00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038 #include "SIFT/KDTree.H"
00039 #include "Util/log.H"
00040
00041
00042 KDTree::KDTree(const std::vector< rutz::shared_ptr<Keypoint> >& keys,
00043 const std::vector<uint>& objindices) :
00044 itsPivot(), itsSplitDim(0U), itsPivotIndex(0U), itsObjIndex(0U),
00045 itsLeftSubTree(), itsRightSubTree()
00046 {
00047 const uint numkeys = keys.size();
00048
00049
00050
00051
00052
00053 if (numkeys == 0)
00054 { LFATAL("Given list of keys is empty! -- ABORT"); return; }
00055
00056
00057 if (objindices.empty() == false) ASSERT(objindices.size() == keys.size());
00058
00059
00060 if (numkeys == 1)
00061 {
00062 itsPivot = keys[0];
00063 if (objindices.empty() == false) itsObjIndex = objindices[0];
00064 return;
00065 }
00066
00067
00068 itsPivotIndex = goodCandidate(keys, itsSplitDim);
00069 itsPivot = keys[itsPivotIndex];
00070
00071
00072
00073 byte bound = itsPivot->getFVelement(itsSplitDim);
00074 std::vector< rutz::shared_ptr<Keypoint> > leftElems, rightElems;
00075 std::vector<uint> leftInd, rightInd;
00076 std::vector<uint> leftObjInd, rightObjInd;
00077
00078 for (uint i = 0; i < numkeys; i++)
00079 {
00080 if (i == itsPivotIndex) continue;
00081
00082 rutz::shared_ptr<Keypoint> dom = keys[i];
00083
00084 if (dom->getFVelement(itsSplitDim) <= bound)
00085 {
00086 leftElems.push_back(dom);
00087 leftInd.push_back(i);
00088 if (objindices.empty() == false)
00089 leftObjInd.push_back(objindices[i]);
00090 }
00091 else
00092 {
00093 rightElems.push_back(dom);
00094 rightInd.push_back(i);
00095 if (objindices.empty() == false)
00096 rightObjInd.push_back(objindices[i]);
00097 }
00098 }
00099
00100
00101 if (leftElems.size())
00102 itsLeftSubTree.reset(new KDTree(leftElems, leftInd, leftObjInd));
00103 if (rightElems.size())
00104 itsRightSubTree.reset(new KDTree(rightElems, rightInd, rightObjInd));
00105 }
00106
00107
00108 KDTree::KDTree(const std::vector< rutz::shared_ptr<Keypoint> >& keys,
00109 const std::vector<uint>& indices,
00110 const std::vector<uint>& objindices) :
00111 itsPivot(), itsSplitDim(0U), itsPivotIndex(0U), itsObjIndex(0U),
00112 itsLeftSubTree(), itsRightSubTree()
00113 {
00114 const uint numkeys = keys.size();
00115
00116
00117
00118
00119
00120 if (numkeys == 0)
00121 { LFATAL("Given list of keys is empty! -- ABORT"); return; }
00122
00123
00124 if (objindices.empty() == false) ASSERT(objindices.size() == keys.size());
00125
00126
00127 if (numkeys == 1)
00128 {
00129 itsPivot = keys[0];
00130 itsPivotIndex = indices[0];
00131 if (objindices.empty() == false) itsObjIndex = objindices[0];
00132 return;
00133 }
00134
00135
00136 uint idx = goodCandidate(keys, itsSplitDim);
00137 itsPivotIndex = indices[idx];
00138 itsPivot = keys[idx];
00139
00140
00141
00142 byte bound = itsPivot->getFVelement(itsSplitDim);
00143 std::vector< rutz::shared_ptr<Keypoint> > leftElems, rightElems;
00144 std::vector<uint> leftInd, rightInd;
00145 std::vector<uint> leftObjInd, rightObjInd;
00146
00147 for (uint i = 0; i < numkeys; i++)
00148 {
00149 if (i == idx) continue;
00150
00151 rutz::shared_ptr<Keypoint> dom = keys[i];
00152
