IZNeuron.H

Go to the documentation of this file.
00001 /*!@file ModelNeuron/IZNeuron.H Class declarations for an Izhikevich neuron */
00002 
00003 // //////////////////////////////////////////////////////////////////// //
00004 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the //
00005 // University of Southern California (USC) and the iLab at USC.         //
00006 // See http://iLab.usc.edu for information about this project.          //
00007 // //////////////////////////////////////////////////////////////////// //
00008 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00009 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00010 // in Visual Environments, and Applications'' by Christof Koch and      //
00011 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00012 // pending; application number 09/912,225 filed July 23, 2001; see      //
00013 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00014 // //////////////////////////////////////////////////////////////////// //
00015 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00016 //                                                                      //
00017 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00018 // redistribute it and/or modify it under the terms of the GNU General  //
00019 // Public License as published by the Free Software Foundation; either  //
00020 // version 2 of the License, or (at your option) any later version.     //
00021 //                                                                      //
00022 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00023 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00024 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00025 // PURPOSE.  See the GNU General Public License for more details.       //
00026 //                                                                      //
00027 // You should have received a copy of the GNU General Public License    //
00028 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00029 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00030 // Boston, MA 02111-1307 USA.                                           //
00031 // //////////////////////////////////////////////////////////////////// //
00032 //
00033 // Primary maintainer for this file: David J. Berg <dberg@usc.edu>
00034 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/ModelNeuron/IZNeuron.H $
00035 
00036 #ifndef MODELNEURON_IZNEURON_H_DEFINED
00037 #define MODELNEURON_IZNEURON_H_DEFINED
00038 
00039 #include "ModelNeuron/Synapse.H"
00040 
00041 // ######################################################################
00042 //! The Izhikevich neural model of spike generation as presented in
00043 //! his 2003,2008 paper
00044 //######################################################################
00045 class IZNeuronFunc
00046 {
00047 public:
00048   //! Constructor with default params
00049   IZNeuronFunc(const double& a = 0.15,      // timescale of recovery variable(u)
00050                const double& b = 8.0,       // sensitivity of u to voltage
00051                const double& c = -55.0,     // after-spike reset value of v
00052                const double& d = 200.0,     // after-spike reset value of u
00053                const double& k = 1.0,       // current voltage relationship
00054                const double& Cm = 20.0,     // in microfarads
00055                const double& V_rest = -55.0, // in millivolts
00056                const double& V_thresh = -40.0, // in millivolts
00057                const double& V_peak = 25.0) :  // in millivolts
00058     itsSpike(false), itsV(V_rest), itsI(0.0), itsU(0.0),itsa(a), itsb(b), 
00059     itsc(c), itsd(d), itsk(k),itsCm(Cm), itsVr(V_rest), itsVth(V_thresh), 
00060     itsVp(V_peak) { };
00061 
00062   //!destructor
00063   ~IZNeuronFunc() { };
00064 
00065   //since our last integration time step did we spike?
00066   const bool getSpike() const {return itsSpike; };
00067 
00068   //! integrate 1ms 
00069   void integrate();
00070 
00071   //! initialize or reset 
00072   void initialize();    
00073 
00074   //! set membrane potential to given value (in mV)
00075   void setV(const double& val) { itsV = val; };
00076 
00077   //!set the current (picoamps) of the cell
00078   void setCurrent(const double& current) {itsI = current; };
00079   
00080   //! get current membrane potential (mV)
00081   const double getV() const { return itsV; };
00082 
00083   //! get peak voltage (mV)
00084   const double getVpeak() const { return itsVp; };
00085   
00086   //! get the value of the recovery variable
00087   const double getU() const { return itsU; };
00088   
00089   //! get the last set input current (picoAmps)
00090   const double getCurrent() const { return itsI; };  
00091 
00092   //! setup different neuron types
00093   void setup(const std::string& name, const bool use_random = false);
00094   
00095 private:
00096   //! reset state when a spike occurs
00097   void reset();
00098   
00099   bool itsSpike;      //did we spike in the last time step
00100   
00101   double itsV;        // membrane potential in millivolts
00102   double itsI;        // input current in picoamperes
00103   double itsU;        //recovery variable
00104 
00105   double itsa;        //dimenionless param
00106   double itsb;        //dimenionless param
00107   double itsc;        //dimenionless param
00108   double itsd;        //dimenionless param
00109   double itsk;        //gain factor
00110   double itsCm;       //membrane capacitance 
00111   double itsVr;       //resting voltage
00112   double itsVth;      //threshold to spike
00113   double itsVp;       //peak voltage
00114 };
00115 
00116 // ######################################################################
00117 // ! The Izhikevich spike generation model with channels (from Dayan & Abbot 2001, and Izhikevich, 2008, 2004, 2003).
