DecisionTree.H

Go to the documentation of this file.
00001 /*!@file Learn/DecisionTree.H Decision Tree Classifier */
00002 // //////////////////////////////////////////////////////////////////// //
00003 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the //
00004 // University of Southern California (USC) and the iLab at USC.         //
00005 // See http://iLab.usc.edu for information about this project.          //
00006 // //////////////////////////////////////////////////////////////////// //
00007 // Major portions of the iLab Neuromorphic Vision Toolkit are protected //
00008 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency //
00009 // in Visual Environments, and Applications'' by Christof Koch and      //
00010 // Laurent Itti, California Institute of Technology, 2001 (patent       //
00011 // pending; application number 09/912,225 filed July 23, 2001; see      //
00012 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status).     //
00013 // //////////////////////////////////////////////////////////////////// //
00014 // This file is part of the iLab Neuromorphic Vision C++ Toolkit.       //
00015 //                                                                      //
00016 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can   //
00017 // redistribute it and/or modify it under the terms of the GNU General  //
00018 // Public License as published by the Free Software Foundation; either  //
00019 // version 2 of the License, or (at your option) any later version.     //
00020 //                                                                      //
00021 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope  //
00022 // that it will be useful, but WITHOUT ANY WARRANTY; without even the   //
00023 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //
00024 // PURPOSE.  See the GNU General Public License for more details.       //
00025 //                                                                      //
00026 // You should have received a copy of the GNU General Public License    //
00027 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write   //
00028 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,   //
00029 // Boston, MA 02111-1307 USA.                                           //
00030 // //////////////////////////////////////////////////////////////////// //
00031 //
00032 // Primary maintainer for this file: Dan Parks <danielfp@usc.edu>
00033 // $HeadURL$
00034 // $Id$
00035 //
00036 
00037 #ifndef DECISIONTREE_H_DEFINED
00038 #define DECISIONTREE_H_DEFINED
00039 
00040 #include "rutz/shared_ptr.h"
00041 #include <cstdlib>
00042 #include <deque>
00043 #include <map>
00044 #include <list>
00045 #include <vector>
00046 #include <iostream>
00047 #include <fstream>
00048 
00049 class DecisionNode; // Forward declaration
00050 
00051 class DecisionTree
00052 {
00053   public:
00054     DecisionTree(int maxSplits=1);
00055     // Train a tree on the data, limited by the maximum allowed splits
00056     void train(const std::vector<std::vector<float> >& data, const std::vector<int>& labels,std::vector<float> weights=std::vector<float>());
00057     // Predict the result for this binary classifier on the given data using the given weights on the nodes
00058     std::vector<int> predict(const std::vector<std::vector<float> >& data, std::vector<float> weights=std::vector<float>());
00059     void printTree();
00060     std::deque<rutz::shared_ptr<DecisionNode> > getNodes();
00061     void addNode(rutz::shared_ptr<DecisionNode> node);
00062   private:
00063     size_t itsMaxSplits;
00064     std::deque<rutz::shared_ptr<DecisionNode> > itsNodes;
00065 };
00066 
00067 // One node within a decision tree
00068 class DecisionNode
00069 {
00070   public:
00071     DecisionNode();
00072     std::vector<int> decide(const std::vector<std::vector<float> >& data);
00073     float split(const std::vector<std::vector<float> >& data, const std::vector<int>& labels, const std::vector<float>& weights, rutz::shared_ptr<DecisionNode>& left, rutz::shared_ptr<DecisionNode>& right, const rutz::shared_ptr<DecisionNode> parent=rutz::shared_ptr<DecisionNode>(NULL));
00074     size_t getDim();
00075     bool isValid();
00076     int printNode(std::string& output, int depth=0);
00077     void writeNode(std::ostream& outstream, bool needEnd=true);
00078     rutz::shared_ptr<DecisionNode> readNode(std::istream& instream);
00079     void setDim(size_t dim);
00080     void setLeaf(bool isLeaf);
00081     void setParent(rutz::shared_ptr<DecisionNode> parent);
00082     void setLeftConstraint(float constraint);
00083     void setRightConstraint(float constraint);
00084     void setClass(int classId);
00085     int getClass();
00086   private:
00087     int itsDim;
00088     //float itsThreshold;
00089     //int itsSign;
00090     bool itsLeaf;
00091     float itsLeftConstraint;
00092     float itsRightConstraint;
00093     int itsClass;
00094     // Parent node to the current node
00095     rutz::shared_ptr<DecisionNode> itsParent;
00096 };
00097 
00098 
00099 #endif
00100 
00101 // ######################################################################
00102 /* So things look consistent in everyone's emacs... */
00103 /* Local Variables: */
00104 /* indent-tabs-mode: nil */
00105 /* End: */
00106 
00107 
Generated on Sun May 8 08:40:58 2011 for iLab Neuromorphic Vision Toolkit by  doxygen 1.6.3