00153 if (dom->getFVelement(itsSplitDim) <= bound)
00154 {
00155 leftElems.push_back(dom);
00156 leftInd.push_back(indices[i]);
00157 if (objindices.empty() == false)
00158 leftObjInd.push_back(objindices[i]);
00159 }
00160 else
00161 {
00162 rightElems.push_back(dom);
00163 rightInd.push_back(indices[i]);
00164 if (objindices.empty() == false)
00165 rightObjInd.push_back(objindices[i]);
00166 }
00167 }
00168
00169
00170 if (leftElems.size())
00171 itsLeftSubTree.reset(new KDTree(leftElems, leftInd, leftObjInd));
00172 if (rightElems.size())
00173 itsRightSubTree.reset(new KDTree(rightElems, rightInd, rightObjInd));
00174 }
00175
00176
00177 KDTree::~KDTree()
00178 { }
00179
00180
00181 uint KDTree::nearestNeighbor(const rutz::shared_ptr<Keypoint>& target,
00182 int& distsq1, int& distsq2) const
00183 {
00184 HyperRectangle hr(target->getFVlength(), 0, 255);
00185 const int maxdsq = target->maxDistSquared();
00186 uint objidx = 0U;
00187 return nearestNeighborI(target, hr, maxdsq, distsq1, distsq2,
00188 maxdsq, objidx);
00189 }
00190
00191
00192 uint KDTree::nearestNeighborBBF(const rutz::shared_ptr<Keypoint>& target,
00193 const int searchSteps, int& distsq1,
00194 int& distsq2) const
00195 {
00196 HyperRectangle hr(target->getFVlength(), 0, 255);
00197 const int maxdsq = target->maxDistSquared();
00198 std::priority_queue<BBFdata> bbfq;
00199 int ssteps = searchSteps;
00200 uint objidx = 0U;
00201 return nearestNeighborBBFI(target, hr, ssteps, maxdsq,
00202 distsq1, distsq2, maxdsq, bbfq, objidx);
00203 }
00204
00205
00206 uint KDTree::nearestNeighborI(const rutz::shared_ptr<Keypoint>& target,
00207 const HyperRectangle& hr, int maxDistSq,
00208 int& distsq1, int& distsq2,
00209 const int maxdsq, uint& objidx) const
00210 {
00211
00212 if (isLeaf())
00213 {
00214 distsq1 = itsPivot->distSquared(target);
00215 distsq2 = maxdsq;
00216 objidx = itsObjIndex;
00217 return itsPivotIndex;
00218 }
00219
00220
00221
00222 const byte splitval = itsPivot->getFVelement(itsSplitDim);
00223 const uint numdims = target->getFVlength();
00224
00225
00226 HyperRectangle nearerHr(numdims), furtherHr(numdims);
00227 rutz::shared_ptr<KDTree> nearerKd, furtherKd;
00228
00229 if (target->getFVelement(itsSplitDim) <= splitval)
00230 {
00231 nearerKd = itsLeftSubTree;
00232 furtherKd = itsRightSubTree;
00233 nearerHr = hr;
00234 furtherHr = nearerHr.splitAt(itsSplitDim, splitval);
00235 }
00236 else
00237 {
00238 nearerKd = itsRightSubTree;
00239 furtherKd = itsLeftSubTree;
00240 furtherHr = hr;
00241 nearerHr = furtherHr.splitAt(itsSplitDim, splitval);
00242 }
00243
00244
00245
00246 int distSq1 = maxdsq, distSq2 = maxdsq; uint nearest = 0U, nobjidx = 0U;
00247 if (nearerKd.is_valid())
00248 nearest = nearerKd->nearestNeighborI(target, nearerHr, maxDistSq,
00249 distSq1, distSq2, maxdsq, nobjidx);
00250
00251
00252
00253
00254
00255
00256
00257
00258
00259
00260
00261
00262
00263 if (distSq1 < maxDistSq) maxDistSq = distSq1;
00264
00265
00266
00267 if (furtherHr.isInReach(target, maxDistSq))
00268 {
00269
00270
00271
00272 int ptDistSq = itsPivot->distSquared(target);
00273
00274 if (ptDistSq < distSq1)
00275 {
00276
00277