00118 // This class represents a neuron with four 'lumped' channel types, where all synapses of a given type are goverened by
00119 // a single equation with first order kinematics (see Synapse.H). The neuron contains AMPA and NMDA as excitatory
00120 // channels and GABAA and GABAB as inhibitory channles. Alternatevly, setI() can be used to set an external current (pA)
00121 // to the neuron. After a call to evolve, the external input will be reset to 0.
00122 // ######################################################################
00123 class IZNeuron : public SimUnit
00124 {
00125 public:
00126   //! Constructor with default params
00127   IZNeuron(const double& a = 0.15,         // timescale of recovery variable
00128            const double& b = 8.0,          // sensitivity of u to voltage
00129            const double& c = -55.0,        // after-spike reset value of v
00130            const double& d = 200.0,        // after-spike reset value of u
00131            const double& k = 1.0,          // current voltage relationship
00132            const double& Cm = 20.0,        // in microfarads
00133            const double& V_rest = -55.0,   // in millivolts
00134            const double& V_thresh = -40.0, // in millivolts
00135            const double& V_peak = 25.0,    // in millivolts
00136            const std::string& name = "Neuron", 
00137            const std::string& units = "spike");
00138   
00139   //!destructor
00140   ~IZNeuron() { };
00141 
00142   //set the voltage
00143   void setV(const double& voltage);
00144   
00145   //!get the output for display purposes, the membrane voltage
00146   const double getDisplayOutput() const;
00147   
00148   //!get the number of sub units
00149   const uint numSubs() const;
00150   
00151   //!get sub unit
00152   const SimUnit& getSub(const uint i) const;
00153   
00154   //!get the current voltage (mV)
00155   const double getV() const;
00156   
00157   //!get the current current (pA)
00158   const double getI() const;
00159   
00160   //!set an external current. 
00161   void setI (const double& current);
00162 
00163   //!setup the neuron and its parameters
00164   const IZNeuron& setup(const std::string& name, const bool use_random = false);
00165 
00166 protected:
00167   //!get the sub, unit mutable version
00168   SimUnit& editSub(const uint i);
00169   
00170 private:
00171   //! integrate 1 time step 
00172   double const doIntegrate(const SimTime& dt, 
00173                            const double& ine, const double& ini);
00174 
00175   //!initialize or reset all receptors and variables
00176   void doInit();
00177 
00178   //!perform copy of IZNeuron
00179   IZNeuron* doClone() const;
00180 
00181   double itsI; //for external current
00182   IZNeuronFunc itsN; //our neuron
00183 
00184   //synapses
00185   AMPASynapse ampa;
00186   NMDASynapse nmda;
00187   GABAASynapse gabaa;
00188   GABABSynapse gabab;
00189 };
00190 
00191 struct RSNeuron : public IZNeuron
00192 { RSNeuron() : IZNeuron() { setup("RS"); }; 
00193   RSNeuron* doClone() const { return new RSNeuron(*this); }; }; 
00194 
00195 struct FSNeuron : public IZNeuron
00196 { FSNeuron() : IZNeuron() { setup("FS"); }; 
00197   FSNeuron* doClone() const { return new FSNeuron(*this); }; };
00198 
00199 struct EBNeuron : public IZNeuron
00200 { EBNeuron() : IZNeuron() { setup("EB"); }; 
00201   EBNeuron* doClone() const { return new EBNeuron(*this); }; };
00202 
00203 // ######################################################################
00204 // Register neuron types
00205 // ######################################################################
00206 namespace 
00207 {
00208   typedef SimUnit::Factory IZFactory;
00209   typedef SimUnit::Creator IZCreator;
00210   //define creation functions
00211   struct RegisterIZNeuron
00212   {
00213     RegisterIZNeuron()
00214     {
00215       IZFactory::instance().add("RSNeuron", IZCreator::make<RSNeuron>());
00216       IZFactory::instance().add("FSNeuron", IZCreator::make<FSNeuron>());
00217       IZFactory::instance().add("EBNeuron", IZCreator::make<EBNeuron>());
00218     }
00219   };
00220   static RegisterIZNeuron registerizn;  
00221 }
00222 
00223 /*
00224 // ######################################################################
00225 // The Izhikevich spike generation model (as in the class above), but
00226 // this class supports an arbitrary number of synapses. Synpaptic
00227 // structures is defined through calls to addSynapse. inputSynpase
00228 // allows targeting inputs to specific synapses. Calls to the general
00229 // input function will effect the cell's current directly.  NOTE:
00230 // Currently this is under construction. Using inputSynapse is
00231 // dangerous and could lead to scaling problems if modules are not at
00232 // the same timestep. the functionality of the default input is
00233 // completely ignored. We will also want to add a linked list
00234 // implementation.
