trainUtils.H

Go to the documentation of this file.
00001 /*!@file Gist/trainUtils.H training utility functions (not limited to FFN) */
00002 
00003 // //////////////////////////////////////////////////////////////////// //
00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the //
00005 // University of Southern California (USC) and the iLab at USC.         //
00006 // See http://iLab.usc.edu for information about this project.          //
00007 // //////////////////////////////////////////////////////////////////// //
00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00010 // in Visual Environments, and Applications'' by Christof Koch and      //
00011 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00012 // pending; application number 09/912,225 filed July 23, 2001; see      //
00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00014 // //////////////////////////////////////////////////////////////////// //
00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00016 //                                                                      //
00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00018 // redistribute it and/or modify it under the terms of the GNU General  //
00019 // Public License as published by the Free Software Foundation; either  //
00020 // version 2 of the License, or (at your option) any later version.     //
00021 //                                                                      //
00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00025 // PURPOSE.  See the GNU General Public License for more details.       //
00026 //                                                                      //
00027 // You should have received a copy of the GNU General Public License    //
00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00030 // Boston, MA 02111-1307 USA.                                           //
00031 // //////////////////////////////////////////////////////////////////// //
00032 //
00033 // Primary maintainer for this file: Christian Siagian <siagian@usc.edu>
00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/Gist/trainUtils.H $
00035 // $Id: trainUtils.H 12395 2009-12-25 02:34:13Z siagian $
00036 //
00037 
00038 #ifndef GIST_TRAINUTILS_H_DEFINED
00039 #define GIST_TRAINUTILS_H_DEFINED
00040 
00041 #include "Image/Image.H"
00042 #include <string>
00043 
00044 template <class T> class Image;
00045 
00046 #define TUTILS_RW_RANGE 1.0    // range of initial random weights [-.5 ... .5]
00047 
00048 // ######################################################################
00049 // utilities for training feed forward network (FFN)
00050 
00051 // ######################################################################
00052 // to store information from the training file
00053 class FFNtrainInfo
00054 {
00055 public:
00056   //! Construct a FFN training params info
00057   //! if blank, need to call reset later on
00058   FFNtrainInfo(std::string fName = std::string(""));
00059 
00060   //! Destructor
00061   virtual ~FFNtrainInfo();
00062 
00063   //! reset the Neural Network classifier parameter
00064   bool reset(std::string fName);
00065 
00066   std::string  trainFolder;      //!< where the training data is
00067   std::string  testFolder;       //!< where the testing data is
00068   uint         nOutput;          //!< the number of output dimension
00069   bool         isPCA;            //!< has a dimension reduction step
00070   std::string  evecFname;        //!< the dimension reduction
00071   uint         oriFeatSize;      //!< the original number of features
00072   uint         redFeatSize;      //!< the reduced number of features
00073   uint         h1size;           //!< the number of hidden nodes in layer 1
00074   uint         h2size;           //!< the number of hidden nodes in layer 2
00075   std::string  h1Name;           //!< the weight file for hidden layer 1
00076   std::string  h2Name;           //!< the weight file for hidden layer 2
00077   std::string  oName;            //!< the weight file for output layer
00078   float        learnRate;        //!< the learning rate
00079   std::string  trainSampleFile;  //!< the training sample file list
00080   std::string  testSampleFile;   //!< the testing sample file list
00081 };
00082 
00083 // ######################################################################
00084 // utilities for applying PCA/ICA dimension reduction
00085 
00086 //! Setup the PCA/ICA unmixing matrix
00087 Image<double> setupPcaIcaMatrix(std::string inW, int oriSize, int redSize);
00088 
00089 //! Get the PCA/ICA reduced feature vector
00090 //! in a form of an image
00091 Image<float> getPcaIcaFeatImage(Image<double> res, int w, int h, int s);
00092 
00093 #endif // GIST_TRAINUTILS_H_DEFINED
Generated on Sun May 8 08:40:39 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3