00278 nearest = itsPivotIndex;
00279
00280
00281
00282
00283 if (nobjidx == itsObjIndex)
00284 { distSq2 = distSq1; distSq1 = ptDistSq; }
00285 else
00286 { distSq1 = ptDistSq; distSq2 = maxdsq; nobjidx = itsObjIndex; }
00287
00288
00289 maxDistSq = distSq1;
00290 }
00291 else if (ptDistSq < distSq2)
00292 {
00293
00294
00295
00296
00297 if (nobjidx == itsObjIndex)
00298 { distSq2 = ptDistSq; maxDistSq = distSq2; }
00299 }
00300
00301
00302 int tempDistSq1 = maxdsq, tempDistSq2 = maxdsq;
00303 uint tempNearest = 0U, tempobjidx = 0U;
00304 if (furtherKd.is_valid())
00305 tempNearest =
00306 furtherKd->nearestNeighborI(target, furtherHr, maxDistSq,
00307 tempDistSq1, tempDistSq2, maxdsq,
00308 tempobjidx);
00309
00310
00311
00312 if (tempDistSq1 < distSq1)
00313 {
00314
00315 nearest = tempNearest;
00316
00317
00318 if (tempobjidx == nobjidx)
00319 {
00320
00321
00322 if (tempDistSq2 < distSq1) distSq2 = tempDistSq2;
00323 else distSq2 = distSq1;
00324 }
00325 else
00326 {
00327
00328 distSq2 = maxdsq;
00329 nobjidx = tempobjidx;
00330 }
00331
00332
00333 distSq1 = tempDistSq1;
00334 }
00335 else if (tempDistSq1 < distSq2)
00336 {
00337
00338
00339
00340 if (tempobjidx == nobjidx)
00341 distSq2 = tempDistSq1;
00342 }
00343 }
00344
00345
00346
00347 distsq1 = distSq1; distsq2 = distSq2; objidx = nobjidx;
00348 return nearest;
00349 }
00350
00351
00352 uint KDTree::nearestNeighborBBFI(const rutz::shared_ptr<Keypoint>& target,
00353 const HyperRectangle& hr, int& searchSteps,
00354 int maxDistSq, int& distsq1, int& distsq2,
00355 const int maxdsq,
00356 std::priority_queue<BBFdata>& bbfq,
00357 uint& objidx) const
00358 {
00359
00360 if (isLeaf())
00361 {
00362 distsq1 = itsPivot->distSquared(target);
00363 distsq2 = maxdsq;
00364 objidx = itsObjIndex;
00365 return itsPivotIndex;
00366 }
00367
00368
00369
00370 const byte splitval = itsPivot->getFVelement(itsSplitDim);
00371 const uint numdims = target->getFVlength();
00372
00373
00374 HyperRectangle nearerHr(numdims), furtherHr(numdims);
00375 rutz::shared_ptr<KDTree> nearerKd, furtherKd;
00376
00377 if (target->getFVelement(itsSplitDim) <= splitval)
00378 {
00379 nearerKd = itsLeftSubTree;
00380 furtherKd = itsRightSubTree;
00381 nearerHr = hr;
00382 furtherHr = nearerHr.splitAt(itsSplitDim, splitval);
00383 }
00384 else
00385 {
00386 nearerKd = itsRightSubTree;
00387 furtherKd = itsLeftSubTree;
00388 furtherHr = hr;
00389 nearerHr = furtherHr.splitAt(itsSplitDim, splitval);
00390 }
00391
00392
00393 BBFdata fu(furtherHr, furtherKd, itsPivotIndex, itsObjIndex, itsPivot,
00394 furtherHr.distSq(target));
00395 bbfq.push(fu);
00396
00397
00398
00399 int distSq1 = maxdsq, distSq2 = maxdsq; uint nearest = 0U, nobjidx = 0U;
00400 if (nearerKd.is_valid())
00401 nearest = nearerKd->
00402 nearestNeighborBBFI(target, nearerHr, searchSteps, maxDistSq,
00403 distSq1, distSq2, maxdsq, bbfq, nobjidx);
00404
00405
00406
00407
00408
00409
00410
00411
00412
00413
00414
00415
00416
00417 if (distSq1 < maxDistSq) maxDistSq = distSq1;
00418
00419
00420
00421 rutz::shared_ptr<Keypoint> pivot; uint pividx, pivobji;
00422 if (bbfq.size() > 0)
00423 {
