00001 /*!@file Image/MatrixOps.H Matrix operations on Image 00002 */ 00003 00004 // //////////////////////////////////////////////////////////////////// // 00005 // The iLab Neuromorphic Vision C++ Toolkit - Copyright (C) 2001 by the // 00006 // University of Southern California (USC) and the iLab at USC. // 00007 // See http://iLab.usc.edu for information about this project. // 00008 // //////////////////////////////////////////////////////////////////// // 00009 // Major portions of the iLab Neuromorphic Vision Toolkit are protected // 00010 // under the U.S. patent ``Computation of Intrinsic Perceptual Saliency // 00011 // in Visual Environments, and Applications'' by Christof Koch and // 00012 // Laurent Itti, California Institute of Technology, 2001 (patent // 00013 // pending; application number 09/912,225 filed July 23, 2001; see // 00014 // http://pair.uspto.gov/cgi-bin/final/home.pl for current status). // 00015 // //////////////////////////////////////////////////////////////////// // 00016 // This file is part of the iLab Neuromorphic Vision C++ Toolkit. // 00017 // // 00018 // The iLab Neuromorphic Vision C++ Toolkit is free software; you can // 00019 // redistribute it and/or modify it under the terms of the GNU General // 00020 // Public License as published by the Free Software Foundation; either // 00021 // version 2 of the License, or (at your option) any later version. // 00022 // // 00023 // The iLab Neuromorphic Vision C++ Toolkit is distributed in the hope // 00024 // that it will be useful, but WITHOUT ANY WARRANTY; without even the // 00025 // implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // 00026 // PURPOSE. See the GNU General Public License for more details. // 00027 // // 00028 // You should have received a copy of the GNU General Public License // 00029 // along with the iLab Neuromorphic Vision C++ Toolkit; if not, write // 00030 // to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, // 00031 // Boston, MA 02111-1307 USA. // 00032 // //////////////////////////////////////////////////////////////////// // 00033 // 00034 // Primary maintainer for this file: Laurent Itti <itti@usc.edu> 00035 // $HeadURL: svn://isvn.usc.edu/software/invt/trunk/saliency/src/Image/MatrixOps.H $ 00036 // $Id: MatrixOps.H 7963 2007-02-21 03:55:43Z itti $ 00037 // 00038 00039 #ifndef IMAGE_MATRIXOPS_H_DEFINED 00040 #define IMAGE_MATRIXOPS_H_DEFINED 00041 00042 #include "Image/Image.H" 00043 #include "Util/Promotions.H" 00044 #include "rutz/error.h" 00045 00046 //! Exception class thrown if a singular matrix is encountered 00047 /*! The exception object contains a copy of the singular matrix, so 00048 that the matrix can be examined, displayed, etc. for debugging 00049 purposes. */ 00050 class SingularMatrixException : public rutz::error 00051 { 00052 public: 00053 SingularMatrixException(const Image<float>& m, 00054 const rutz::file_pos& pos) 00055 : 00056 rutz::error("Matrix is singular", pos), 00057 mtx(m) {} 00058 00059 virtual ~SingularMatrixException() throw() {} 00060 00061 const Image<float> mtx; 00062 }; 00063 00064 //! Vector-Matrix Multiplication: y = v * M 00065 /*! @param v row vector (w x h == n x 1), 00066 @param M matrix with (w x h == p x n) 00067 @return row vector (w x h == p x 1) 00068 */ 00069 template <class T> 00070 Image<typename promote_trait<T,T>::TP> 00071 vmMult(const Image<T>& v, const Image<T>& M); 00072 00073 //! Matrix-Matrix Multiplication: C = A * B 00074 /*! The images A and B are interpreted as matrices. For multiplying a 00075 (m x n) with a (n x p) matrix, this is the generic matrix 00076 multiplication with complexity (m * n * p).*/ 00077 template <class T> 00078 Image<typename promote_trait<T,T>::TP> 00079 matrixMult(const Image<T>& A, const Image<T>& B); 00080 00081 //! Matrix-Matrix Multiplication: C = A * B 00082 /*! The images A and B are interpreted as matrices. For multiplying 00083 a (m x n) with a (n x p) matrix, this is the generic matrix multiplication 00084 with complexity (m * n * p). This version will allow you to multiply 00085 values in a matrix that lie between index endA/B and beginA/B. The 00086 destination matrix will be the same size as: 00087 (endAX - beginAX) x (endAX - beginAX) 00088 per usual the width of A (indexed between beginAX and endAX) 00089 and height of B MUST be equal. If not then 00090 perhaps use transpose... 00091 @param A input matrix 1 00092 @param B input matrix 2 00093 @param beginAX starting (width) index in matrix A 00094 @param endAX ending (width) index in matrix A 00095 @param beginBX starting (width) index in matrix B 00096 @param endBX ending (width) index in matrix B 00097 @param beginAY starting (height) index in matrix A 00098 @param endAY ending (height) index in matrix A 00099 */ 00100 template <class T> 00101 Image<typename promote_trait<T,T>::TP> 00102 matrixMult(const Image<T>& A, const Image<T>& B, 00103 const uint beginAX, const uint endAX, 00104 const uint beginBX, const uint endBX, 00105 const uint beginAY, const uint endAY); 00106 00107 //! transpose matrix M 00108 template <class T_or_RGB> 00109 Image<T_or_RGB> transpose(const Image<T_or_RGB>& M); 00110 00111 //! flip horizontally 00112 template <class T_or_RGB> 00113 Image<T_or_RGB> flipHoriz(const Image<T_or_RGB>& img); 00114 00115 //! flip vertically 00116 template <class T_or_RGB> 00117 Image<T_or_RGB> flipVertic(const Image<T_or_RGB>& img); 00118 00119 //! return the identity matrix of dimensions (size x size) 00120 template <class T> 00121 Image<T> eye(const uint size); 00122 00123 //! Compute the trace of a square matrix, i.e., sum of its diagonal elements 00124 template <class T> 00125 typename promote_trait<T,T>::TP trace(const Image<T>& M); 00126 00127 //! Get a partial pivot and pivote a square matrix, at y 00128 /*! returns -1 if we can't find one */ 00129 template <class T> 00130 int matrixPivot(Image<T>& M, const int y); 00131 00132 //! Inverse a nonsingular square matrix 00133 template <class T> 00134 Image<typename promote_trait<T, float>::TP> matrixInv(const Image<T>& M); 00135 00136 //! Compute dot product between two images 00137 /*! The two images must have same dims. This is just the sum of all 00138 pointwise products. */ 00139 template <class T> 00140 typename promote_trait<T,T>::TP dotprod(const Image<T>& A, const Image<T>& B); 00141 00142 //! Compute the determinant of a square matrix 00143 template <class T> 00144 typename promote_trait<T,float>::TP matrixDet(const Image<T>& M); 00145 00146 00147 #endif // !IMAGE_MATRIXOPS_H_DEFINED 00148 00149 // ###################################################################### 00150 /* So things look consistent in everyone's emacs... */ 00151 /* Local Variables: */ 00152 /* indent-tabs-mode: nil */ 00153 /* End: */