00001 /*!@file HMAX/test-hmax5.C Test Hmax class and compare to original code */ 00002 00003 // //////////////////////////////////////////////////////////////////// // 00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the // 00005 // University of Southern California (USC) and the iLab at USC. // 00006 // See http://iLab.usc.edu for information about this project. // 00007 // //////////////////////////////////////////////////////////////////// // 00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected // 00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency // 00010 // in Visual Environments, and Applications'' by Christof Koch and // 00011 // Laurent Itti, California Institute of Technology, 2001 (patent // 00012 // pending; application number 09/912,225 filed July 23, 2001; see // 00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status). // 00014 // //////////////////////////////////////////////////////////////////// // 00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit. // 00016 // // 00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can // 00018 // redistribute it and/or modify it under the terms of the GNU General // 00019 // Public License as published by the Free Software Foundation; either // 00020 // version 2 of the License, or (at your option) any later version. // 00021 // // 00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope // 00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the // 00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // 00025 // PURPOSE. See the GNU General Public License for more details. // 00026 // // 00027 // You should have received a copy of the GNU General Public License // 00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write // 00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, // 00030 // Boston, MA 02111-1307 USA. // 00031 // //////////////////////////////////////////////////////////////////// // 00032 // 00033 // Primary maintainer for this file: Dan Parks <danielfp@usc.edu> 00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/CUDA/testcudahmaxfl.C $ 00035 // $Id: testcudahmaxfl.C 13227 2010-04-15 01:38:09Z dparks $ 00036 // 00037 00038 #include "Component/ModelManager.H" 00039 #include "GUI/XWindow.H" 00040 #include "CUDA/CudaHmaxFL.H" 00041 #include "Learn/SVMClassifier.H" 00042 #include "CUDA/CudaHmax.H" 00043 #include "Image/Image.H" 00044 #include "Image/ColorOps.H" 00045 #include "Image/CutPaste.H" 00046 #include "Image/Rectangle.H" 00047 #include "Image/MathOps.H" 00048 #include "Image/MatrixOps.H" 00049 #include "Image/Transforms.H" 00050 #include "Image/Convolutions.H" 00051 #include "Learn/svm.h" 00052 #include "Media/FrameSeries.H" 00053 #include "nub/ref.h" 00054 #include "Raster/GenericFrame.H" 00055 #include "Raster/Raster.H" 00056 #include "Util/Types.H" 00057 #include "Util/log.H" 00058 #include "Util/Timer.H" 00059 00060 #include <fstream> 00061 #include <iostream> 00062 #include <iomanip> 00063 #include <string> 00064 #include <unistd.h> 00065 #include <cstdlib> 00066 00067 00068 // number of orientations to use in HmaxFL 00069 #define NORI 4 00070 #define NUM_PATCHES_PER_SIZE 250 00071 00072 int main(const int argc, const char **argv) 00073 { 00074 00075 MYLOGVERB = LOG_INFO; 00076 00077 ModelManager *mgr = new ModelManager("Test Hmax with Feature Learning"); 00078 00079 00080 mgr->exportOptions(MC_RECURSE); 00081 00082 // required arguments 00083 // <c1patchesDir> <dir|list> <id> <outputfile> 00084 // 00085 // <id> is the given id for the given set