00120   void setFeatureName(uint index, const char *name);
00121 
00122   //! get feature name (for debuging)
00123   const char* getFeatureName(const uint index) const;
00124 
00125   //! Add class by name and return its Id
00126   int addClass(const char *name);
00127 
00128   //! Get the class name from a given Id
00129   const char* getClassName(const uint id);
00130 
00131   //! Get the class id from a given name
00132   int getClassId(const char *name);
00133 
00134   //! get the probability value associated with a classification
00135   double getMaxProb() const;
00136 
00137   //! get the normalized probability value associated with a classification
00138   double getNormProb() const;
00139 private:
00140   uint   itsNumFeatures; //the number of features we have
00141   uint   itsNumClasses;  //the Number of classes we have
00142   double itsMaxProb;     // Stores the maximum probability with each object rec
00143   double itsSumProb;     // Used to derive a normalized P value
00144   double itsNormProb;    // normalized P of object
00145   std::vector<std::vector<double> > itsMean;  //the mean for each feature per class
00146   std::vector<std::vector<double> > itsStdevSq;  //the stdev squared for each feature
00147   //TODO: its long int sufficent? is there a better way of calc the mean and stdev?
00148   std::vector<uint64> itsClassFreq;   //the Freq of a given class
00149 
00150   std::vector<std::string> itsFeatureNames; //THe name of the features
00151   std::vector<std::string> itsClassNames;   //The names of the clases
00152 
00153 };
00154 
00155 // ######################################################################
00156 /* So things look consistent in everyone's emacs... */
00157 /* Local Variables: */
00158 /* indent-tabs-mode: nil */
00159 /* End: */
00160 
00161 #endif // LEARN_BAYES_H_DEFINED
Generated on Sun May 8 08:40:58 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3