00424 BBFdata fu = bbfq.top(); bbfq.pop();
00425 furtherHr = fu.hr; furtherKd = fu.tree; pividx = fu.pividx;
00426 pivot = fu.pivot; pivobji = fu.pivobji;
00427 }
00428 else
00429 { pivot = itsPivot; pividx = itsPivotIndex; pivobji = itsObjIndex; }
00430
00431
00432
00433 -- searchSteps;
00434
00435
00436
00437 if (searchSteps > 0 && furtherHr.isInReach(target, maxDistSq))
00438 {
00439
00440
00441
00442 int ptDistSq = pivot->distSquared(target);
00443 if (ptDistSq < distSq1)
00444 {
00445
00446
00447 nearest = pividx;
00448
00449
00450
00451
00452 if (nobjidx == pivobji)
00453 { distSq2 = distSq1; distSq1 = ptDistSq; }
00454 else
00455 { distSq1 = ptDistSq; distSq2 = maxdsq; nobjidx = pivobji; }
00456
00457
00458 maxDistSq = distSq1;
00459 }
00460 else if (ptDistSq < distSq2)
00461 {
00462
00463
00464
00465
00466 if (nobjidx == pivobji)
00467 { distSq2 = ptDistSq; maxDistSq = distSq2; }
00468 }
00469
00470
00471 int tempDistSq1 = maxdsq, tempDistSq2 = maxdsq;
00472 uint tempNearest = 0U, tempobjidx = 0U;
00473 if (furtherKd.is_valid())
00474 tempNearest = furtherKd->
00475 nearestNeighborBBFI(target, furtherHr, searchSteps, maxDistSq,
00476 tempDistSq1, tempDistSq2, maxdsq,
00477 bbfq, tempobjidx);
00478
00479
00480
00481 if (tempDistSq1 < distSq1)
00482 {
00483
00484 nearest = tempNearest;
00485
00486
00487 if (tempobjidx == nobjidx)
00488 {
00489
00490
00491 if (tempDistSq2 < distSq1) distSq2 = tempDistSq2;
00492 else distSq2 = distSq1;
00493 }
00494 else
00495 {
00496
00497 distSq2 = maxdsq;
00498 nobjidx = tempobjidx;
00499 }
00500
00501
00502 distSq1 = tempDistSq1;
00503 }
00504 else if (tempDistSq1 < distSq2)
00505 {
00506
00507
00508
00509 if (tempobjidx == nobjidx)
00510 distSq2 = tempDistSq1;
00511 }
00512 }
00513
00514
00515
00516 distsq1 = distSq1; distsq2 = distSq2; objidx = nobjidx;
00517 return nearest;
00518 }
00519
00520
00521 uint KDTree::goodCandidate(const std::vector< rutz::shared_ptr<Keypoint> >& exset,
00522 uint& splitDim)
00523 {
00524 const uint numkeys = exset.size();
00525 if (numkeys == 0) { LFATAL("Keypoint list given is empty!"); return 0; }
00526
00527
00528 uint dim = exset[0]->getFVlength();
00529
00530
00531 std::vector<byte> minHr(dim, 255), maxHr(dim, 0);
00532
00533
00534 for (uint i = 0; i < numkeys; i++)
00535 {
00536 rutz::shared_ptr<Keypoint> dom = exset[i];
00537 for (uint k = 0; k < dim; k++)
00538 {
00539 const byte val = dom->getFVelement(k);
00540 if (val < minHr[k]) minHr[k] = val;
00541 if (val > maxHr[k]) maxHr[k] = val;
00542 }
00543 }
00544
00545
00546 int maxDiff = 0;
00547 for (uint k = 0; k < dim; k++)
00548 {
00549 const int diffHr = int(maxHr[k]) - int(minHr[k]);
00550 if (diffHr > maxDiff) { maxDiff = diffHr; splitDim = k; }
00551 }
00552
00553
00554
00555 const int middle = (maxDiff >> 1) + int(minHr[splitDim]);
00556 int exemMinDiff = 256; uint middleidx = 0;
00557
00558 for (uint i = 0; i < numkeys; i++)
00559 {
00560 const int curDiff = std::abs(exset[i]->getFVelement(splitDim) - middle);
00561 if (curDiff < exemMinDiff) { exemMinDiff = curDiff; middleidx = i; }
00562 }
00563
00564
00565 return middleidx;
00566 }
00567
00568
00569
00570
00571
00572