of images 00086 // --in only needs to happen if we are loading the patches 00087 00088 if (mgr->parseCommandLine( 00089 (const int)argc, (const char**)argv, "<cudadev> <c1patchesDir> <dir|list:images> <svmModel> <svmRange> <outputfile>", 6, 6) == false) 00090 return 1; 00091 00092 std::string c1PatchesBaseDir; 00093 std::string images,svmModel,svmRange,devArg; 00094 std::string answerFileName; 00095 00096 devArg = mgr->getExtraArg(0); 00097 c1PatchesBaseDir = mgr->getExtraArg(1); 00098 images = mgr->getExtraArg(2); 00099 svmModel = mgr->getExtraArg(3); 00100 svmRange = mgr->getExtraArg(4); 00101 answerFileName = mgr->getExtraArg(5); 00102 00103 MemoryPolicy mp = GLOBAL_DEVICE_MEMORY; 00104 int dev = strtol(devArg.c_str(),NULL,0); 00105 std::string::size_type dirArg=images.find("dir:",0); 00106 std::string::size_type listArg=images.find("list:",0); 00107 if((dirArg == std::string::npos && 00108 listArg == std::string::npos) || 00109 (dirArg != 0 && listArg != 0)){ 00110 LFATAL("images argument is in one of the following formats - dir:<DIRNAME> or list:<LISTOFIMAGEPATHSFILE>"); 00111 return EXIT_FAILURE; 00112 } 00113 if(dirArg == 0) 00114 images = images.substr(4); 00115 else 00116 images = images.substr(5); 00117 00118 // Now we run if needed 00119 mgr->start(); 00120 00121 00122 // get an HmaxFL object: 00123 std::vector<int> scss(9); 00124 scss[0] = 1; scss[1] = 3; scss[2] = 5; scss[3] = 7; scss[4] = 9; 00125 scss[5] = 11; scss[6] = 13; scss[7] = 15; scss[8] = 17; 00126 std::vector<int> spss(8); 00127 spss[0] = 8; spss[1] = 10; spss[2] = 12; spss[3] = 14; 00128 spss[4] = 16; spss[5] = 18; spss[6] = 20; spss[7] = 22; 00129 // std::vector<int> scss(4); 00130 // scss[0] = 3; scss[1] = 7; scss[2] = 11; scss[3] = 15; 00131 // std::vector<int> spss(4); 00132 // spss[0] = 10; spss[1] = 14; spss[2] = 18; spss[3] = 22; 00133 00134 CudaHmaxFL hmax(mp,dev,NORI, spss, scss); 00135 00136 // Load the SVM Classifier Model and Range in 00137 SVMClassifier svm; 00138 svm.readModel(svmModel); 00139 svm.readRange(svmRange); 00140 00141 // 00142 hmax.readInC1Patches(c1PatchesBaseDir); 00143 00144 std::vector<std::string> imageNames; 00145 if(dirArg == 0) 00146 imageNames = hmax.readDir(images); 00147 else 00148 imageNames = hmax.readList(images); 00149 00150 std::ofstream answerFile; 00151 answerFile.open(answerFileName.c_str(),std::ios::out); 00152 00153 std::vector<int> patchSizes = hmax.getC1PatchSizes(); 00154 float **c2Res = new float*[patchSizes.size()]; 00155 for(unsigned int i=0;i<patchSizes.size();i++) { 00156 c2Res[i] = new float[NUM_PATCHES_PER_SIZE]; 00157 } 00158 00159 for(unsigned int imgInd=0;imgInd<imageNames.size();imgInd++){ 00160 00161 Image<float> inputf = Raster::ReadGrayNTSC(imageNames[imgInd]); 00162 Timer tim; 00163 tim.reset(); 00164 hmax.getC2(CudaImage<float>(inputf,mp,dev),c2Res); 00165 printf("CUDA Hmax done in %f seconds\n",tim.getSecs()); 00166 00167 double pred = svm.predict(c2Res,patchSizes.size(),NUM_PATCHES_PER_SIZE); 00168 printf("Prediction is %f\n",pred); 00169 int predId = (int) pred; 00170 answerFile << predId; 00171 answerFile << std::endl; 00172 00173 } 00174 00175 for(unsigned int i=0;i<patchSizes.size();i++) { 00176 delete[] c2Res[i]; 00177 } 00178 delete [] c2Res; 00179 00180 answerFile.close(); 00181 return 0; 00182 } 00183 00184 00185 // ###################################################################### 00186 /* So things look consistent in everyone's emacs... */ 00187 /* Local Variables: */ 00188 /* indent-tabs-mode: nil */ 00189 /* End: */