00235 // ######################################################################
00236 class IZNeuronSyn : public SimUnit
00237 {
00238 public:
00239   //! Constructor with default params
00240   IZNeuronSyn(const double& a = 0.15,         // timescale of recovery variable
00241               const double& b = 8.0,          // sensitivity of u to voltage
00242               const double& c = -55.0,        // after-spike reset value of v
00243               const double& d = 200.0,        // after-spike reset value of u
00244               const double& k = 1.0,          // current voltage relationship
00245               const double& Cm = 20.0,        // in microfarads
00246               const double& V_rest = -55.0,   // in millivolts
00247               const double& V_thresh = -40.0, // in millivolts
00248               const double& V_peak = 25.0,    // in millivolts
00249               const std::string& name = "Neuron", 
00250               const std::string& units = "spike");
00251 
00252   //copy constructor
00253   IZNeuronSyn(const IZNeuronSyn& rhs);
00254 
00255   //assignment
00256   IZNeuronSyn& operator=(const IZNeuronSyn& rhs);  
00257   
00258   //!destructor
00259   ~IZNeuronSyn();
00260 
00261   //set the voltage
00262   void setV(const double& voltage);
00263   
00264   //!get the output for display purposes, the membrane voltage
00265   const double getDisplayOutput() const;
00266   
00267   //!get the number of sub units
00268   const uint numSubs() const;
00269   
00270   //!get sub unit
00271   const SimUnit& getSub(const uint i) const;
00272   
00273   //!get the current voltage (mV)
00274   const double getV() const;
00275   
00276   //!get the current current (pA)
00277   const double getI() const;
00278   
00279   //!set an external current. 
00280   void setI (const double& current);
00281 
00282   //!setup the neuron and its parameters
00283   const IZNeuronSyn& setup(const std::string& name, 
00284                            const bool use_random = false);
00285 
00286   //! add a synapse of a given type. Ratio is used to supply relative
00287   //! weighting to different receptor types. For example, in your
00288   //! model you would like the density of nmda receptors to be twice
00289   //! that of ampa receptors: 
00290   //! addSynapse(NMDASynapse(), 2);  addSynapse(AMPASynapse(), 1);
00291   template <class S, class I> 
00292   void addSynapse(const Synapse<S, I>& synapse, const double& ratio = 1);
00293 
00294   //input to a synapse of a particular type
00295   void inputSynapse(const double& input, const Receptor::Type receptor);
00296   
00297   protected:
00298   //!get sub unit
00299   SimUnit& editSub(const uint i);
00300 
00301   private:
00302   //! pointer cleanup
00303   void cleanup();
00304 
00305   //! integrate 1 time step 
00306   double const doIntegrate(const SimTime& dt, 
00307                            const double& inp_exc, const double& inp_inh);
00308 
00309   //!initialize or reset all receptors and variables
00310   void doInit();
00311 
00312   //!perform copy of IZNeuron
00313   IZNeuronSyn* doClone() const;
00314 
00315   double itsI;
00316   IZNeuronFunc itsN; //our neuron
00317 
00318   typedef std::pair<double, SimUnit*> pair;
00319   typedef std::map<Receptor::Type, pair > map;
00320   map itsS;
00321 };
00322 */
00323 
00324 #endif
00325 // ######################################################################
00326 /* So things look consistent in everyone's emacs... */
00327 /* Local Variables: */
00328 /* indent-tabs-mode: nil */
00329 /* End: */
Generated on Sun May 8 08:41:01 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3