00001 /*!@file HMAX/test-hmax5.C Test Hmax class and compare to original code */ 00002 00003 // //////////////////////////////////////////////////////////////////// // 00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the // 00005 // University of Southern California (USC) and the iLab at USC. // 00006 // See http://iLab.usc.edu for information about this project. // 00007 // //////////////////////////////////////////////////////////////////// // 00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected // 00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency // 00010 // in Visual Environments, and Applications'' by Christof Koch and // 00011 // Laurent Itti, California Institute of Technology, 2001 (patent // 00012 // pending; application number 09/912,225 filed July 23, 2001; see // 00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status). // 00014 // //////////////////////////////////////////////////////////////////// // 00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit. // 00016 // // 00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can // 00018 // redistribute it and/or modify it under the terms of the GNU General // 00019 // Public License as published by the Free Software Foundation; either // 00020 // version 2 of the License, or (at your option) any later version. // 00021 // // 00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope // 00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the // 00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // 00025 // PURPOSE. See the GNU General Public License for more details. // 00026 // // 00027 // You should have received a copy of the GNU General Public License // 00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write // 00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, // 00030 // Boston, MA 02111-1307 USA. // 00031 // //////////////////////////////////////////////////////////////////// // 00032 // 00033 // Primary maintainer for this file: Dan Parks <danielfp@usc.edu> 00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/HMAX/testhmaxfl.C $ 00035 // $Id: testhmaxfl.C 12962 2010-03-06 02:13:53Z irock $ 00036 // 00037 00038 #include "Component/ModelManager.H" 00039 #include "GUI/XWindow.H" 00040 #include "HMAX/HmaxFL.H" 00041 #include "Learn/SVMClassifier.H" 00042 #include "HMAX/Hmax.H" 00043 #include "Image/Image.H" 00044 #include "Image/ColorOps.H" 00045 #include "Image/CutPaste.H" 00046 #include "Image/Rectangle.H" 00047 #include "Image/MathOps.H" 00048 #include "Image/MatrixOps.H" 00049 #include "Image/Transforms.H" 00050 #include "Image/Convolutions.H" 00051 #include "Learn/svm.h" 00052 #include "Media/FrameSeries.H" 00053 #include "nub/ref.h" 00054 #include "Raster/GenericFrame.H" 00055 #include "Raster/Raster.H" 00056 #include "Util/Types.H" 00057 #include "Util/log.H" 00058 00059 #include <fstream> 00060 #include <iostream> 00061 #include <iomanip> 00062 #include <string> 00063 #include <unistd.h> 00064 #include <cstdlib> 00065 00066 00067 // number of orientations to use in HmaxFL 00068 #define NORI 4 00069 #define NUM_PATCHES_PER_SIZE 250 00070 00071 int main(const int argc, const char **argv) 00072 { 00073 00074 MYLOGVERB = LOG_INFO; 00075 00076 ModelManager *mgr = new ModelManager("Test Hmax with Feature Learning"); 00077 00078 00079 mgr->exportOptions(MC_RECURSE); 00080 00081 // required arguments 00082 // <c1patchesDir> <dir|list> <id> <outputfile> 00083 // 00084 // <id> is the given id for the given set of images 00085 // --in only needs to happen if we are loading the patches 00086 00087 if (mgr->parseCommandLine( 00088 (const int)argc, (const char**)argv, "<c1patchesDir> <dir|list:images> <svmModel> <svmRange> <outputfile>", 5, 5) == false) 00089 return 1; 00090 00091 std::string c1PatchesBaseDir; 00092 std::string images,svmModel,svmRange,devArg; 00093 std::string answerFileName; 00094 00095 c1PatchesBaseDir = mgr->getExtraArg(0); 00096 images = mgr->getExtraArg(1); 00097 svmModel = mgr->getExtraArg(2); 00098 svmRange = mgr->getExtraArg(3); 00099 answerFileName = mgr->getExtraArg(4); 00100 00101 std::string::size_type dirArg=images.find("dir:",0); 00102 std::string::size_type listArg=images.find("list:",0); 00103 if((dirArg == std::string::npos && 00104 listArg == std::string::npos) || 00105 (dirArg != 0 && listArg != 0)){ 00106 LFATAL("images argument is in one of the following formats - dir:<DIRNAME> or list:<LISTOFIMAGEPATHSFILE>"); 00107 return EXIT_FAILURE; 00108 } 00109 if(dirArg == 0) 00110 images = images.substr(4); 00111 else 00112 images = images.substr(5); 00113 00114 // Now we run if needed 00115 mgr->start(); 00116 00117 00118 // get an HmaxFL object: 00119 std::vector<int> scss(9); 00120 scss[0] = 1; scss[1] = 3; scss[2] = 5; scss[3] = 7; scss[4] = 9; 00121 scss[5] = 11; scss[6] = 13; scss[7] = 15; scss[8] = 17; 00122 std::vector<int> spss(8); 00123 spss[0] = 8; spss[1] = 10; spss[2] = 12; spss[3] = 14; 00124 spss[4] = 16; spss[5] = 18; spss[6] = 20; spss[7] = 22; 00125 // std::vector<int> scss(4); 00126 // scss[0] = 3; scss[1] = 7; scss[2] = 11; scss[3] = 15; 00127 // std::vector<int> spss(4); 00128 // spss[0] = 10; spss[1] = 14; spss[2] = 18; spss[3] = 22; 00129 00130 HmaxFL hmax(NORI, spss, scss); 00131 00132 // Load the SVM Classifier Model and Range in 00133 SVMClassifier svm; 00134 svm.readModel(svmModel); 00135 svm.readRange(svmRange); 00136 //svm.printRange(); 00137 // 00138 hmax.readInC1Patches(c1PatchesBaseDir); 00139 00140 std::vector<std::string> imageNames; 00141 if(dirArg == 0) 00142 imageNames = hmax.readDir(images); 00143 else 00144 imageNames = hmax.readList(images); 00145 00146 std::ofstream answerFile; 00147 answerFile.open(answerFileName.c_str(),std::ios::out); 00148 00149 //std::ofstream c2File; 00150 //c2File.open("C2.out",std::ios::out); 00151 00152 std::vector<int> patchSizes = hmax.getC1PatchSizes(); 00153 float **c2Res = new float*[patchSizes.size()]; 00154 for(unsigned int i=0;i<patchSizes.size();i++) { 00155 c2Res[i] = new float[NUM_PATCHES_PER_SIZE]; 00156 } 00157 00158 for(unsigned int imgInd=0;imgInd<imageNames.size();imgInd++){ 00159 00160 Image<float> inputf = Raster::ReadGrayNTSC(imageNames[imgInd]); 00161 hmax.getC2(inputf,c2Res); 00162 00163 // if (c2File.is_open()) { 00164 // for(unsigned int i=0;i<patchSizes.size();i++) { 00165 // for(int j=0;j<NUM_PATCHES_PER_SIZE;j++) { 00166 // c2File << std::setiosflags(std::ios::fixed) << std::setprecision(4) << 00167 // (i*NUM_PATCHES_PER_SIZE+j+1) << ":" << c2Res[i][j] << " "; 00168 // } 00169 // } 00170 // c2File << std::endl; 00171 // } 00172 00173 00174 double pred = svm.predict(c2Res,patchSizes.size(),NUM_PATCHES_PER_SIZE); 00175 printf("Prediction is %f\n",pred); 00176 int predId = (int) pred; 00177 answerFile << predId; 00178 answerFile << std::endl; 00179 00180 } 00181 00182 for(unsigned int i=0;i<patchSizes.size();i++) { 00183 delete[] c2Res[i]; 00184 } 00185 delete [] c2Res; 00186 00187 answerFile.close(); 00188 return 0; 00189 } 00190 00191 00192 // ###################################################################### 00193 /* So things look consistent in everyone's emacs... */ 00194 /* Local Variables: */ 00195 /* indent-tabs-mode: nil */ 00196 /* End: */